1
|
Sue SH, Tseng WC, Wu ZS, Huang SM, Chen JL, Wu ZF, Lai HC. The synergistic mechanisms of propofol with cisplatin or doxorubicin in human ovarian cancer cells. J Ovarian Res 2024; 17:187. [PMID: 39272193 PMCID: PMC11401282 DOI: 10.1186/s13048-024-01509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Most ovarian cancer cases are diagnosed at an advanced stage, leading to poor outcomes and a relatively low 5-year survival rate. While tumor resection in the early stages can be highly effective, recurrence following primary treatment remains a significant cause of mortality. Propofol is a commonly used intravenous anesthetic agent in cancer resection surgery. Previous research has shown that propofol anesthesia was associated with improved survival in patients undergoing elective surgery for epithelial ovarian cancer. However, the underlying antitumor mechanisms are not yet fully understood. METHODS This study aimed to uncover the antitumor properties of propofol alone and combined with cisplatin or doxorubicin, in human SKOV3 and OVCAR3 ovarian cancer cells. We applied flowcytometry analysis for mitochondrial membrane potential, apoptosis, and autophagy, colony formation, migration, and western blotting analysis. RESULTS Given that chemotherapy is a primary clinical approach for managing advanced and recurrent ovarian cancer, it is essential to address the limitations of current chemotherapy, particularly in the use of cisplatin and doxorubicin, which are often constrained by their side effects and the development of resistance. First of all, propofol acted synergistically with cisplatin and doxorubicin in SKOV3 cells. Moreover, our data further showed that propofol suppressed colony formation, disrupted mitochondrial membrane potential, and induced apoptosis and autophagy in SKOV3 and OVCAR3 cells. Finally, the effects of combined propofol with cisplatin or doxorubicin on mitochondrial membrane potential, apoptosis, autophagy, and epithelial-mesenchymal transition were different in SKOV3 and OVCAR3 cells, depending on the p53 status. CONCLUSION In summary, repurposing propofol could provide novel insights into the existing chemotherapy strategies for ovarian cancer. It holds promise for overcoming resistance to cisplatin or doxorubicin and may potentially reduce the required chemotherapy dosages and associated side effects, thus improving treatment outcomes.
Collapse
Affiliation(s)
- Sung-How Sue
- Department of Surgery, Taipei City Hospital Renai Branch, Taipei City, 106, Taiwan, Republic of China
| | - Wei-Cheng Tseng
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 114, Taiwan, Republic of China
| | - Zih-Syuan Wu
- Institute of Life Sciences, National Defense Medical Center, Taipei City, 114, Taiwan, Republic of China
| | - Shih-Ming Huang
- Institute of Life Sciences, National Defense Medical Center, Taipei City, 114, Taiwan, Republic of China
- Department of Biochemistry, National Defense Medical Center, Taipei City, 114, Taiwan, Republic of China
| | - Jia-Lin Chen
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 114, Taiwan, Republic of China.
| | - Zhi-Fu Wu
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 807, Taiwan, Republic of China.
- Department of Anesthesiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan, Republic of China.
- Center for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City 116, Taiwan, Taiwan, Republic of China.
| | - Hou-Chuan Lai
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 114, Taiwan, Republic of China.
| |
Collapse
|
2
|
Ding Y, Huang X, Ji T, Qi C, Gao X, Wei R. The emerging roles of miRNA-mediated autophagy in ovarian cancer. Cell Death Dis 2024; 15:314. [PMID: 38702325 PMCID: PMC11068799 DOI: 10.1038/s41419-024-06677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 05/06/2024]
Abstract
Ovarian cancer is one of the common tumors of the female reproductive organs. It has a high mortality rate, is highly heterogeneous, and early detection and primary prevention are very complex. Autophagy is a cellular process in which cytoplasmic substrates are targeted for degradation in lysosomes through membrane structures called autophagosomes. The periodic elimination of damaged, aged, and redundant cellular molecules or organelles through the sequential translation between amino acids and proteins by two biological processes, protein synthesis, and autophagic protein degradation, helps maintain cellular homeostasis. A growing number of studies have found that autophagy plays a key regulatory role in ovarian cancer. Interestingly, microRNAs regulate gene expression at the posttranscriptional level and thus can regulate the development and progression of ovarian cancer through the regulation of autophagy in ovarian cancer. Certain miRNAs have recently emerged as important regulators of autophagy-related gene expression in cancer cells. Moreover, miRNA analysis studies have now identified a sea of aberrantly expressed miRNAs in ovarian cancer tissues that can affect autophagy in ovarian cancer cells. In addition, miRNAs in plasma and stromal cells in tumor patients can affect the expression of autophagy-related genes and can be used as biomarkers of ovarian cancer progression. This review focuses on the potential significance of miRNA-regulated autophagy in the diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yamin Ding
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Xuan Huang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Tuo Ji
- Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Cong Qi
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Xuzhu Gao
- Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China.
| | - Rongbin Wei
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China.
