1
|
Atanasova VS, de Jesus Cardona C, Hejret V, Tiefenbacher A, Mair T, Tran L, Pfneissl J, Draganić K, Binder C, Kabiljo J, Clement J, Woeran K, Neudert B, Wohlhaupter S, Haase A, Domazet S, Hengstschläger M, Mitterhauser M, Müllauer L, Tichý B, Bergmann M, Schweikert G, Hartl M, Dolznig H, Egger G. Mimicking Tumor Cell Heterogeneity of Colorectal Cancer in a Patient-derived Organoid-Fibroblast Model. Cell Mol Gastroenterol Hepatol 2023; 15:1391-1419. [PMID: 36868311 PMCID: PMC10141529 DOI: 10.1016/j.jcmgh.2023.02.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND & AIMS Patient-derived organoid cancer models are generated from epithelial tumor cells and reflect tumor characteristics. However, they lack the complexity of the tumor microenvironment, which is a key driver of tumorigenesis and therapy response. Here, we developed a colorectal cancer organoid model that incorporates matched epithelial cells and stromal fibroblasts. METHODS Primary fibroblasts and tumor cells were isolated from colorectal cancer specimens. Fibroblasts were characterized for their proteome, secretome, and gene expression signatures. Fibroblast/organoid co-cultures were analyzed by immunohistochemistry and compared with their tissue of origin, as well as on gene expression levels compared with standard organoid models. Bioinformatics deconvolution was used to calculate cellular proportions of cell subsets in organoids based on single-cell RNA sequencing data. RESULTS Normal primary fibroblasts, isolated from tumor adjacent tissue, and cancer associated fibroblasts retained their molecular characteristics in vitro, including higher motility of cancer associated compared with normal fibroblasts. Importantly, both cancer-associated fibroblasts and normal fibroblasts supported cancer cell proliferation in 3D co-cultures, without the addition of classical niche factors. Organoids grown together with fibroblasts displayed a larger cellular heterogeneity of tumor cells compared with mono-cultures and closely resembled the in vivo tumor morphology. Additionally, we observed a mutual crosstalk between tumor cells and fibroblasts in the co-cultures. This was manifested by considerably deregulated pathways such as cell-cell communication and extracellular matrix remodeling in the organoids. Thrombospondin-1 was identified as a critical factor for fibroblast invasiveness. CONCLUSION We developed a physiological tumor/stroma model, which will be vital as a personalized tumor model to study disease mechanisms and therapy response in colorectal cancer.
Collapse
Affiliation(s)
- Velina S Atanasova
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria; Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | | | - Václav Hejret
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Andreas Tiefenbacher
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria; Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Theresia Mair
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Loan Tran
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria; Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Janette Pfneissl
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Kristina Draganić
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Carina Binder
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Julijan Kabiljo
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria; Clinic of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Janik Clement
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Katharina Woeran
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Barbara Neudert
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | | | - Astrid Haase
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Sandra Domazet
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | | | | | - Leonhard Müllauer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Boris Tichý
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Michael Bergmann
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria; Clinic of General Surgery, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Gabriele Schweikert
- Max Planck Institute for Intelligent Systems, Tübingen, Germany; Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Markus Hartl
- Department of Biochemistry and Cell Biology, Max Perutz Labs, Vienna BioCenter (VBC), University of Vienna, Vienna, Austria; Mass Spectrometry Facility, Max Perutz Labs, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Helmut Dolznig
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria.
