1
|
Fang Z, Wang D, Sun F, Chang J, Yuan D, Lin S, Teng J. Circ-Luc7l Absence Attenuates Diabetic Nephropathy Progression by Reducing Mesangial Cell Excessive Proliferation, Inflammation, and Extracellular Matrix Accumulation via Mediating the miR-205-5p/Tgfbr1 Pathway. Biochem Genet 2024; 62:4896-4913. [PMID: 38376578 DOI: 10.1007/s10528-024-10694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024]
Abstract
Diabetic nephropathy (DN) threatens the survival quality of patients, with complex pathogenesis. Circular RNA (circRNA) dysregulation occurs in DN development. This work aimed to investigate the role of circ-Luc7l in DN cell models and related molecular mechanisms. The expression of circ-Luc7l, microRNA (miR)-205-5p, and transforming growth factor-beta receptor 1 (Tgfbr1) was examined by real-time quantitative PCR (RT-qPCR). Cell viability and proliferation were detected by Cell Counting Kit-8 (CCK-8) assay and EdU assay. The expression of extracellular matrix (ECM)-related markers and Tgrbr1 protein was measured by Western blot. The binding between miR-205-5p and circ-Luc7l or Tgfbr1 was validated by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay, or RNA pull-down assay. Experimental animal models were established to elucidate the function of circ-Luc7l in vivo. Circ-Luc7l expression was notably enhanced in high glucose (HG)-treated mesangial cells. Knockdown of circ-Luc7l attenuated HG-induced cell proliferation, inflammation, and ECM accumulation in vitro and relieved inflammation and ECM accumulation of kidneys of diabetic mice in vivo. Circ-Luc7l targeted miR-205-5p, and miR-205-5p inhibition rescued the depletion effects of circ-Luc7l knockdown on cell proliferation, inflammation, and ECM accumulation. MiR-205-5p bound to Tgfbr1 whose expression was negatively regulated by circ-Luc7l. Tgfbr1 overexpression also rescued the depletion effects of circ-Luc7l knockdown on cell proliferation, inflammation, and ECM accumulation. In HG conditions, increased circ-Luc7l upregulated Tgfbr1 expression via targeting miR-205-5p to induce DN progression.
Collapse
Affiliation(s)
- Zhan Fang
- Department of Nephrology, Yantaishan Hospital, No. 91 Jiefang Road, Zhifu District, Yantai, 264000, Shandong, China
| | - Dan Wang
- Department of Nephrology, Yantaishan Hospital, No. 91 Jiefang Road, Zhifu District, Yantai, 264000, Shandong, China
| | - Fang Sun
- Department of Nephrology, Yantaishan Hospital, No. 91 Jiefang Road, Zhifu District, Yantai, 264000, Shandong, China
| | - Jing Chang
- Department of Nephrology, Yantaishan Hospital, No. 91 Jiefang Road, Zhifu District, Yantai, 264000, Shandong, China
| | - Dong Yuan
- Department of Nephrology, Yantaishan Hospital, No. 91 Jiefang Road, Zhifu District, Yantai, 264000, Shandong, China
| | - Shuhua Lin
- Department of Nephrology, Yantaishan Hospital, No. 91 Jiefang Road, Zhifu District, Yantai, 264000, Shandong, China
| | - Jian Teng
- Department of Nephrology, Yantaishan Hospital, No. 91 Jiefang Road, Zhifu District, Yantai, 264000, Shandong, China.