| |
Collapse
|
3
|
Wei H, Du X, Zhao H, Sun P, Yang J. Propofol Regulates ER Stress to Inhibit Tumour Growth and Sensitize Osteosarcoma to Doxorubicin. Int J Clin Pract 2023; 2023:3093945. [PMID: 36756222 PMCID: PMC9897936 DOI: 10.1155/2023/3093945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/29/2023] Open
Abstract
Osteosarcoma is the most common malignant bone tumour affecting children and young adults. The antitumour role of propofol, a widely used intravenous sedative-hypnotic agent, has been recently reported in different cancer types. In this study, we aimed to assess the role of propofol on osteosarcoma and explore the possible mechanisms. Propofol of increasing concentrations (2.5, 5, 10, and 20 μg/ml) was used to treat the MG63 and 143B cells for 72 hours, and the CCK8 assay was applied to evaluate the tumour cell proliferation. Tumour cell migration and invasion were assessed with the transwell assay. The tumour cells were also treated with doxorubicin single agent or in combination with propofol to explore their synergic role. Differential expressed genes after propofol treatment were obtained and functionally assessed with bioinformatic tools. Expression of ER stress markers CHOP, p-eIF2α, and XBP1s was evaluated to validate the activation of ER stress response with western blot and qRT-PCR. The statistical analyses were performed with R v4.2.1. Propofol treatment led to significant growth inhibition in MG63 and 143B cells in a dose-dependent manner (p < 0.05). Osteosarcoma migration (MG63 91.4 (82-102) vs. 56.8 (49-65), p < 0.05; 143B 96.6 (77-104) vs. 45.4 (28-54), p < 0.05) and invasion (MG63 68.6 (61-80) vs. 32 (25-39), p < 0.05; 143B 90.6 (72-100) vs. 39.2 (26-55), p < 0.05) were reduced after propofol treatment. Doxorubicin sensitivity was increased after propofol treatment compared with the control group (p < 0.05). Bioinformatic analysis showed significant functional enrichment in ER stress response after propofol treatment. Upregulation of CHOP, p-eIF2α, and XBP1s was detected in MG63 and 143B secondary to propofol treatment. In conclusion, we found that propofol treatment suppressed osteosarcoma proliferation and invasion and had a synergic role with doxorubicin by inducing ER stress. Our findings provided a novel option in osteosarcoma therapy.
Collapse
Affiliation(s)
- Hua Wei
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450052, China
| | - Xinhui Du
- Bone and Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Huaping Zhao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450052, China
| | - Peipei Sun
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450052, China
| | - Jianjun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Erqi District, Zhengzhou, Henan 450052, China
| |
Collapse
|
4
|
Zhou X, Shao Y, Li S, Zhang S, Ding C, Zhuang L, Sun J. An intravenous anesthetic drug-propofol, influences the biological characteristics of malignant tumors and reshapes the tumor microenvironment: A narrative literature review. Front Pharmacol 2022; 13:1057571. [PMID: 36506511 PMCID: PMC9732110 DOI: 10.3389/fphar.2022.1057571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Malignant tumors are the second leading cause of death worldwide. This is a public health concern that negatively impacts human health and poses a threat to the safety of life. Although there are several treatment approaches for malignant tumors, surgical resection remains the primary and direct treatment for malignant solid tumors. Anesthesia is an integral part of the operation process. Different anesthesia techniques and drugs have different effects on the operation and the postoperative prognosis. Propofol is an intravenous anesthetic that is commonly used in surgery. A substantial number of studies have shown that propofol participates in the pathophysiological process related to malignant tumors and affects the occurrence and development of malignant tumors, including anti-tumor effect, pro-tumor effect, and regulation of drug resistance. Propofol can also reshape the tumor microenvironment, including anti-angiogenesis, regulation of immunity, reduction of inflammation and remodeling of the extracellular matrix. Furthermore, most clinical studies have also indicated that propofol may contribute to a better postoperative outcome in some malignant tumor surgeries. Therefore, the author reviewed the chemical properties, pharmacokinetics, clinical application and limitations, mechanism of influencing the biological characteristics of malignant tumors and reshaping the tumor microenvironment, studies of propofol in animal tumor models and its relationship with postoperative prognosis of propofol in combination with the relevant literature in recent years, to lay a foundation for further study on the correlation between propofol and malignant tumor and provide theoretical guidance for the selection of anesthetics in malignant tumor surgery.
