1
|
Zhang G, Hou S, Li S, Wang Y, Cui W. Role of STAT3 in cancer cell epithelial‑mesenchymal transition (Review). Int J Oncol 2024; 64:48. [PMID: 38488027 PMCID: PMC11000535 DOI: 10.3892/ijo.2024.5636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
Since its discovery, the role of the transcription factor, signal transducer and activator of transcription 3 (STAT3), in both normal physiology and the pathology of numerous diseases, including cancer, has been extensively studied. STAT3 is aberrantly activated in different types of cancer, fulfilling a critical role in cancer progression. The biological process, epithelial‑mesenchymal transition (EMT), is indispensable for embryonic morphogenesis. During the development of cancer, EMT is hijacked to confer motility, tumor cell stemness, drug resistance and adaptation to changes in the microenvironment. The aim of the present review was to outline recent advances in knowledge of the role of STAT3 in EMT, which may contribute to the understanding of the function of STAT3 in EMT in various types of cancer. Delineating the underlying mechanisms associated with the STAT3‑EMT signaling axis may generate novel diagnostic and therapeutic options for cancer treatment.
Collapse
Affiliation(s)
- Guoan Zhang
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Sen Hou
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Shuyue Li
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Yequan Wang
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Wen Cui
- Department of Forensic Pathology, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| |
Collapse
|
2
|
Ahangar Davoodi N, Najafi S, Naderi Ghale-Noie Z, Piranviseh A, Mollazadeh S, Ahmadi Asouri S, Asemi Z, Morshedi M, Tamehri Zadeh SS, Hamblin MR, Sheida A, Mirzaei H. Role of non-coding RNAs and exosomal non-coding RNAs in retinoblastoma progression. Front Cell Dev Biol 2022; 10:1065837. [PMID: 36619866 PMCID: PMC9816416 DOI: 10.3389/fcell.2022.1065837] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Retinoblastoma (RB) is a rare aggressive intraocular malignancy of childhood that has the potential to affect vision, and can even be fatal in some children. While the tumor can be controlled efficiently at early stages, metastatic tumors lead to high mortality. Non-coding RNAs (ncRNAs) are implicated in a number of physiological cellular process, including differentiation, proliferation, migration, and invasion, The deregulation of ncRNAs is correlated with several diseases, particularly cancer. ncRNAs are categorized into two main groups based on their length, i.e. short and long ncRNAs. Moreover, ncRNA deregulation has been demonstrated to play a role in the pathogenesis and development of RB. Several ncRNAs, such as miR-491-3p, miR-613,and SUSD2 have been found to act as tumor suppressor genes in RB, but other ncRNAs, such as circ-E2F3, NEAT1, and TUG1 act as tumor promoter genes. Understanding the regulatory mechanisms of ncRNAs can provide new opportunities for RB therapy. In the present review, we discuss the functional roles of the most important ncRNAs in RB, their interaction with the genes responsible for RB initiation and progression, and possible future clinical applications as diagnostic and prognostic tools or as therapeutic targets.
Collapse
Affiliation(s)
- Nasrin Ahangar Davoodi
- Eye Research Center, Rassoul Akram Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ashkan Piranviseh
- Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadamin Morshedi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran,*Correspondence: Amirhossein Sheida, ; Hamed Mirzaei, ,
| |
Collapse
|
3
|
Manukonda R, Yenuganti VR, Nagar N, Dholaniya PS, Malpotra S, Attem J, Reddy MM, Jakati S, Mishra DK, Reddanna P, Poluri KM, Vemuganti GK, Kaliki S. Comprehensive Analysis of Serum Small Extracellular Vesicles-Derived Coding and Non-Coding RNAs from Retinoblastoma Patients for Identifying Regulatory Interactions. Cancers (Basel) 2022; 14:cancers14174179. [PMID: 36077715 PMCID: PMC9454787 DOI: 10.3390/cancers14174179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
The present study employed nanoparticle tracking analysis, transmission electron microscopy, immunoblotting, RNA sequencing, and quantitative real-time PCR validation to characterize serum-derived small extracellular vesicles (sEVs) from RB patients and age-matched controls. Bioinformatics methods were used to analyze functions, and regulatory interactions between coding and non-coding (nc) sEVs RNAs. The results revealed that the isolated sEVs are round-shaped with a size < 150 nm, 5.3 × 1011 ± 8.1 particles/mL, and zeta potential of 11.1 to −15.8 mV, and expressed exosome markers CD9, CD81, and TSG101. A total of 6514 differentially expressed (DE) mRNAs, 123 DE miRNAs, and 3634 DE lncRNAs were detected. Both miRNA-mRNA and lncRNA-miRNA-mRNA network analysis revealed that the cell cycle-specific genes including CDKNI1A, CCND1, c-MYC, and HIF1A are regulated by hub ncRNAs MALAT1, AFAP1-AS1, miR145, 101, and 16-5p. Protein-protein interaction network analysis showed that eye-related DE mRNAs are involved in rod cell differentiation, cone cell development, and retinol metabolism. In conclusion, our study provides a comprehensive overview of the RB sEV RNAs and regulatory interactions between them.
Collapse
Affiliation(s)
- Radhika Manukonda
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Hyderabad 500034, India
- Brien Holden Eye Research Center, L V Prasad Eye Institute, Hyderabad 500034, India
| | - Vengala Rao Yenuganti
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046, India or
| | - Nupur Nagar
- Department of Biosciences and Bioengineering, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Pankaj Singh Dholaniya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| | - Shivani Malpotra
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Hyderabad 500034, India
- Brien Holden Eye Research Center, L V Prasad Eye Institute, Hyderabad 500034, India
| | - Jyothi Attem
- School of Medical Sciences, Science Complex, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| | - Mamatha M. Reddy
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Bhubaneswar 751024, India or
| | - Saumya Jakati
- Ophthalmic Pathology Laboratory, L V Prasad Eye Institute, Hyderabad 500034, India
| | - Dilip K Mishra
- Ophthalmic Pathology Laboratory, L V Prasad Eye Institute, Hyderabad 500034, India
| | - Pallu Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046, India or
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Geeta K. Vemuganti
- School of Medical Sciences, Science Complex, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| | - Swathi Kaliki
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Hyderabad 500034, India
- Correspondence: ; Tel.: +91-40-68102502
| |
Collapse
|