1
|
Xu X, Liu R, Li Y, Zhang C, Guo C, Zhu J, Dong J, Ouyang L, Momeni MR. Spinal Cord Injury: From MicroRNAs to Exosomal MicroRNAs. Mol Neurobiol 2024; 61:5974-5991. [PMID: 38261255 DOI: 10.1007/s12035-024-03954-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Spinal cord injury (SCI) is an unfortunate experience that may generate extensive sensory and motor disabilities due to the destruction and passing of nerve cells. MicroRNAs are small RNA molecules that do not code for proteins but instead serve to regulate protein synthesis by targeting messenger RNA's expression. After SCI, secondary damage like apoptosis, oxidative stress, inflammation, and autophagy occurs, and differentially expressed microRNAs show a function in these procedures. Almost all animal and plant cells release exosomes, which are sophisticated formations of lipid membranes. These exosomes have the capacity to deliver significant materials, such as proteins, RNAs and lipids, to cells in need, regulating their functions and serving as a way of communication. This new method offers a fresh approach to treating spinal cord injury. Obviously, the exosome has the benefit of conveying the transported material across performing regulatory activities and the blood-brain barrier. Among the exosome cargoes, microRNAs, which modulate their mRNA targets, show considerable promise in the pathogenic diagnosis, process, and therapy of SCI. Herein, we describe the roles of microRNAs in SCI. Furthermore, we emphasize the importance of exosomal microRNAs in this disease.
Collapse
Affiliation(s)
- Xiangyang Xu
- Spinal Surgery, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou, Henan, 450003, China
| | - Ruyin Liu
- Spinal Surgery, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou, Henan, 450003, China
| | - Yunpeng Li
- Spinal Surgery, Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine), Zhengzhou, Henan, 450003, China
| | - Cheng Zhang
- College of Traditional Chinese Medicine Orthopedics and Traumatology, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, 450003, China
| | - Chuanghao Guo
- College of Traditional Chinese Medicine Orthopedics and Traumatology, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, 450003, China
| | - Jiong Zhu
- College of Traditional Chinese Medicine Orthopedics and Traumatology, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, 450003, China
| | - Jiaan Dong
- College of Traditional Chinese Medicine Orthopedics and Traumatology, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, 450003, China
| | - Liyun Ouyang
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, 11700, Malaysia.
| | | |
Collapse
|
2
|
Yang Y, Li J, Liu W, Guo D, Gao Z, Zhao Y, Zhao M, He X, Chang S. Differential Expression of microRNAs and Target Genes Analysis in Olfactory Ensheathing Cell-derived Extracellular Vesicles Versus Olfactory Ensheathing Cells. Curr Stem Cell Res Ther 2024; 19:116-125. [PMID: 37076967 DOI: 10.2174/1574888x18666230418084900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/03/2023] [Accepted: 02/23/2023] [Indexed: 04/21/2023]
Abstract
INTRODUCTION Olfactory ensheathing cells (OECs) are important transplantable cells for the treatment of spinal cord injury. However, information on the mechanism of OEC-derived extracellular vesicles (EVs) in nerve repair is scarce. METHODS We cultured OECs and extracted the OEC-derived EVs, which were identified using a transmission electron microscope, nanoparticle flow cytometry, and western blotting. High throughput RNA sequencing of OECs and OEC-EVs was performed, and the differentially expressed microRNAs (miRNAs) (DERs) were analyzed by bioinformatics. The target genes of DERs were identified using miRWalk, miRDB, miRTarBase, and TargetScan databases. Gene ontology and KEGG mapper tools were used to analyze the predicted target genes. Subsequently, the STRING database and Cytoscape software platform were used to analyze and construct miRNA target genes' protein-protein interaction (PPI) network. RESULTS Overall, 206 miRNAs (105 upregulated and 101 downregulated) were differentially expressed in OEC-EVs (p < 0.05;|log2 (fold change)|>2). Six DERs (rno-miR-7a-5p, rno-miR-143-3p, rno-miR-182, rno-miR-214-3p, rno-miR-434-5p, rno-miR-543-3p) were significantly up-regulated , and a total of 974 miRNAs target genes were obtained. The target genes were mainly involved in biological processes such as regulation of cell size, positive regulation of cellular catabolic process and small GTPase-mediated signal transduction; positive regulation of genes involved in cellular components such as growth cone, site of polarized growth, and distal axon; and molecular functions such as small GTPase binding and Ras GTPase binding. In pathway analysis, target genes regulated by six DERs were mainly enriched in axon guidance, endocytosis, and Ras and cGMP-dependent protein kinase G signaling pathways. Finally, 19 hub genes were identified via the PPI network. CONCLUSION Our study provides a theoretical basis for treating nerve repair by OEC-derived EVs.