Collapse
Affiliation(s)
- Xueliang Zhou
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China/
| | - Yanfei Shao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China/
| | - Shuchun Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sen Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China/
| | - Chengsheng Ding
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China/
| | - Lei Zhuang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,*Correspondence: Jing Sun, ; Lei Zhuang,
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Jing Sun, ; Lei Zhuang,
| |
Collapse
|
5
|
Wang C, Su K, Lin H, Cen B, Zheng S, Xu X. Identification and Verification of a Novel MAGI2-AS3/miRNA-374-5p/FOXO1 Network Associated with HBV-Related HCC. Cells 2022; 11:3466. [PMID: 36359865 PMCID: PMC9654666 DOI: 10.3390/cells11213466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a very common neoplasm worldwide, and competitive endogenous RNA (ceRNA) plays an important role in the development of HCC. The purpose of this study is to investigate the molecular mechanisms of ceRNAs in HCC. METHODS This study detects potential ceRNAs from HCC through whole genome analysis of lncRNA, miRNA and mRNA expression. We then performed high-throughput sequencing of tissues from five hepatitis B related HCC patients to screen ceRNAs and those screened ceRNAs expressions were verified on tissues from an independent group of six patients. Finally, the function of ceRNAs of interest was illustrated in vitro. RESULT Functional and pathway analysis of The Cancer Genome Atlas revealed ceRNA networks. The high-throughput sequencing identified 985 upregulated and 1612 downregulated lncRNAs and 887 upregulated and 1116 downregulated mRNAs in HCC patients. Differentially expressed genes were parallel to cancer-associated processes, comprising 18 upregulated and 35 downregulated significantly enriched pathways including alcoholism and viral carcinogenesis. Among them, a potential ceRNA network was detected and verified in six HCC patients. CeRNAs of the lncRNA MAGI2-AS3/miR-374-5p/FOXO1 pathway were significantly dysregulated in HCC, and validation in vitro showed that FOXO1 is positively regulated by MAGI2-AS3 through the induction of miR-374a/b-5p in HCC cells. In addition, the overexpression of FOXO1 is associated with proliferation, migration, and invasion of HCC cells and increases apoptosis of HCC cells. MiR-374a/b-5p caused an opposite effect by directly suppressing FOXO1 in HCC cells. CONCLUSION CeRNA networks were found in HCC and aberrantly expressed ceRNAs of lncRNA MAGI2-AS3/miR-374-5p/FOXO1 plays a crucial role in HCC, assisting in diagnosis and providing a method for treatment.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou 310003, China
| | - Kunkai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hanchao Lin
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou 310003, China
| | - Beini Cen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou 310003, China
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
- Institute of Organ Transplantation, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
6
|
Zhou X, Ao X, Jia Z, Li Y, Kuang S, Du C, Zhang J, Wang J, Liu Y. Non-coding RNA in cancer drug resistance: Underlying mechanisms and clinical applications. Front Oncol 2022; 12:951864. [PMID: 36059609 PMCID: PMC9428469 DOI: 10.3389/fonc.2022.951864] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/02/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer is one of the most frequently diagnosed malignant diseases worldwide, posing a serious, long-term threat to patients’ health and life. Systemic chemotherapy remains the first-line therapeutic approach for recurrent or metastatic cancer patients after surgery, with the potential to effectively extend patient survival. However, the development of drug resistance seriously limits the clinical efficiency of chemotherapy and ultimately results in treatment failure and patient death. A large number of studies have shown that non-coding RNAs (ncRNAs), particularly microRNAs, long non-coding RNAs, and circular RNAs, are widely involved in the regulation of cancer drug resistance. Their dysregulation contributes to the development of cancer drug resistance by modulating the expression of specific target genes involved in cellular apoptosis, autophagy, drug efflux, epithelial-to-mesenchymal transition (EMT), and cancer stem cells (CSCs). Moreover, some ncRNAs also possess great potential as efficient, specific biomarkers in diagnosis and prognosis as well as therapeutic targets in cancer patients. In this review, we summarize the recent findings on the emerging role and underlying mechanisms of ncRNAs involved in cancer drug resistance and focus on their clinical applications as biomarkers and therapeutic targets in cancer treatment. This information will be of great benefit to early diagnosis and prognostic assessments of cancer as well as the development of ncRNA-based therapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Xuehao Zhou
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhaojun Jia
- College of New Materials and Chemical Engineering, Beijing Key Laboratory of Enze Biomass Fine Chemicals, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Yiwen Li
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shouxiang Kuang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Chengcheng Du
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jinyu Zhang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ying Liu
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Ling Q, Wu S, Liao X, Liu C, Chen Y. Anesthetic propofol enhances cisplatin-sensitivity of non-small cell lung cancer cells through N6-methyladenosine-dependently regulating the miR-486-5p/RAP1-NF-κB axis. BMC Cancer 2022; 22:765. [PMID: 35836137 PMCID: PMC9281112 DOI: 10.1186/s12885-022-09848-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/30/2022] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Drug resistance is a considerable challenge for chemotherapy in non-small cell lung cancer (NSCLC). Propofol, a commonly used intravenous anesthetics, has been reported to suppress the malignancy of various cancers. However, the effects of propofol on cisplatin (DDP) sensitivity in NSCLC and its molecular mechanisms have not been clearly clarified yet, and the present study aimed to resolve this problem. METHODS NSCLC cells were co-treated with propofol and DDP, Cell Counting kit-8 assay, colony formation assay and flow cytometry were conducted to test the role of propofol in regulating DDP-resistance in NSCLC. Next, through conducting quantitative real-time polymerase chain reaction, dual-luciferase gene reporter system and western blot, the responsible molecular axis in propofol regulating the DDP sensitivity in NSCLC was uncovered, and the function verification experiments were performed by transfection with the inhibitors or small interfering RNAs of those molecules. RESULTS Propofol suppressed cell viability, colony formation ability, tumorigenesis, and promoted cell apoptosis to enhance DDP-sensitivity in NSCLC in vitro and in vivo. Propofol increased miR-486-5p level in NSCLC cells and xenograft tumors tissues in a N6-methyladenosine (m6A)-dependent manner, thus inactivating the Ras-associated protein1 (RAP1)-NF-kappaB (NF-κB) axis. Propofol regulated the miR-486-5p/RAP1-NF-κB axis to improve DDP-sensitivity in NSCLC. CONCLUSIONS Taken together, this study firstly investigates the detailed molecular mechanisms by which propofol enhanced DDP-sensitivity in NSCLC cells, and a novel m6A-dependent miR-486-5p/RAP1-NF-κB axis is identified to be closely associated with the process.
