1
|
Guan L, Ge R, Ma S. Newsights of endoplasmic reticulum in hypoxia. Biomed Pharmacother 2024; 175:116812. [PMID: 38781866 DOI: 10.1016/j.biopha.2024.116812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
The endoplasmic reticulum (ER) is important to cells because of its essential functions, including synthesizing three major nutrients and ion transport. When cellular homeostasis is disrupted, ER quality control (ERQC) system is activated effectively to remove misfolded and unfolded proteins through ER-phagy, ER-related degradation (ERAD), and molecular chaperones. When unfolded protein response (UPR) and ER stress are activated, the cell may be suffering a huge blow, and the most probable consequence is apoptosis. The membrane contact points between the ER and sub-organelles contribute to communication between the organelles. The decrease in oxygen concentration affects the morphology and structure of the ER, thereby affecting its function and further disrupting the stable state of cells, leading to the occurrence of disease. In this study, we describe the functions of ER-, ERQC-, and ER-related membrane contact points and their changes under hypoxia, which will help us further understand ER and treat ER-related diseases.
Collapse
Affiliation(s)
- Lu Guan
- Qinghai University, Xining, Qinghai, China
| | - Rili Ge
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai, China
| | - Shuang Ma
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai, China.
| |
Collapse
|
2
|
Shi Y, Jiang B, Zhao J. Induction mechanisms of autophagy and endoplasmic reticulum stress in intestinal ischemia-reperfusion injury, inflammatory bowel disease, and colorectal cancer. Biomed Pharmacother 2024; 170:115984. [PMID: 38070244 DOI: 10.1016/j.biopha.2023.115984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/19/2023] [Accepted: 12/02/2023] [Indexed: 01/10/2024] Open
Abstract
In recent years, the incidence of intestinal ischemia-reperfusion injury (II/RI), inflammatory bowel disease (IBD), and colorectal cancer (CRC) has been gradually increasing, posing significant threats to human health. Autophagy and endoplasmic reticulum stress (ERS) play important roles in II/RI. Damage caused by ischemia and cellular stress can activate ERS, which in turn initiates autophagy to clear damaged organelles and abnormal proteins, thereby alleviating ERS and maintaining the intestinal environment. In IBD, chronic inflammation damages intestinal tissues and activates autophagy and ERS. Autophagy is initiated by upregulating ATG genes and downregulating factors that inhibit autophagy, thereby clearing abnormal proteins, damaged organelles, and bacteria. Simultaneously, persistent inflammatory stimulation can also trigger ERS, leading to protein imbalance and abnormal folding in the ER lumen. The activation of ERS can maintain cellular homeostasis by initiating the autophagy process, thereby reducing inflammatory responses and cell apoptosis in the intestine. In CRC, excessive cell proliferation and protein synthesis lead to increased ERS. The activation of ERS, regulated by signaling pathways such as IRE1α and PERK, can initiate autophagy to clear abnormal proteins and damaged organelles, thereby reducing the negative effects of ERS. It can be seen that autophagy and ERS play a crucial regulatory role in the development of intestinal diseases. Therefore, the progress in targeted therapy for intestinal diseases based on autophagy and ERS provides novel strategies for managing intestinal diseases. In this paper, we review the advances in regulation of autophagy and ERS in intestinal diseases, emphasizing the potential molecular mechanisms for therapeutic applications.
Collapse
Affiliation(s)
- Yan Shi
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Jingwen Zhao
- Department of Proctology, Baoji Traditional Chinese Medicine Hospital, Baoji 721001, Shanxi, PR China.