Collapse
Affiliation(s)
- Yubing Yang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China
| | - Jiaxi Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China
| | - Weidong Liu
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China
| | - Dong Guo
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China
| | - Zhengchao Gao
- Department of Orthopedics, Shaanxi Provincial People's Hospital, 256 Youyi West Road, Xi'an, 710068, Shaanxi, China
| | - Yingjie Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China
| | - Minchao Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China
| | - Xijing He
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China
- Department of Orthopedics, Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710100, China
| | - Su'e Chang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China
| |
Collapse
|
3
|
Li X, Jin DS, Eadara S, Caterina MJ, Meffert MK. Regulation by noncoding RNAs of local translation, injury responses, and pain in the peripheral nervous system. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100119. [PMID: 36798094 PMCID: PMC9926024 DOI: 10.1016/j.ynpai.2023.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Neuropathic pain is a chronic condition arising from damage to somatosensory pathways that results in pathological hypersensitivity. Persistent pain can be viewed as a consequence of maladaptive plasticity which, like most enduring forms of cellular plasticity, requires altered expression of specific gene programs. Control of gene expression at the level of protein synthesis is broadly utilized to directly modulate changes in activity and responsiveness in nociceptive pathways and provides an effective mechanism for compartmentalized regulation of the proteome in peripheral nerves through local translation. Levels of noncoding RNAs (ncRNAs) are commonly impacted by peripheral nerve injury leading to persistent pain. NcRNAs exert spatiotemporal regulation of local proteomes and affect signaling cascades supporting altered sensory responses that contribute to hyperalgesia. This review discusses ncRNAs found in the peripheral nervous system (PNS) that are dysregulated following nerve injury and the current understanding of their roles in pathophysiological pain-related responses including neuroimmune interactions, neuronal survival and axon regeneration, Schwann cell dedifferentiation and proliferation, intercellular communication, and the generation of ectopic action potentials in primary afferents. We review progress in the field beyond cataloging, with a focus on the relevant target transcripts and mechanisms underlying pain modulation by ncRNAs.
Collapse
Affiliation(s)
- Xinbei Li
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
| | - Daniel S. Jin
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
| | - Sreenivas Eadara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
| | - Michael J. Caterina
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
- Department of Neurosurgery and Neurosurgery Pain Research Institute, Johns Hopkins University School of Medicine, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, United States
| | - Mollie K. Meffert
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, United States
| |
Collapse
|
4
|
MicroRNA-138-5p Targets Pro-Apoptotic Factors and Favors Neural Cell Survival: Analysis in the Injured Spinal Cord. Biomedicines 2022; 10:biomedicines10071559. [PMID: 35884864 PMCID: PMC9312482 DOI: 10.3390/biomedicines10071559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
The central nervous system microRNA miR-138-5p has attracted much attention in cancer research because it inhibits pro-apoptotic genes including CASP3. We hypothesize that miR-138-5p downregulation after SCI leads to overexpression of pro-apoptotic genes, sensitizing neural cells to noxious stimuli. This study aimed to identify miR-138-5p targets among pro-apoptotic genes overexpressed following SCI and to confirm that miR-138-5p modulates cell death in neural cells. Gene expression and histological analyses revealed that the drop in miR-138-5p expression after SCI is due to the massive loss of neurons and oligodendrocytes and its downregulation in neurons. Computational analyses identified 176 potential targets of miR-138-5p becoming dysregulated after SCI, including apoptotic proteins CASP-3 and CASP-7, and BAK. Reporter, RT-qPCR, and immunoblot assays in neural cell cultures confirmed that miR-138-5p targets their 3′UTRs, reduces their expression and the enzymatic activity of CASP-3 and CASP-7, and protects cells from apoptotic stimuli. Subsequent RT-qPCR and histological analyses in a rat model of SCI revealed that miR-138-5p downregulation correlates with the overexpression of its pro-apoptotic targets. Our results suggest that the downregulation of miR-138-5p after SCI may have deleterious effects on neural cells, particularly on spinal neurons.
Collapse
|
5
|
Song FH, Liu DQ, Zhou YQ, Mei W. SIRT1: A promising therapeutic target for chronic pain. CNS Neurosci Ther 2022; 28:818-828. [PMID: 35396903 PMCID: PMC9062570 DOI: 10.1111/cns.13838] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/12/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic pain remains an unresolved problem. Current treatments have limited efficacy. Thus, novel therapeutic targets are urgently required for the development of more effective analgesics. An increasing number of studies have proved that sirtuin 1 (SIRT1) agonists can relieve chronic pain. In this review, we summarize recent progress in understanding the roles and mechanisms of SIRT1 in mediating chronic pain associated with peripheral nerve injury, chemotherapy‐induced peripheral neuropathy, spinal cord injury, bone cancer, and complete Freund's adjuvant injection. Emerging studies have indicated that SIRT1 activation may exert positive effects on chronic pain relief by regulating inflammation, oxidative stress, and mitochondrial dysfunction. Therefore, SIRT1 agonists may serve as potential therapeutic drugs for chronic pain.