| |
Collapse
|
2
|
Zhang L, Jin G, Zhang W, Wang Q, Liang Y, Dong Q. CircRNA Arf3 suppresses glomerular mesangial cell proliferation and fibrosis in diabetic nephropathy via miR-107-3p/Tmbim6 axis. J Bioenerg Biomembr 2024; 56:543-552. [PMID: 39120858 PMCID: PMC11455692 DOI: 10.1007/s10863-024-10027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/29/2024] [Indexed: 08/10/2024]
Abstract
Diabetic nephropathy (DN) is one of microvascular complication associated with diabetes. Circular RNAs (circRNAs) have been shown to be involved in DN pathogenesis. Hence, this work aimed to explore the role and mechanism of circ_Arf3 in DN. Mouse mesangial cells (MCs) cultured in high glucose (HG) condition were used for functional analysis. Cell proliferation was determined using 5-ethynyl-2'-deoxyuridine (EdU) and cell counting kit-8 assays. Western blotting was used to measure the levels of proliferation indicator PCNA and fibrosis-related proteins α-smooth muscle actin (α-SMA), collagen I (Col I), fibronectin (FN), and collagen IV (Col IV). The binding interaction between miR-107-3p and circ_Arf3 or Tmbim6 (transmembrane BAX inhibitor motif containing 6) was confirmed using dual-luciferase reporter and pull-down assays. Circ_Arf3 is a stable circRNA, and the expression of circ_Arf3 was decreased after HG treatment in MCs. Functionally, ectopic overexpression of circ_Arf3 protected against HG-induced proliferation and elevation of fibrosis-related proteins in MCs. Mechanistically, circ_Arf3 directly bound to miR-107-3p, and Tmbim6 was a target of miR-107-3p. Further rescue assay showed miR-107-3p reversed the protective action of circ_Arf3 on MCs function under HG condition. Moreover, inhibition of miR-107-3p suppressed HG-induced proliferation and fibrosis, which were attenuated by Tmbim6 knockdown in MCs. CircRNA Arf3 could suppress HG-evoked mesangial cell proliferation and fibrosis via miR-107-3p/Tmbim6 axis, indicating the potential involvement of this axis in DN progression.
Collapse
Affiliation(s)
- Linping Zhang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, NO.256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Gang Jin
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, NO.256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China.
| | - Wei Zhang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, NO.256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Qiong Wang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, NO.256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Yan Liang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, NO.256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Qianlan Dong
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, NO.256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| |
Collapse
|
3
|
Li S, Hu W, Qian L, Sun D. Insights into non-coding RNAS: biogenesis, function and their potential regulatory roles in acute kidney disease and chronic kidney disease. Mol Cell Biochem 2024. [DOI: 10.1007/s11010-024-05083-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/29/2024] [Indexed: 01/03/2025]
|
4
|
Benitez MBM, Navarro YP, Azuara-Liceaga E, Cruz AT, Flores JV, Lopez-Canovas L. Circular RNAs and the regulation of gene expression in diabetic nephropathy (Review). Int J Mol Med 2024; 53:44. [PMID: 38516776 PMCID: PMC10998718 DOI: 10.3892/ijmm.2024.5368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Circular RNAs (circRNAs) are non‑coding single‑stranded covalently closed RNA molecules that are considered important as regulators of gene expression at the transcriptional and post‑transcriptional levels. These molecules have been implicated in the initiation and progression of multiple human diseases, ranging from cancer to inflammatory and metabolic diseases, including diabetes mellitus and its vascular complications. The present article aimed to review the current knowledge on the biogenesis and functions of circRNAs, as well as their role in cell processes associated with diabetic nephropathy. In addition, novel potential interactions between circRNAs expressed in renal cells exposed to high‑glucose concentrations and the transcription factors c‑Jun and c‑Fos are reported.
Collapse
Affiliation(s)
- Maximo Berto Martinez Benitez
- Postgraduate Program in Genomic Sciences, Science and Technology School, Autonomous University of Mexico City, Mexico City, CP 03100, Mexico
| | - Yussel Pérez Navarro
- Postgraduate Program in Genomic Sciences, Science and Technology School, Autonomous University of Mexico City, Mexico City, CP 03100, Mexico
| | - Elisa Azuara-Liceaga
- Postgraduate Program in Genomic Sciences, Science and Technology School, Autonomous University of Mexico City, Mexico City, CP 03100, Mexico
| | - Angeles Tecalco Cruz
- Postgraduate Program in Genomic Sciences, Science and Technology School, Autonomous University of Mexico City, Mexico City, CP 03100, Mexico
| | - Jesús Valdés Flores
- Biochemistry Department, Center for Research and Advanced Studies, National Polytechnic Institute of Mexico, Mexico City, CP 07360, Mexico