| |
Collapse
|
3
|
Zhang H, Ran M, Jiang L, Sun X, Qiu T, Li J, Wang N, Yao X, Zhang C, Deng H, Wang S, Yang G. Mitochondrial dysfunction and endoplasmic reticulum stress induced by activation of PPARα leaded testicular to apoptosis in SD rats explored to di-(2-ethylhexyl) phthalate (DEHP). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115711. [PMID: 37979351 DOI: 10.1016/j.ecoenv.2023.115711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Di-2-ethylhexyl phthalate (DEHP), as a common endocrine disrupting chemicals, can induce toxicity to reproductive system. However, the mechanism remains to be explored. In our study, DEHP exposure induced testicular injury in rats. The high throughput transcriptional sequencing was performed to identify differentially expressed genes (DEGs) between the treatment and control groups. KEGG analysis revealed that DEGs were enriched in apoptosis, PPARα, and ER stress pathway. DEHP up-regulated the expression of PPARα, Bax, Bim, caspase-4. GRP78, PERK, p-PERK, eIF2α, p-eIF2α, ATF4 and CHOP. This view has also been confirmed in TM3 and TM4 cells. In vitro, after pre-treatment with GW6471 (an inhibitor of PPARα) or GSK (an inhibitor of PERK), the apoptosis was inhibited and mitochondrial dysfunction was improved. Moreover, the improvement of mitochondrial dysfunction decreased the expression of PERK pathway by using SS-31(a protective agent for mitochondrial function). Interestingly, ER stress promoted the accumulation of ROS by ERO1L (the downstream of CHOP during ER stress), and the ROS further aggravated the ER stress, thus forming a feedback loop during the apoptosis. In this process, a vicious cycle consisting of PERK, eIF2α, ATF4, CHOP, ERO1L, ROS was involved. Taken together, our results suggested that mitochondrial dysfunction and ER stress-ROS feedback loop caused by PPARα activation played a crucial role in DEHP-induced apoptosis. This work provides insight into the mechanism of DEHP-induced reproductive toxicity.
Collapse
Affiliation(s)
- Haoyang Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Maohuan Ran
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Liping Jiang
- Department of Occupational & Environmental Health, Dalian Medical University, Dalian 116044, China
| | - Xiance Sun
- Department of Occupational & Environmental Health, Dalian Medical University, Dalian 116044, China
| | - Tianming Qiu
- Department of Occupational & Environmental Health, Dalian Medical University, Dalian 116044, China
| | - Jing Li
- Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - Ningning Wang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Xiaofeng Yao
- Department of Occupational & Environmental Health, Dalian Medical University, Dalian 116044, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Haoyuan Deng
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Shaopeng Wang
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China.
| |
Collapse
|
4
|
Chen Z, Wu J, Li S, Liu C, Ren Y. Inhibition of Myocardial Cell Apoptosis Is Important Mechanism for Ginsenoside in the Limitation of Myocardial Ischemia/Reperfusion Injury. Front Pharmacol 2022; 13:806216. [PMID: 35300297 PMCID: PMC8921549 DOI: 10.3389/fphar.2022.806216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/09/2022] [Indexed: 12/25/2022] Open
Abstract
Ischemic heart disease has a high mortality, and the recommended therapy is reperfusion. Nevertheless, the restoration of blood flow to ischemic tissue leads to further damage, namely, myocardial ischemia/reperfusion injury (MIRI). Apoptosis is an essential pathogenic factor in MIRI, and ginsenosides are effective in inhibiting apoptosis and alleviating MIRI. Here, we reviewed published studies on the anti-apoptotic effects of ginsenosides and their mechanisms of action in improving MIRI. Each ginsenoside can regulate multiple pathways to protect the myocardium. Overall, the involved apoptotic pathways include the death receptor signaling pathway, mitochondria signaling pathway, PI3K/Akt signaling pathway, NF-κB signaling pathway, and MAPK signaling pathway. Ginsenosides, with diverse chemical structures, regulate different apoptotic pathways to relieve MIRI. Summarizing the effects and mechanisms of ginsenosides contributes to further mechanism research studies and structure-function relationship research studies, which can help the development of new drugs. Therefore, we expect that this review will highlight the importance of ginsenosides in improving MIRI via anti-apoptosis and provide references and suggestions for further research in this field.