Collapse
Affiliation(s)
- Quan Ling
- The First Department of Anesthesia, Zhongshan City People's Hospital, No.2, Sunwen East Road, Shiqi District, Zhongshan, 528400, China
| | - Shaoyong Wu
- Department of Anesthesiology, cancer prevention and treatment center, Sun Yat Sen University, Guangzhou, 510060, China
| | - Xiaozu Liao
- The First Department of Anesthesia, Zhongshan City People's Hospital, No.2, Sunwen East Road, Shiqi District, Zhongshan, 528400, China
| | - Chiyi Liu
- The First Department of Anesthesia, Zhongshan City People's Hospital, No.2, Sunwen East Road, Shiqi District, Zhongshan, 528400, China
| | - Yong Chen
- The First Department of Anesthesia, Zhongshan City People's Hospital, No.2, Sunwen East Road, Shiqi District, Zhongshan, 528400, China.
| |
Collapse
|
8
|
Propofol Prevents the Growth, Migration, Invasion, and Glycolysis of Colorectal Cancer Cells by Downregulating Lactate Dehydrogenase Both In Vitro and In Vivo. JOURNAL OF ONCOLOGY 2022; 2022:8317466. [PMID: 35535311 PMCID: PMC9078837 DOI: 10.1155/2022/8317466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022]
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed gastrointestinal malignancies worldwide and has high rates of morbidity and mortality. Propofol has been reported to have certain anticancer properties. However, the role and mechanism of propofol in CRC are not entirely clear. CRC cells were treated with propofol and/or LDH-overexpression plasmids, and a mouse xenograft model of CRC was also established and treated with propofol. Cell viability, migration, and invasion were evaluated by CCK-8, wound healing, and transwell assays; the expression of related proteins was confirmed by western blotting; indexes of the glycolytic pathway were analyzed using specialized kits; tumor growth in mice was measured; pathological tissue structure was assessed by H&E staining; and 8-OHDG expression was determined by an immunochemistry assay. Our results verified that propofol could effectively prevent the malignant behaviors of CRC cells by suppressing cell viability, migration, and invasion and accelerating apoptosis. We also discovered that propofol could attenuate the glycolytic pathway in CRC cells. Moreover, we proved that lactate dehydrogenase (LDH) was required for the inhibitory effects of propofol on the growth of CRC cells, including glycolysis in CRC cells. Furthermore, our results showed that propofol could not only significantly inhibit tumor growth and glycolysis, but also ameliorate the pathological structure of CRC tumors. The current results proved that propofol could attenuate the malignant progression of CRC by preventing LDH activity, suggesting that propofol might be an effective therapeutic agent for CRC.
Collapse
|
9
|
Sun C, Liu P, Pei L, Zhao M, Huang Y. Propofol Inhibits Proliferation and Augments the Anti-Tumor Effect of Doxorubicin and Paclitaxel Partly Through Promoting Ferroptosis in Triple-Negative Breast Cancer Cells. Front Oncol 2022; 12:837974. [PMID: 35419287 PMCID: PMC8996258 DOI: 10.3389/fonc.2022.837974] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/04/2022] [Indexed: 12/23/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is relatively common in women and is associated with a poor prognosis after surgery and adjuvant chemotherapy. Currently, the mechanism underlying the relationship between propofol and breast cancer is controversial and limited to cell apoptosis. Moreover, there are only a few studies on the effect of propofol on the chemotherapeutic sensitivity of TNBC cells. Therefore, this study explored whether propofol and its commonly used clinical formulations affect the proliferation and chemotherapeutic effects on TNBC cells by regulating cell ferroptosis. Methods We selected MDA-MB-231 cells, and the effects of propofol, propofol injectable emulsion (PIE), or fospropofol disodium, alone or combined with doxorubicin or paclitaxel on cell viability, apoptosis, intracellular reactive oxygen species (ROS) accumulation, ferroptosis-related morphological changes, intracellular Fe2+ levels, and the expression and localization of ferroptosis-related proteins were investigated. Results We found that propofol significantly inhibited MDA-MB-231 cell proliferation, and all three propofol formulations augmented the anti-tumor effects of doxorubicin and paclitaxel. The results from the ROS assay, transmission electron microscopy, intracellular Fe2+ assay, western blotting, and multiplex immunohistochemistry revealed that propofol not only induced apoptosis but also triggered ferroptosis-related changes, including morphological changes of mitochondria, increased intracellular ROS levels, and intracellular iron accumulation in MDA-MB-231 cells. The ferroptosis-related p53-SLC7A11-GPX4 pathway was also altered under different treatment propofol, doxorubicin, or paclitaxel regimens. Conclusion Propofol showed anti-proliferation effects on TNBC cells and could be a potential adjuvant to enhance the chemotherapeutic sensitivity of TNBC cells partly by promoting cell ferroptosis.