Collapse
Affiliation(s)
- Fan-He Song
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dai-Qiang Liu
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Qun Zhou
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Mei
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Sirtuins: Potential Therapeutic Targets for Defense against Oxidative Stress in Spinal Cord Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7207692. [PMID: 34257819 PMCID: PMC8249122 DOI: 10.1155/2021/7207692] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/15/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022]
Abstract
Spinal cord injury (SCI) is one of the most incapacitating neurological disorders. It involves complex pathological processes that include a primary injury and a secondary injury phase, or a delayed stage, which follows the primary injury and contributes to the aggravation of the SCI pathology. Oxidative stress, a key pathophysiological event after SCI, contributes to a cascade of inflammation, excitotoxicity, neuronal and glial apoptosis, and other processes during the secondary injury phase. In recent years, increasing evidence has demonstrated that sirtuins are protective toward the pathological process of SCI through a variety of antioxidant mechanisms. Notably, strategies that modulate the expression of sirtuins exert beneficial effects in cellular and animal models of SCI. Given the significance and novelty of sirtuins, we summarize the oxidative stress processes that occur in SCI and discuss the antioxidant effects of sirtuins in SCI. We also highlight the potential of targeting sirtuins for the treatment of SCI.
Collapse
|
7
|
Delgado-Tirado S, Amarnani D, Zhao G, Rossin EJ, Eliott D, Miller JB, Greene WA, Ramos L, Arevalo-Alquichire S, Leyton-Cifuentes D, Gonzalez-Buendia L, Isaacs-Bernal D, Whitmore HAB, Chmielewska N, Duffy BV, Kim E, Wang HC, Ruiz-Moreno JM, Kim LA, Arboleda-Velasquez JF. Topical delivery of a small molecule RUNX1 transcription factor inhibitor for the treatment of proliferative vitreoretinopathy. Sci Rep 2020; 10:20554. [PMID: 33257736 PMCID: PMC7705016 DOI: 10.1038/s41598-020-77254-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
Proliferative vitreoretinopathy (PVR) is the leading cause of retinal detachment surgery failure. Despite significant advances in vitreoretinal surgery, it still remains without an effective prophylactic or therapeutic medical treatment. After ocular injury or retinal detachment, misplaced retinal cells undergo epithelial to mesenchymal transition (EMT) to form contractile membranes within the eye. We identified Runt-related transcription factor 1 (RUNX1) as a gene highly expressed in surgically-removed human PVR specimens. RUNX1 upregulation was a hallmark of EMT in primary cultures derived from human PVR membranes (C-PVR). The inhibition of RUNX1 reduced proliferation of human C-PVR cells in vitro, and curbed growth of freshly isolated human PVR membranes in an explant assay. We formulated Ro5-3335, a lipophilic small molecule RUNX1 inhibitor, into a nanoemulsion that when administered topically curbed the progression of disease in a novel rabbit model of mild PVR developed using C-PVR cells. Mass spectrometry analysis detected 2.67 ng/mL of Ro5-3335 within the vitreous cavity after treatment. This work shows a critical role for RUNX1 in PVR and supports the feasibility of targeting RUNX1 within the eye for the treatment of an EMT-mediated condition using a topical ophthalmic agent.
Collapse
Affiliation(s)
- Santiago Delgado-Tirado
- Schepens Eye Research Institute of Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA
| | - Dhanesh Amarnani
- Schepens Eye Research Institute of Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA
| | - Guannan Zhao
- Schepens Eye Research Institute of Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA
| | - Elizabeth J Rossin
- Retina Service, Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA
| | - Dean Eliott
- Retina Service, Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA
| | - John B Miller
- Retina Service, Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA
| | - Whitney A Greene
- Sensory Trauma Task Area, United States Army Institute of Surgical Research, Fort Sam Houston, San Antonio, USA
| | - Leslie Ramos
- Schepens Eye Research Institute of Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA
| | - Said Arevalo-Alquichire
- Schepens Eye Research Institute of Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA
- Energy, Materials and Environment Group, Faculty of Engineering, Universidad de La Sabana, Chia, Colombia
| | - David Leyton-Cifuentes
- Schepens Eye Research Institute of Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA
- Universidad EIA, Envigado, Colombia
| | - Lucia Gonzalez-Buendia
- Schepens Eye Research Institute of Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA
| | - Daniela Isaacs-Bernal
- Schepens Eye Research Institute of Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA
- Energy, Materials and Environment Group, Faculty of Engineering, Universidad de La Sabana, Chia, Colombia
| | - Hannah A B Whitmore
- Schepens Eye Research Institute of Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA
| | - Natalia Chmielewska
- Schepens Eye Research Institute of Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA
- Boston College, Boston, USA
| | - Brandon V Duffy
- Schepens Eye Research Institute of Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA
- Harvard College, Cambridge, USA
| | - Eric Kim
- Schepens Eye Research Institute of Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA
| | - Heuy-Ching Wang
- Sensory Trauma Task Area, United States Army Institute of Surgical Research, Fort Sam Houston, San Antonio, USA
| | - Jose M Ruiz-Moreno
- Department of Ophthalmology, Castilla La Mancha University, Puerta de Hierro-Majadahonda University Hospital, Madrid, Spain
- Vissum Corporation, Alicante, Spain
| | - Leo A Kim
- Schepens Eye Research Institute of Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA.
- Retina Service, Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA.
| | - Joseph F Arboleda-Velasquez
- Schepens Eye Research Institute of Massachusetts Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, USA.
- Universidad EIA, Envigado, Colombia.
| |
Collapse
|