| | - Gerda Egger
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria; Department of Pathology, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Feng JF, Wang J, Xie G, Wang YD, Li XH, Yang WY, Yang YW, Zhang B. KMT2B promotes the growth of renal cell carcinoma via upregulation of SNHG12 expression and promotion of CEP55 transcription. Cancer Cell Int 2022; 22:197. [PMID: 35597996 PMCID: PMC9123657 DOI: 10.1186/s12935-022-02607-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/03/2022] [Indexed: 11/10/2022] Open
Abstract
Background This study aims to clarify the mechanistic action of long non-coding RNA (lncRNA) SNHG12 in the development of renal cell carcinoma (RCC), which may be associated with promoter methylation modification by KMT2B and the regulation of the E2F1/CEP55 axis. Methods TCGA and GEO databases were used to predict the involvement of SNHG12 in RCC. Knockdown of SNHG12/E2F1/CEP55 was performed. Next, SNHG12 expression and other mRNAs were quantified by RT-qPCR. Subsequently, CCK-8 was used to detect cell proliferation. Wound healing assay and Transwell assay were used to detect cell migration and invasion, respectively. The in vitro angiogenesis of human umbilical vein endothelial cells (HUVECs) was explored by matrigel-based capillary-like tube formation assay. ChIP assay was used to detect H3K4me3 in SNHG12 promoter region. The binding of E2F1 to CEP55 promoter region was analyzed with ChIP and dual luciferase reporter assays. RIP assay was used to detect the binding of SNHG12 to E2F1. Finally, the effect of SNHG12 on the tumor formation and angiogenesis of RCC was assessed in nude mouse xenograft model. Results SNHG12 was highly expressed in RCC tissues and cells, and it was related to the poor prognosis of RCC patients. SNHG12 knockdown significantly inhibited RCC cell proliferation, migration, and invasion and HUVEC angiogenesis. KMT2B up-regulated SNHG12 expression through modifying H3K4me3 in its promoter region. In addition, SNHG12 promoted CEP55 expression by recruiting the transcription factor E2F1. Knockdown of SNHG12 blocked E2F1 recruitment and down-regulated the expression of CEP55, thereby inhibiting tumor formation and angiogenesis in nude mice. Conclusion The evidence provided by our study highlighted the involvement of KMT2B in up-regulation of lncRNA as well as the transcription of CEP55, resulting in the promotion of angiogenesis and growth of RCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02607-w.
Collapse
Affiliation(s)
- Jia-Fu Feng
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, 621000, People's Republic of China. .,Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People's Republic of China.
| | - Jun Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Gang Xie
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, 621000, People's Republic of China.,Department of Pathology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People's Republic of China
| | - Yao-Dong Wang
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, 621000, People's Republic of China.,Department of Urology Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People's Republic of China
| | - Xiao-Han Li
- Medical Laboratory, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Wen-Yu Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Yu-Wei Yang
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, 621000, People's Republic of China.,Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People's Republic of China
| | - Bin Zhang
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, 621000, People's Republic of China.,Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, People's Republic of China
| |
Collapse
|
3
|
Cai P, Li G, Wu M, Zhang B, Bai H. ZIC2 upregulates lncRNA SNHG12 expression to promote endometrial cancer cell proliferation and migration by activating the Notch signaling pathway. Mol Med Rep 2021; 24:632. [PMID: 34278490 PMCID: PMC8281313 DOI: 10.3892/mmr.2021.12271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/25/2021] [Indexed: 11/23/2022] Open
Abstract
It was previously reported that long non-coding RNA (lncRNA) small nucleolar RNA host gene 12 (SNHG12) promoted the proliferation, invasion and migration of endometrial cancer (EC) cells; however, the upstream underlying mechanism remains unclear. The present study aimed to determine the possible underlying mechanism of SNHG12 regulating EC. The Encyclopedia of RNA Interactomes database was used to analyze whether SNHG12 could bind to Zic family member 2 (ZIC2) and the expression levels of ZIC2 in patients with EC. ZIC2 expression levels in EC cell lines were analyzed using western blotting and reverse transcription-quantitative PCR. RL95-2 cells were subsequently transfected with short hairpin RNA targeting ZIC2, or ZIC2 or SNHG12 overexpression plasmids. Cell proliferation, migration and invasion were analyzed using Cell Counting Kit-8, colony formation, wound healing and Transwell assays, respectively. The binding between ZIC2 and SHNG12 was verified using dual luciferase reporter and chromatin immunoprecipitation assays. The results of the present study revealed that the expression levels of ZIC2 were upregulated in the tissues of patients with EC and EC cell lines. ZIC2 knockdown inhibited RL95-2 cell proliferation, migration and invasion. The protein expression levels of Ki67, proliferating cell nuclear antigen, MMP2 and MMP9 were also downregulated following the knockdown of ZIC2. ZIC2 was predicted to bind to SNHG12 and positively regulate SNHG12 expression. Further experiments demonstrated that the effects of the knockdown of ZIC2 on RL95-2 cells were partially reversed by SNHG12 overexpression. In addition, ZIC2 knockdown inhibited Notch signaling activation, while SNHG12 overexpression reversed this effect. In conclusion, the findings of the present study indicated that ZIC2 may upregulate SNHG12 expression to promote EC cell proliferation and migration by activating the Notch signaling pathway.