Collapse
Affiliation(s)
- Chen Sun
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Pan Liu
- Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lijian Pei
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Outcomes Research Consortium, Cleveland, OH, United States
| | - Mengyun Zhao
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuguang Huang
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Joint Laboratory of Anesthesia and Pain, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Du XT, Wang XY, Zheng YH, Liu DP. Propofol suppresses the growth and invasion of cervical carcinoma cells by inhibiting MIR155HG. Aging (Albany NY) 2021; 13:24464-24475. [PMID: 34775376 PMCID: PMC8610141 DOI: 10.18632/aging.203697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022]
Abstract
Background: Cervical cancer is the most prevalent malignancy worldwide and propofol reportedly has anti-cancer efficiencies. Herein, we tried to address the potential anti-cancer effects of propofol in cervical carcinoma. Materials and Methods: The suppression effects of propofol on the proliferation and invasion of cervical cancer cells were analyzed by Cell Counting Kit-8 (CCK-8), colony formation and Transwell invasion assay. The protein expressions of epithelial marker, E-cadherin and mesenchymal marker, N-cadherin were evaluated using western blot. The level of MIR155 host gene (MIR155HG) was determined by qRT-PCR assay. The anti-cancer impact of propofol on cervical cancer cells growth in vivo was determined by means of xenograft tumor model and lung metastasis model. Results: In vitro, propofol inhibited the growth and colony-formation of cervical carcinoma cells. Meanwhile, propofol treatment reduced the invasive trait of cervical carcinoma cells. In addition, MIR155HG was identified to be distinctly upregulated in cervical carcinoma when compared within normal. Propofol treatment decreased the expression of MIR155HG in cervical cancer cells. Consistently, the results from in vivo xenograft model indicated that propofol repressed cervical cancer cells growth and decreased the expression of MIR155HG in vivo. Furthermore, reintroduction of MIR155HG into cervical cancer cells counteracted the inhibitory potency of propofol on the growth and aggressive phenotypes in cervical carcinoma cells. Conclusions: Altogether, these results indicated that propofol restrained the growth and invasion of cervical cancer cells partly via regulating MIR155HG expression.
Collapse
Affiliation(s)
- Xin-Tan Du
- Department of Anesthesia and Perioperative Medicine, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, People's Republic of China
| | - Xiao-Yan Wang
- Department of Gynecology and Obstetrics, Zaozhuang Hospital, Zaozhuang Mining Group, Zaozhuang, Shandong, People's Republic of China
| | - Ying-He Zheng
- Department of Anesthesiology, Zaozhuang Hospital, Zaozhuang Mining Group, Zaozhuang, Shandong, People's Republic of China
| | - Da-Peng Liu
- Department of Anesthesia and Perioperative Medicine, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, People's Republic of China
| |
Collapse
|
11
|
Tseng WC, Lee MS, Lin YC, Lai HC, Yu MH, Wu KL, Wu ZF. Propofol-Based Total Intravenous Anesthesia is Associated with Better Survival than Desflurane Anesthesia in Epithelial Ovarian Cancer Surgery: A Retrospective Cohort Study. Front Pharmacol 2021; 12:685265. [PMID: 34630078 PMCID: PMC8497698 DOI: 10.3389/fphar.2021.685265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/10/2021] [Indexed: 02/01/2023] Open
Abstract
Background: Previous studies have shown that anesthetic techniques can affect outcomes of cancer surgery. We investigated the association between anesthetic techniques and patient outcomes after elective epithelial ovarian cancer surgery. Methods: This was a retrospective cohort study of patients who received elective open surgery for epithelial ovarian cancer between January 2009 and December 2014. Patients were grouped according to the administration of propofol or desflurane anesthesia. Kaplan–Meier analysis was performed, and survival curves were constructed from the date of surgery to death. Univariate and multivariate Cox regression models were used to compare hazard ratios for death after propensity matching. Subgroup analyses were performed for age, body mass index, preoperative carbohydrate antigen-125 level, International Federation of Gynecology and Obstetrics staging, and operation and anesthesia time. Results: In total, 165 patients (76 deaths, 46.1%) who received desflurane anesthesia and 119 (30 deaths, 25.2%) who received propofol anesthesia were eligible for analysis. After propensity matching, 104 patients were included in each group. In the matched analysis, patients who received propofol anesthesia had better survival with a hazard ratio of 0.52 (95% confidence interval, 0.33–0.81; p = 0.005). Subgroup analyses also showed significantly better survival with old age, high body mass index, elevated carbohydrate antigen-125 level, advanced International Federation of Gynecology and Obstetrics stage, and prolonged operation and anesthesia time in the matched propofol group. In addition, patients administered with propofol anesthesia had less postoperative recurrence and metastasis than those administered with desflurane anesthesia in the matched analysis. Conclusion: Propofol anesthesia was associated with better survival in patients who underwent elective epithelial ovarian cancer open surgery. Prospective studies are warranted to evaluate the effects of propofol anesthesia on oncological outcomes in patients with epithelial ovarian cancer.
Collapse
Affiliation(s)
- Wei-Cheng Tseng
- Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Meei-Shyuan Lee
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Ying-Chih Lin
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Hou-Chuan Lai
- Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Mu-Hsien Yu
- Department of Obstetrics and Gynecology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Ke-Li Wu
- Department of General Medicine, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Zhi-Fu Wu
- Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan.,Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Bimonte S, Cascella M, Forte CA, Esposito G, Del Prato F, Raiano N, Del Prete P, Cuomo A. Effects of the Hypnotic Alkylphenol Derivative Propofol on Breast Cancer Progression. A Focus on Preclinical and Clinical Studies. In Vivo 2021; 35:2513-2519. [PMID: 34410937 DOI: 10.21873/invivo.12532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 11/10/2022]
Abstract
Propofol is a hypnotic alkylphenol derivative with many biological activities. It is predominantly used in anesthesia and is the most used parenteral anesthetic agent in the United States. Accumulating preclinical studies have shown that this compound may inhibit cancer recurrence and metastasis. Nevertheless, other investigations provided evidence that this compound may promote breast cancer cell progression by modulating different molecular pathways. Clinical data on this topic are scarce and derive from retrospective analyses. For this reason, we reviewed and evaluated the available data to reveal insight into this controversial issue. More preclinical and clinical investigations are necessary to determine the potential role of propofol in the proliferation of breast cancer cells.