Collapse
Affiliation(s)
- Zhihan Chen
- School of Acupuncture Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingping Wu
- Department of Medical Cosmetology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sijing Li
- School of Acupuncture Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caijiao Liu
- School of Acupuncture Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulan Ren
- School of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Cai S, Liu Y, Cheng Y, Yuan J, Fang J. Dexmedetomidine protects cardiomyocytes against hypoxia/reoxygenation injury via multiple mechanisms. J Clin Lab Anal 2021; 36:e24119. [PMID: 34882841 PMCID: PMC9279977 DOI: 10.1002/jcla.24119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022] Open
Abstract
Background Myocardial infarction (MI) is a serious cardiovascular disease associated with myocardial ischemia/reperfusion (I/R) injury. Dexmedetomidine (Dex), an α2‐adrenoceptor agonist, has been reported to protect against I/R injury. We examined the cardioprotective effects of Dex on cardiomyocytes under hypoxia/reoxygenation (H/R) conditions and explored the underlying mechanisms. Materials and methods A H/R model was established to mimic the MI injury. The CCK‐8 assay was performed to measure cell viability. Cellular apoptosis was measured using the Annexin V fluorescein isothiocyanate (FITC)‐propidium iodide (PI) staining. The levels of interleukin (IL)‐1α and tumor necrosis factor (TNF)‐α, and the activity of lactate dehydrogenase (LDH) were measured using a commercial enzyme‐linked immunosorbent assay (ELISA) kit. Reactive oxygen species (ROS) were measured using the 2'‐7’ dichlorofluorescein diacetate (DCFH‐DA) staining assay. In addition, the levels of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD), catalase (CAT), and caspase‐3 were measured using a commercial kit. siRNA was used to silence Bcl‐2, catalase, or STAT3. Western blotting was used to measure the change in the levels of proteins. Results Dex improved the cell viability and inhibited the inflammatory response in H9c2 cells exposed to H/R treatment. In addition, Dex inhibited apoptosis and alleviated the endoplasmic reticulum (ER) stress and oxidative stress in H9c2 cells under the H/R treatment. Mechanism investigation showed that Dex inhibited the intrinsic pathway of apoptosis. Moreover, Dex enhanced the activation of the JAK2/STAT3 signaling pathway in H/R‐treated H9c2 cells. Conclusion Altogether, our findings suggested Dex as a promising therapeutic agent for myocardial I/R.
Collapse
Affiliation(s)
- Shunv Cai
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Yixing Liu
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Yun Cheng
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Junbo Yuan
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Jun Fang
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
The regulation of Ero1-alpha in homocysteine-induced macrophage apoptosis and vulnerable plaque formation in atherosclerosis. Atherosclerosis 2021; 334:39-47. [PMID: 34478920 DOI: 10.1016/j.atherosclerosis.2021.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 07/28/2021] [Accepted: 08/10/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS Hyperhomocysteinemia (HHcy) is an independent risk factor for atherosclerosis and plaque vulnerability. Macrophage apoptosis mediated by endoplasmic reticulum (ER) stress plays an important role in the pathogenesis of HHcy-aggravated atherosclerosis. Endoplasmic reticulum oxidoreductase 1α (Ero1α) is critical for ER stress-induced apoptosis. We hypothesized that Ero1α may contribute to ER-stress induced macrophage apoptosis and plaque stability in advanced atherosclerotic lesions by HHcy. METHODS Apoe-/- mice were maintained on drinking water containing homocysteine (Hcy, 1.8 g/L) to establish HHcy atherosclerotic models. The role of Ero1α in atherosclerotic plaque stability, macrophage apoptosis and ER stress were monitored in the plaque of aortic roots in HHcy Apoe-/- mice with or without silence or overexpression of Ero1α through lentivirus. Mouse peritoneal macrophages were used to confirm the regulation of Ero1α on ER stress dependent apoptosis in the presence of HHcy. RESULTS Atherosclerotic plaque vulnerability and macrophage apoptosis were promoted in Apoe-/- mice by high Hcy diet, accompanied by the upregulation of Ero1α expression and ER stress. Inhibition of Ero1α prevented macrophage apoptosis and atherosclerotic plaque vulnerability, and vice versa. Consistently, in mouse peritoneal macrophages, ER stress and apoptosis were attenuated by Ero1α deficiency, but enhanced by Ero1α overexpression. CONCLUSIONS Hcy, via upregulation of Ero1α expression, activates ER stress-dependent macrophage apoptosis to promote vulnerable plaque formation in atherosclerosis. Ero1α may be a potential therapeutic target for atherosclerosis induced by Hcy.