| | - Lilia Lopez-Canovas
- Postgraduate Program in Genomic Sciences, Science and Technology School, Autonomous University of Mexico City, Mexico City, CP 03100, Mexico
| |
Collapse
|
5
|
Ma P, He Y, Wang B, Qiu D, Xu Q. CircGAB1 Facilitates Podocyte Injury Through Sponging miR-346 and Activating MAPK6 in Diabetic Nephropathy. Appl Biochem Biotechnol 2024; 196:1863-1875. [PMID: 37440116 DOI: 10.1007/s12010-023-04645-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Podocyte injury is very important process in diabetic nephropathy (DN) progression. Circular RNA (circRNA) takes part in regulating the advancement of DN. Herein, we explored the role and mechanism of circGAB1 in DN progression. METHODS The abundances of circGAB1, microRNA-346 (miR-346) and mitogen-activated protein kinase 6 (MAPK6) were detected by qRT-PCR in DN serum samples and podocyte HGPC. Moreover, cell viability and apoptosis were determined using CCK8 assay and flow cytometry. Also, the protein levels of MAPK6, proliferation-related markers and apoptosis-related markers were analyzed by western blot. ELISA assay was used to measure the levels of inflammatory factors, and corresponding kits were used to detect the levels of oxidative stress-related markers. The relationship between miR-346 and circGAB1 or MAPK6 was distinguished by dual-luciferase reporter assay. RESULTS CircGAB1 expression was increased in DN serum samples and HG-treated HGPC cells. CircGAB1 knockdown inhibited HG-induced apoptosis, inflammatory response and oxidative stress in HGPC cells. In terms of mechanism, circGAB1 sponged miR-346, and miR-346 targeted MAPK6. The inhibition effect of circGAB1 knockdown on HG-induced podocyte injury could be reversed by miR-346 inhibitor. Moreover, miR-346 overexpression repressed HG-induced podocyte injury by targeting MAPK6. CircGAB1 served as miR-346 sponge to positively regulate MAPK6. CONCLUSION CircGAB1 contributed to podocyte injury through mediating miR-346/MAPK6 axis, suggesting that circGAB1 might promote DN progression.
Collapse
Affiliation(s)
- Pingyue Ma
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No.261, Huansha Road, Hangzhou, Zhejiang, 310006, P. R. China
| | - Yajing He
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No.261, Huansha Road, Hangzhou, Zhejiang, 310006, P. R. China
| | - Benyong Wang
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No.261, Huansha Road, Hangzhou, Zhejiang, 310006, P. R. China
| | - Donghao Qiu
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No.261, Huansha Road, Hangzhou, Zhejiang, 310006, P. R. China
| | - Qunhong Xu
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No.261, Huansha Road, Hangzhou, Zhejiang, 310006, P. R. China.
| |
Collapse
|
6
|
Yuan L, Duan J, Zhou H. Perspectives of circular RNAs in diabetic complications from biological markers to potential therapeutic targets (Review). Mol Med Rep 2023; 28:194. [PMID: 37681455 PMCID: PMC10502942 DOI: 10.3892/mmr.2023.13081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Chronic complications of diabetes increase mortality and disability of patients. It is crucial to find potential early biomarkers and provide novel therapeutic strategies for diabetic complications. Circular RNAs (circRNAs), covalently closed RNA molecules in eukaryotes, have high stability. Recent studies have confirmed that differentially expressed circRNAs have a vital role in diabetic complications. Certain circRNAs, such as circRNA ankyrin repeat domain 36, circRNA homeodomain‑interacting protein kinase 3 (circHIPK3) and circRNA WD repeat domain 77, are associated with inflammation, endothelial cell apoptosis and smooth muscle cell proliferation, leading to vascular endothelial dysfunction and atherosclerosis. CircRNA LDL receptor related protein 6, circRNA actin related protein 2, circ_0000064, circ‑0101383, circ_0123996, hsa_circ_0003928 and circ_0000285 mediate inflammation, apoptosis and autophagy of podocytes, mesangial cell hypertrophy and proliferation, as well as tubulointerstitial fibrosis, in diabetic nephropathy by regulating the expression of microRNAs and proteins. Circ_0005015, circRNA PWWP domain containing 2A, circRNA zinc finger protein 532, circRNA zinc finger protein 609, circRNA DNA methyltransferase 3β, circRNA collagen type I α2 chain and circHIPK3 widely affect multiple biological processes of diabetic retinopathy. Furthermore, circ_000203, circ_010567, circHIPK3, hsa_circ_0076631 and circRNA cerebellar degeneration‑related protein 1 antisense are involved in the pathology of diabetic cardiomyopathy. CircHIPK3 is the most well‑studied circRNA in the field of diabetic complications and is most likely to become a biological marker and therapeutic target for diabetic complications. The applications of circRNAs may be a promising treatment strategy for human diseases at the molecular level. The relationship between circRNAs and diabetic complications is summarized in the present study. Of note, circRNA‑targeted therapy and the role of circRNAs as biomarkers may potentially be used in diabetic complications in the future.