Collapse
Affiliation(s)
- Sabrina Bimonte
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy;
| | - Marco Cascella
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Cira Antonietta Forte
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Gennaro Esposito
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Francesco Del Prato
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Nicola Raiano
- Radiology Division, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Via Mariano Semmola, Naples, Italy
| | - Paola Del Prete
- Direzione Scientifica, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Arturo Cuomo
- Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
13
|
Midazolam increases cisplatin-sensitivity in non-small cell lung cancer (NSCLC) via the miR-194-5p/HOOK3 axis. Cancer Cell Int 2021; 21:401. [PMID: 34321010 PMCID: PMC8317376 DOI: 10.1186/s12935-021-02104-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Backgrounds As previously reported, midazolam anesthesia exerts tumor-suppressing effects in non-small cell lung cancer (NSCLC), but the regulating effects of this drug on cisplatin-resistance in NSCLC have not been studied. Thus, we designed this study to investigate this issue and preliminarily delineate the potential molecular mechanisms. Methods We performed MTT assay and trypan blue staining assay to measure cell proliferation and viability. Cell apoptosis was examined by FCM. qRT-PCR and immunoblotting were performed to determine the expression levels of genes. The targeting sites between genes were predicted by bioinformatics analysis and were validated by dual-luciferase reporter gene system assay. Mice tumor-bearing models were established and the tumorigenesis was evaluated by measuring tumor weight and volume. Immunohistochemistry (IHC) was used to examine the pro-proliferative Ki67 protein expressions in mice tumor tissues. Results The cisplatin-resistant NSCLC (CR-NSCLC) cells were treated with high-dose cisplatin (50 μg/ml) and low-dose midazolam (10 μg/ml), and the results showed that midazolam suppressed cell proliferation and viability, and promoted cell apoptosis in cisplatin-treated CR-NSCLC cells. In addition, midazolam enhanced cisplatin-sensitivity in CR-NSCLC cell via modulating the miR-194-5p/hook microtubule-tethering protein 3 (HOOK3) axis. Specifically, midazolam upregulated miR-194-5p, but downregulated HOOK3 in the CR-NSCLC cells, and further results validated that miR-194-5p bound to the 3’ untranslated region (3’UTR) of HOOK3 mRNA for its inhibition. Also, midazolam downregulated HOOK3 in CR-NSCLC cells by upregulating miR-194-5p. Functional experiments validated that both miR-194-5p downregulation and HOOK3 upregulation abrogated the promoting effects of midazolam on cisplatin-sensitivity in CR-NSCLC cells. Conclusions Taken together, this study found that midazolam anesthesia reduced cisplatin-resistance in CR-NSCLC cells by regulating the miR-194-5p/HOOK3 axis, implying that midazolam could be used as adjuvant drug for NSCLC treatment in clinical practices. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02104-6.
Collapse
|
14
|
Propofol Suppresses Cell Progression by Inhibiting CCL18 Expression in Hepatoblastoma. JOURNAL OF ONCOLOGY 2021; 2021:6880473. [PMID: 34354751 PMCID: PMC8331318 DOI: 10.1155/2021/6880473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 11/21/2022]
Abstract
Background Propofol is an anesthetic commonly used clinically and has been found to have antitumor activity in various cancers. The purpose of this study was to investigate the role of propofol in hepatoblastoma (HB). Methods CCK-8 and transwell were used to measure cell proliferation, migration, and invasion in HB cells. Cell apoptosis rate was measured by FCM. The expression of CCL18 in HB tissues and cells was detected by RT-qPCR. Western blotting was used to explore the protein expression of CCK18- and PI3K/AKT-related proteins. Results The expression of CCL18 in HB tissues and cells was overexpressed compared with control groups. CCL18 knockdown was found to notably block cell proliferation and progression, while enhancing cell apoptosis in HuH-6 and HepT1 cells. Furthermore, propofol suppressed the proliferation of HB cells in a dose-dependent manner. According to the results, we chose 5 μg/mL of propofol-treated cells for 48 hours as the subsequent experimental conditions. We found that propofol (5 μg/mL, 48 h) significantly blocked cell migration and invasion, but induced cell apoptosis in HuH-6 and HepT1 cells. In addition, CCK18 overexpression facilitated cell progression in HB cells, while propofol dramatically suppressed the effect of CCK18. Besides that, propofol suppressed the PI3K/AKT pathway. Conclusion Propofol suppressed the development of HB cells by inhibiting CCK18 expression and the PI3K/AKT pathway. Therefore, we infer that propofol plays a role in the treatment of HB.
Collapse
|
15
|
Raigon Ponferrada A, Guerrero Orriach JL, Molina Ruiz JC, Romero Molina S, Gómez Luque A, Cruz Mañas J. Breast Cancer and Anaesthesia: Genetic Influence. Int J Mol Sci 2021; 22:7653. [PMID: 34299272 PMCID: PMC8307639 DOI: 10.3390/ijms22147653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is the leading cause of mortality in women. It is a heterogeneous disease with a high degree of inter-subject variability even in patients with the same type of tumor, with individualized medicine having acquired significant relevance in this field. The clinical and morphological heterogeneity of the different types of breast tumors has led to a diversity of staging and classification systems. Thus, these tumors show wide variability in genetic expression and prognostic biomarkers. Surgical treatment is essential in the management of these patients. However, the perioperative period has been found to significantly influence survival and cancer recurrence. There is growing interest in the pro-tumoral effect of different anaesthetic and analgesic agents used intraoperatively and their relationship with metastatic progression. There is cumulative evidence of the influence of anaesthetic techniques on the physiopathological mechanisms of survival and growth of the residual neoplastic cells released during surgery. Prospective randomized clinical trials are needed to obtain quality evidence on the relationship between cancer and anaesthesia. This document summarizes the evidence currently available about the effects of the anaesthetic agents and techniques used in primary cancer surgery and long-term oncologic outcomes, and the biomolecular mechanisms involved in their interaction.