Collapse
Affiliation(s)
- Pengyu Cai
- Department of Obstetrics and Gynecology, Dongguan People's Hospital, Dongguan, Guangdong 523000, P.R. China
| | - Gaijuan Li
- Department of Obstetrics and Gynecology, Midwifery Profession, Shanxi Health Vocational College, Jinzhong, Shanxi 030600, P.R. China
| | - Mingxiu Wu
- Department of Obstetrics and Gynecology, Dongguan People's Hospital, Dongguan, Guangdong 523000, P.R. China
| | - Bin Zhang
- Department of Obstetrics and Gynecology, Dongguan People's Hospital, Dongguan, Guangdong 523000, P.R. China
| | - Hong Bai
- The Second Ward of Gynecology, Dalian Obstetrics and Gynecology Hospital Affiliated to Dalian Medical University and Dalian Maternal and Child Health Care Hospital, Dalian, Liaoning 116033, P.R. China
| |
Collapse
|
4
|
Klicka K, Grzywa TM, Klinke A, Mielniczuk A, Włodarski PK. The Role of miRNAs in the Regulation of Endometrial Cancer Invasiveness and Metastasis-A Systematic Review. Cancers (Basel) 2021; 13:3393. [PMID: 34298609 PMCID: PMC8304659 DOI: 10.3390/cancers13143393] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 07/02/2021] [Indexed: 12/17/2022] Open
Abstract
Endometrial cancer (EC) is the most common genital cancer in women with increasing death rates. MiRNAs are short non-coding RNAs that regulate gene expression on the post-transcriptional levels. Multiple studies demonstrated a fundamental role of miRNAs in the regulation of carcinogenesis. This systematic review is a comprehensive overview of the role of miRNAs in the regulation of cancer cell invasiveness and metastasis in EC. The literature was searched for studies investigating the role of miRNAs in the regulation of invasiveness and metastasis in EC. We explored PubMed, Embase, and Scopus using the following keywords: miRNA, metastasis, invasiveness, endometrial cancer. Data were collected from 163 articles that described the expression and role of 106 miRNAs in the regulation of EC invasiveness and metastasis out of which 63 were tumor suppressor miRNAs, and 38 were oncomiRNAs. Five miRNAs had a discordant role in different studies. Moreover, we identified 66 miRNAs whose expression in tumor tissue or concentration in serum correlated with at least one clinical parameter. These findings suggest a crucial role of miRNAs in the regulation of EC invasiveness and metastasis and present them as potential prognostic factors for patients with EC.
Collapse
Affiliation(s)
- Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (T.M.G.); (A.K.); (A.M.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (T.M.G.); (A.K.); (A.M.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Alicja Klinke
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (T.M.G.); (A.K.); (A.M.)
| | - Aleksandra Mielniczuk
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (T.M.G.); (A.K.); (A.M.)
| | - Paweł K. Włodarski
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (T.M.G.); (A.K.); (A.M.)
| |
Collapse
|