1
|
Febra C, Saraiva J, Vaz F, Macedo J, Al-Hroub HM, Semreen MH, Maio R, Gil V, Soares N, Penque D. Acute venous thromboembolism plasma and red blood cell metabolomic profiling reveals potential new early diagnostic biomarkers: observational clinical study. J Transl Med 2024; 22:200. [PMID: 38402378 PMCID: PMC10894498 DOI: 10.1186/s12967-024-04883-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/10/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Venous thromboembolism (VTE) is a leading cause of cardiovascular mortality. The diagnosis of acute VTE is based on complex imaging exams due to the lack of biomarkers. Recent multi-omics based research has contributed to the development of novel biomarkers in cardiovascular diseases. Our aim was to determine whether patients with acute VTE have differences in the metabolomic profile compared to non-acute VTE. METHODS This observational trial included 62 patients with clinical suspicion of acute deep vein thrombosis or pulmonary embolism, admitted to the emergency room. There were 50 patients diagnosed with acute VTE and 12 with non-acute VTE conditions and no significant differences were found between the two groups for clinical and demographic characteristics. Metabolomics assays identified and quantified a final number of 91 metabolites in plasma and 55 metabolites in red blood cells (RBCs). Plasma from acute VTE patients expressed tendency to a specific metabolomic signature, with univariate analyses revealing 23 significantly different molecules between acute VTE patients and controls (p < 0.05). The most relevant metabolic pathway with the strongest impact on the acute VTE phenotype was D-glutamine and D-glutamate (p = 0.001, false discovery rate = 0.06). RBCs revealed a specific metabolomic signature in patients with a confirmed diagnosis of DVT or PE that distinguished them from other acutely diseased patients, represented by 20 significantly higher metabolites and four lower metabolites. Three of those metabolites revealed high performant ROC curves, including adenosine 3',5'-diphosphate (AUC 0.983), glutathione (AUC 0.923), and adenine (AUC 0.91). Overall, the metabolic pathway most impacting to the differences observed in the RBCs was the purine metabolism (p = 0.000354, false discovery rate = 0.68). CONCLUSIONS Our findings show that metabolite differences exist between acute VTE and nonacute VTE patients admitted to the ER in the early phases. Three potential biomarkers obtained from RBCs showed high performance for acute VTE diagnosis. Further studies should investigate accessible laboratory methods for the future daily practice usefulness of these metabolites for the early diagnosis of acute VTE in the ER.
Collapse
Affiliation(s)
- Cláudia Febra
- Department of Intensive Care, Hospital da Luz Lisboa, Lisbon, Portugal.
- Faculty of Medicine, University of Porto, Porto, Portugal.
- Human Genetics Department, Instituto Nacional de Saúde Dr. Ricardo Jorge (INSA), Lisbon, Portugal.
| | - Joana Saraiva
- Human Genetics Department, Instituto Nacional de Saúde Dr. Ricardo Jorge (INSA), Lisbon, Portugal
- Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School-FCM, UNL, Lisbon, Portugal
- NOVA School of Science and Technology, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Fátima Vaz
- Human Genetics Department, Instituto Nacional de Saúde Dr. Ricardo Jorge (INSA), Lisbon, Portugal
- Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School-FCM, UNL, Lisbon, Portugal
| | - João Macedo
- NOVA School of Science and Technology, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Hamza Mohammad Al-Hroub
- Department of Medical Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad Harb Semreen
- Department of Medical Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Rui Maio
- Department of General Surgery, Hospital da Luz Lisboa, Lisbon, Portugal
| | - Vitor Gil
- Faculty of Medicine, University of Porto, Porto, Portugal
- Center of Cardiovascular Risk and Thrombosis, Hospital da Luz Torres de Lisboa, Lisbon, Portugal
| | - Nelson Soares
- Human Genetics Department, Instituto Nacional de Saúde Dr. Ricardo Jorge (INSA), Lisbon, Portugal.
- NOVA School of Science and Technology, Universidade Nova de Lisboa, Lisbon, Portugal.
- Department of Medical Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.
| | - Deborah Penque
- Human Genetics Department, Instituto Nacional de Saúde Dr. Ricardo Jorge (INSA), Lisbon, Portugal.
- Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School-FCM, UNL, Lisbon, Portugal.
| |
Collapse
|
2
|
Zhang F, Li B, Su H, Guo Z, Zhu H, Wang A, Jiang K, Cao Y. Progress in the Metabolomics of Acute Coronary Syndrome. Rev Cardiovasc Med 2023; 24:204. [PMID: 39077017 PMCID: PMC11266460 DOI: 10.31083/j.rcm2407204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 07/31/2024] Open
Abstract
Acute coronary syndrome (ACS) is a severe type of coronary heart disease (CHD) with increasing prevalence and significant challenges for prevention and treatment. Metabolomics is an emerging technology with intrinsic dynamics and flexibility to better delineate the phenotypic and metabolic alterations in organisms at the time of altered pathological states. It provides new insights into the complex pathological mechanisms of cardiovascular disease and contributes to the early detection, monitoring and evaluation of ACS. In this review, we analyze and summarize the literature related to ACS metabolomics which has contributed to the diagnosis and prevention of ACS.
Collapse
Affiliation(s)
- Fu Zhang
- Department of Cardiology, Pulmonary Vascular Disease Center (PVDC), Gansu Provincial Hospital, 730000 Lanzhou, Gansu, China
| | - Bo Li
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), 730000 Lanzhou, Gansu, China
| | - Hongling Su
- Department of Cardiology, Pulmonary Vascular Disease Center (PVDC), Gansu Provincial Hospital, 730000 Lanzhou, Gansu, China
| | - Zhaoxia Guo
- Department of Cardiology, Pulmonary Vascular Disease Center (PVDC), Gansu Provincial Hospital, 730000 Lanzhou, Gansu, China
| | - Hai Zhu
- Department of Cardiology, Pulmonary Vascular Disease Center (PVDC), Gansu Provincial Hospital, 730000 Lanzhou, Gansu, China
| | - Aqian Wang
- Department of Cardiology, Pulmonary Vascular Disease Center (PVDC), Gansu Provincial Hospital, 730000 Lanzhou, Gansu, China
| | - Kaiyu Jiang
- Department of Cardiology, Pulmonary Vascular Disease Center (PVDC), Gansu Provincial Hospital, 730000 Lanzhou, Gansu, China
| | - Yunshan Cao
- Department of Cardiology, Pulmonary Vascular Disease Center (PVDC), Gansu Provincial Hospital, 730000 Lanzhou, Gansu, China
| |
Collapse
|
3
|
Xu P, Yi Y, Luo Y, Liu Z, Xu Y, Cai J, Zeng Z, Liu A. Radiation‑induced dysfunction of energy metabolism in the heart results in the fibrosis of cardiac tissues. Mol Med Rep 2021; 24:842. [PMID: 34633055 PMCID: PMC8524410 DOI: 10.3892/mmr.2021.12482] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Thoracic radiotherapy increases the risk of radiation‑induced heart damage (RIHD); however, the molecular mechanisms underlying these changes are not fully understood. The aim of the present study was to investigate the effects of radiation on the mouse heart using high‑throughput proteomics. Male C57BL/6J mice were used to establish a model of RIHD by exposing the entire heart to 16 Gy high‑energy X‑rays, and cardiac injuries were verified using a cardiac echocardiogram, as well as by measuring serum brain natriuretic peptide levels and conducting H&E and Masson staining 5 months after irradiation. Proteomics experiments were performed using the heart apex of 5‑month irradiated mice and control mice that underwent sham‑irradiation. The most significantly differentially expressed proteins were enriched in 'cardiac fibrosis' and 'energy metabolism'. Next, the cardiac fibrosis and changes to energy metabolism were confirmed using immunohistochemistry staining and western blotting. Extracellular matrix proteins, such as collagen type 1 α 1 chain, collagen type III α 1 chain, vimentin and CCCTC‑binding factor, along with metabolism‑related proteins, such as fatty acid synthase and solute carrier family 25 member 1, exhibited upregulated expression following exposure to ionizing radiation. Additionally, the myocardial mitochondria inner membranes were injured, along with a decrease in ATP levels and the accumulation of lactic acid in the irradiated heart tissues. These results suggest that the high doses of ionizing radiation used lead to structural remodeling, functional injury and fibrotic alterations in the mouse heart. Radiation‑induced mitochondrial damage and metabolic alterations of the cardiac tissue may thus be a pathogenic mechanism of RIHD.