Collapse
Affiliation(s)
- Aida Raigon Ponferrada
- Institute of Biomedical Research in Malaga (IBIMA), 29010 Malaga, Spain; (A.R.P.); (A.G.L.)
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
| | - Jose Luis Guerrero Orriach
- Institute of Biomedical Research in Malaga (IBIMA), 29010 Malaga, Spain; (A.R.P.); (A.G.L.)
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
- Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, 29010 Malaga, Spain
| | - Juan Carlos Molina Ruiz
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
| | - Salvador Romero Molina
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
| | - Aurelio Gómez Luque
- Institute of Biomedical Research in Malaga (IBIMA), 29010 Malaga, Spain; (A.R.P.); (A.G.L.)
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
- Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, 29010 Malaga, Spain
| | - Jose Cruz Mañas
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
| |
Collapse
|
16
|
Lu H, Zheng G, Gao X, Chen C, Zhou M, Zhang L. Propofol suppresses cell viability, cell cycle progression and motility and induces cell apoptosis of ovarian cancer cells through suppressing MEK/ERK signaling via targeting circVPS13C/miR-145 axis. J Ovarian Res 2021; 14:30. [PMID: 33563314 PMCID: PMC7874627 DOI: 10.1186/s13048-021-00775-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Background Propofol is a kind of common intravenous anaesthetic agent that plays an anti-tumor role in a variety of cancers, including ovarian cancer. However, the working mechanism of Propofol in ovarian cancer needs further exploration. Methods The viability and metastasis of ovarian cancer cells were assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and transwell assays. Flow cytometry was used to evaluate the cell cycle and apoptosis. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine the abundance of circular RNA vacuolar protein sorting 13 homolog C (circVPS13C) and microRNA-145 (miR-145). The target relationship between miR-145 and circVPS13C was predicted by circinteractome database and verified by dual-luciferase reporter assay, RNA-binding protein immunoprecipitation (RIP) assay and RNA-pull down assay. Western blot assay was used to detect the levels of phosphorylated extracellular regulated MAP kinase (p-ERK), ERK, p-MAP kinse-ERK kinase (p-MEK) and MEK, in ovarian cancer cells. Results Propofol treatment suppressed the viability, cell cycle and motility and elevated the apoptosis rate of ovarian cancer cells. Propofol up-regulated miR-145 in a dose-dependent manner. Propofol exerted an anti-tumor role partly through up-regulating miR-145. MiR-145 was a direct target of circVPS13C. Propofol suppressed the progression of ovarian cancer through up-regulating miR-145 via suppressing circVPS13C. Propofol functioned through circVPS13C/miR-145/MEK/ERK signaling in ovarian cancer cells. Conclusion Propofol suppressed the proliferation, cell cycle, migration and invasion and induced the apoptosis of ovarian cancer cells through circVPS13C/miR-145/MEK/ERK signaling in vitro.
Collapse
Affiliation(s)
- Huan Lu
- Department of Anesthesiology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, No.18 daoshan Road, Fuzhou City, 350001, Fujian Province, China.
| | - Guanlin Zheng
- Department of Anesthesiology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, No.18 daoshan Road, Fuzhou City, 350001, Fujian Province, China
| | - Xiang Gao
- Department of Anesthesiology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, No.18 daoshan Road, Fuzhou City, 350001, Fujian Province, China
| | - Chanjuan Chen
- Department of Anesthesiology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, No.18 daoshan Road, Fuzhou City, 350001, Fujian Province, China
| | - Min Zhou
- Department of Anesthesiology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, No.18 daoshan Road, Fuzhou City, 350001, Fujian Province, China
| | - Longxin Zhang
- Department of Anesthesiology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, No.18 daoshan Road, Fuzhou City, 350001, Fujian Province, China
| |
Collapse
|
17
|
Plücker J, Wirsik NM, Ritter AS, Schmidt T, Weigand MA. Anaesthesia as an influence in tumour progression. Langenbecks Arch Surg 2021; 406:1283-1294. [PMID: 33523307 PMCID: PMC8370957 DOI: 10.1007/s00423-021-02078-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/01/2021] [Indexed: 12/19/2022]
Abstract
Purpose Tumour growth and the formation of metastases are essential elements in the progression of cancer. The centre of treatment is the surgical resection of primary solid tumours. But even if the tumour can be removed without microscopic residual cells, local recurrences and distant metastases occur and determine the patient’s fate. During the operation, tumour cells are shed from the primary tumour and released into the circulation. These circulating tumour cells might play an important role in the formation of new tumour sites. Therefore, a functional innate and adaptive immune system is essential, especially in this perioperative period. Anaesthesia influences consciousness and pain perception and interacts directly with the immune system and tumour cells. Methods Review of the current literature concerning intra- and postoperative anaesthetic decisions and tumour progression. Results There are beneficial aspects for patient survival associated with total intravenous anaesthesia, the use of regional anaesthetics and the avoidance of allogeneic red blood cell transfusions. Alternatives such as irradiated intraoperative blood salvage and preoperative iron supplementation may be advantageous in cases where transfusions are limited or not wanted. The immunosuppressive properties of opioids are theoretical, but strong evidence to avoid them does not exist. The application of nonsteroidal anti-inflammatory drugs and postoperative nausea and vomiting prophylaxis do not impair the patient’s survival and may even have a positive effect on tumour regression. Conclusion Anaesthesia does play an important part in the perioperative period in order to improve the cancer-related outcome. Further research is necessary to make more concrete recommendations.