Collapse
|
7
|
Li J, Xie J, Wang YZ, Gan YR, Wei L, Ding GW, Ding YH, Xie DX. Overexpression of lncRNA Dancr inhibits apoptosis and enhances autophagy to protect cardiomyocytes from endoplasmic reticulum stress injury via sponging microRNA-6324. Mol Med Rep 2020; 23:116. [PMID: 33300079 PMCID: PMC7723073 DOI: 10.3892/mmr.2020.11755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
Endoplasmic reticulum stress (ERS) contributes to the pathogenesis of myocardial ischemia/reperfusion injury and myocardial infarction (MI). Long non-coding RNAs (lncRNAs) serve an important role in cardiovascular diseases, and lncRNA discrimination antagonizing non-protein coding RNA (Dancr) alleviates cardiomyocyte damage. microRNA (miR)-6324 was upregulated in MI model rats and was predicted to bind to Dancr. The present study aimed to investigate the role of Dancr in ERS-induced cardiomyocytes and the potential underlying mechanisms. Tunicamycin (Tm) was used to induce ERS. Cell viability, apoptosis and levels of associated proteins, ERS and autophagy in Dancr-overexpression H9C2 cells and miR-6234 mimic-transfected H9C2 cells were assessed using Cell Counting Kit-8, TUNEL staining and western blot assay, respectively. The results suggested that Dancr expression levels and cell viability were downregulated by Tm in a concentration-dependent manner compared with the control group. Tm induced apoptosis, ERS and autophagy, as indicated by an increased ratio of apoptotic cells, increased expression levels of Bax, cleaved (c)-caspase-3/9, glucose-regulated protein 78 kDa (GRP78), phosphorylated (p)-inositol-requiring enzyme-1α (IRE1α), spliced X-box-binding protein 1 (Xbp1s), IRE1α, activating transcription factor (ATF)6, ATF4, Beclin 1 and microtubule associated protein 1 light chain 3α (LC3)II/I, and decreased expression levels of Bcl-2, unspliced Xbp1 (Xbp1u) and p62 in the Tm group compared with the control group. Moreover, the results indicated that compared with the Tm + overexpression (Oe)-negative control (NC) group, the Tm + Oe-Dancr group displayed decreased apoptosis, but enhanced ERS and autophagy to restore cellular homeostasis. Compared with the Tm + Oe-NC group, the Tm + Oe-Dancr group decreased the ratio of apoptotic cells, decreased expression levels of Bax, c-caspase-3/9 and Xbp1u, and increased expression levels of Bcl-2, p-IRE1α, Xbp1s, Beclin 1 and LC3II/I. Dancr overexpression also significantly downregulated miR-6324 expression compared with Oe-NC. The dual-luciferase reporter assay further indicated an interaction between Dancr and miR-6324. In addition, miR-6324 mimic partially reversed the effects of Dancr overexpression on Tm-induced apoptosis, ERS and autophagy. In conclusion, lncRNA Dancr overexpression protected cardiomyocytes against ERS injury via sponging miR-6324, thus inhibiting apoptosis, enhancing autophagy and restoring ER homeostasis.
Collapse
Affiliation(s)
- Jiong Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jing Xie
- Department of Ultrasonic Diagnosis, The First People's Hospital of Lanzhou, Lanzhou, Gansu 730050, P.R. China
| | - Yan-Zhen Wang
- Gansu Cardiovascular Institute, Lanzhou, Gansu 730050, P.R. China
| | - Yi-Rong Gan
- Gansu Cardiovascular Institute, Lanzhou, Gansu 730050, P.R. China
| | - Ling Wei
- Outpatient Department, The First People's Hospital of Lanzhou, Lanzhou, Gansu 730050, P.R. China
| | - Guan-Waner Ding
- Medical Department, Shijiazhuang People's Medical College, Shijiazhuang, Hebei 050599, P.R. China
| | - Yan-Hong Ding
- Anesthesiology Department, The First People's Hospital of Lanzhou, Lanzhou, Gansu 730050, P.R. China
| | - Ding-Xiong Xie
- Gansu Cardiovascular Institute, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|