Collapse
Affiliation(s)
- Peng Xu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yali Yi
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yijing Luo
- Department of Clinical Medicine, The First Clinical College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Zhicheng Liu
- Department of Clinical Medicine, The First Clinical College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Yilin Xu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jing Cai
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhimin Zeng
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Anwen Liu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
4
|
Chacko S, Mamas MA, El-Omar M, Simon D, Haseeb S, Fath-Ordoubadi F, Clarke B, Neyses L, Dunn WB. Perturbations in cardiac metabolism in a human model of acute myocardial ischaemia. Metabolomics 2021; 17:76. [PMID: 34424431 PMCID: PMC8382649 DOI: 10.1007/s11306-021-01827-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 07/29/2021] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Acute myocardial ischaemia and the transition from reversible to irreversible myocardial injury are associated with abnormal metabolic patterns. Advances in metabolomics have extended our capabilities to define these metabolic perturbations on a metabolome-wide scale. OBJECTIVES This study was designed to identify cardiac metabolic changes in serum during the first 5 min following early myocardial ischaemia in humans, applying an untargeted metabolomics approach. METHODS Peripheral venous samples were collected from 46 patients in a discovery study (DS) and a validation study (VS) (25 for DS, 21 for VS). Coronary sinus venous samples were collected from 7 patients (4 for DS, 3 for VS). Acute myocardial ischaemia was induced by transient coronary occlusion during percutaneous coronary intervention (PCI). Plasma samples were collected at baseline (prior to PCI) and at 1 and 5 min post-coronary occlusion. Samples were analyzed by Ultra Performance Liquid Chromatography-Mass Spectrometry in an untargeted metabolomics approach. RESULTS The study observed changes in the circulating levels of metabolites at 1 and 5 min following transient coronary ischaemia. Both DS and VS identified 54 and 55 metabolites as significant (P < 0.05) when compared to baseline levels, respectively. Fatty acid beta-oxidation and anaerobic respiration, lysoglycerophospholipids, arachidonic acid, docosahexaenoic acid, tryptophan metabolism and sphingosine-1-phosphate were identified as mechanistically important. CONCLUSION Using an untargeted metabolomics approach, the study identified important cardiac metabolic changes in peripheral and coronary sinus plasma, in a human model of controlled acute myocardial ischaemia. Distinct classes of metabolites were shown to be involved in the rapid cardiac response to ischemia and provide insights into diagnostic and interventional targets.
Collapse
Affiliation(s)
- Sanoj Chacko
- Division of Cardiology, Queen's University, Kingston, ON, Canada.
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK.
- Keele Cardiovascular Research Group, Keele University, Stoke-on-Trent, UK.
- Manchester Heart Centre, Manchester Royal Infirmary, Central Manchester University Hospitals NHS Trust, Manchester, UK.
- Kingston Health Sciences Centre, Queen's University, 76 Stuart St, Kingston, ON, Canada.
| | - Mamas A Mamas
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Keele Cardiovascular Research Group, Keele University, Stoke-on-Trent, UK
| | - Magdi El-Omar
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Manchester Heart Centre, Manchester Royal Infirmary, Central Manchester University Hospitals NHS Trust, Manchester, UK
| | - David Simon
- Department of Chemistry, Queen's University, Kingston, ON, Canada
| | - Sohaib Haseeb
- Division of Cardiology, Queen's University, Kingston, ON, Canada
| | - Farzin Fath-Ordoubadi
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Manchester Heart Centre, Manchester Royal Infirmary, Central Manchester University Hospitals NHS Trust, Manchester, UK
| | - Bernard Clarke
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- School of Chemistry and Manchester Centre for Integrative Systems Biology, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Ludwig Neyses
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- University of Luxembourg, 4365, Esch-sur-Alzette, Luxembourg
| | - Warwick B Dunn
- School of Chemistry and Manchester Centre for Integrative Systems Biology, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
- School of Biosciences and Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| |
Collapse
|