Collapse
Affiliation(s)
- Jadie Plücker
- Department of Anaesthesiology, University of Heidelberg, Heidelberg, Germany.
| | - Naita M Wirsik
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Alina S Ritter
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Markus A Weigand
- Department of Anaesthesiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
18
|
Zeng J, Li YK, Quan FF, Zeng X, Chen CY, Zeng T, Zou J, Tong WJ. Propofol‑induced miR‑125a‑5p inhibits the proliferation and metastasis of ovarian cancer by suppressing LIN28B. Mol Med Rep 2020; 22:1507-1517. [PMID: 32627014 PMCID: PMC7346589 DOI: 10.3892/mmr.2020.11223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
Propofol, a commonly used intravenous anesthetic agent during surgery, has relatively widespread pharmacological actions. Previous studies have reported that propofol may act as an antitumor drug in several cancer types, such as pancreatic cancer, lung cancer and gastric cancer. However, the underlying mechanism in ovarian cancer remain unknown. Therefore, the present study investigated the pharmacological effect of propofol on microRNAs (miRNAs) in ovarian cancer treatment. Propofol (1, 5 or 10 µg/ml) was used to treat A2780 and SKOV3 ovarian cancer cells for 1, 2, 3, 4 or 5 days. The MTT assay was used to detect cell viability, while wound healing and Transwell assays were utilized to assess the invasive and migratory abilities. The bioinformatics prediction approach identified differentially expressed miRNAs (miRs) that were used in Gene Ontology, Gene Set Enrichment Analysis and Kyoto Encyclopedia of Genes and Genomes analyses. The expression levels of miR‑125a‑5p and lin‑28 homolog B (LIN28B) were evaluated by reverse transcription‑quantitative PCR (RT‑qPCR). A luciferase assay was performed to identify the relationship between miR‑125a‑5p and LIN28B. Western blotting was conducted to measure the protein expression of LIN28B. It was demonstrated that propofol significantly upregulated miR‑125a‑5p to exert its antitumor activity. RT‑qPCR results suggested that propofol could upregulate miR‑125a‑5p and LIN28B expression levels in ovarian cancer cell lines. Western blot analysis also indicated that propofol could enhance the expression of LIN28B in ovarian cancer cell lines. The luciferase assay identified that miR‑125a‑5p could directly inhibit the expression of LIN28B to suppress proliferation and metastasis in ovarian cancer. In conclusion, these results suggested that propofol inhibited ovarian cancer proliferation and metastasis by enhancing miR‑125a‑5p, which targets LIN28B.
Collapse
Affiliation(s)
- Juan Zeng
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yu-Kun Li
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Fei-Fei Quan
- Department of Gynecology, Foshan First People's Hospital, Foshan, Guangdong 528000, P.R. China
- Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xin Zeng
- Department of Histology and Embryology, Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Chang-Ye Chen
- Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Tian Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Juan Zou
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, P.R. China
- Correspondence to: Dr Juan Zou, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, 28 West Changsheng Road, Hengyang, Hunan 421001, P.R. China, E-mail:
| | - Wen-Juan Tong
- Department of Obstetrics, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
- Dr Wen-Juan Tong, Department of Obstetrics, The First Affiliated Hospital of University of South China, 69 Chuanshan Road, Hengyang, Hunan 421001, P.R. China, E-mail:
| |
Collapse
|
19
|
Xu Y, Pan S, Jiang W, Xue F, Zhu X. Effects of propofol on the development of cancer in humans. Cell Prolif 2020; 53:e12867. [PMID: 32596964 PMCID: PMC7445405 DOI: 10.1111/cpr.12867] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer is one of most the significant threats to human health worldwide, and the primary method of treating solid tumours is surgery. Propofol, one of the most widely used intravenous anaesthetics in surgery, was found to be involved in many cancer‐related pathophysiology processes, mainly including anti‐tumour and minor cancer‐promoting effects in various types of cancer. An increasing number of studies have identified that propofol plays a role in cancer by regulating the expression of multiple signalling pathways, downstream molecules, microRNAs and long non‐coding RNAs. Emerging evidence has indicated that propofol can enhance the anti‐tumour effect of chemotherapeutic drugs or some small molecular compounds. Additionally, in vivo animal models have shown that propofol inhibits tumour growth and metastasis. Furthermore, most clinical trials indicate that propofol is associated with better survival outcomes in cancer patients after surgery. Propofol use is encouraged in cancers that appear to have a better prognosis after its use during surgery. We hope that future large and prospective multicenter studies will provide more precise answers to guide the choice of anaesthetics during cancer surgery.
Collapse
Affiliation(s)
- Yichi Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuya Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenxiao Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fang Xue
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|