Collapse
Affiliation(s)
- Lingling Yuan
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jinsheng Duan
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Hong Zhou
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
7
|
Wang Q, Zhu Y, Dong Q, Zhang L, Zhang W. A Novel Circ_Arf3/miR-452-5p/Mbnl1 Axis Regulates Proliferation and Expression of Fibrosis-Related Proteins of Mouse Mesangial Cells Under High Glucose. Diabetes Metab Syndr Obes 2023; 16:2105-2116. [PMID: 37457110 PMCID: PMC10349572 DOI: 10.2147/dmso.s400530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/31/2023] [Indexed: 07/18/2023] Open
Abstract
Background Diabetic nephropathy (DN) is a serious microvascular complication of diabetes that may lead to chronic renal failure and end-stage renal disease. Circular RNAs (circRNAs) play important roles in DN progression. However, the action of circRNA ADP ribosylation factor 3 (circ_Arf3) in high glucose (HG)-induced change is still unclear. Methods Mouse mesangial cells (MCs) were treated with 30 mM HG as a DN cell model in vitro. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to examine the expression levels of circ_Arf3, microRNA (miR)-452-5p and muscleblind like splicing regulator 1 (Mbnl1). The proliferation of HG-treated MCs was assessed using 5 Ethynyl 2' deoxyuridine (EdU) and cell counting kit-8 (CCK-8) assays, and the levels of proliferation and fibrosis-related proteins and Mbnl1 were detected by Western blot. Dual-luciferase reporter and RNA pull-down assays were utilized to determine the relationship between miR-452-5p and circ_Arf3 or Mbnl1. Results Our results discovered that circ_Arf3 and Mbnl1 were lowly expressed in HG-treated MCs, while miR-452-5p expression was up-regulated. Moreover, circ_Arf3 was mainly located in the cytoplasm and had a ring-like stable structure. Functional assays demonstrated that overexpression of circ_Arf3 prevented cell proliferation and fibrous formation in HG-treated MCs. Circ_Arf3 could sponge miR-452-5p, and the effect of circ_Arf3 overexpression was reversed by enhanced expression of miR-452-5p. Mbnl1 was a direct target of miR-452-5p. Knockdown of Mbnl1 abolished the suppressive effects of miR-452-5p inhibitor on proliferation and fibrosis-related protein expression in HG-treated MCs. Moreover, circ_Arf3 regulated Mbnl1 through miR-452-5p. Conclusion Overexpression of circ_Arf3 prevents cell proliferation and fibrous formation in HG-treated MCs by regulating the expression of Mbnl1 via miR-452-5p.
Collapse
Affiliation(s)
- Qiong Wang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People’s Hospital, Xi’an City, Shaanxi, People’s Republic of China
| | - Yanting Zhu
- Kidney Disease and Dialysis Center, Shaanxi Provincial People’s Hospital, Xi’an City, Shaanxi, People’s Republic of China
| | - Qianlan Dong
- Kidney Disease and Dialysis Center, Shaanxi Provincial People’s Hospital, Xi’an City, Shaanxi, People’s Republic of China
| | - Linping Zhang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People’s Hospital, Xi’an City, Shaanxi, People’s Republic of China
| | - Wei Zhang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People’s Hospital, Xi’an City, Shaanxi, People’s Republic of China
| |
Collapse
|
8
|
Liu Z, Liu J, Wang W, An X, Luo L, Yu D, Sun W. Epigenetic modification in diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1133970. [PMID: 37455912 PMCID: PMC10348754 DOI: 10.3389/fendo.2023.1133970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Diabetic kidney disease (DKD) is a common microangiopathy in diabetic patients and the main cause of death in diabetic patients. The main manifestations of DKD are proteinuria and decreased renal filtration capacity. The glomerular filtration rate and urinary albumin level are two of the most important hallmarks of the progression of DKD. The classical treatment of DKD is controlling blood glucose and blood pressure. However, the commonly used clinical therapeutic strategies and the existing biomarkers only partially slow the progression of DKD and roughly predict disease progression. Therefore, novel therapeutic methods, targets and biomarkers are urgently needed to meet clinical requirements. In recent years, increasing attention has been given to the role of epigenetic modification in the pathogenesis of DKD. Epigenetic variation mainly includes DNA methylation, histone modification and changes in the noncoding RNA expression profile, which are deeply involved in DKD-related inflammation, oxidative stress, hemodynamics, and the activation of abnormal signaling pathways. Since DKD is reversible at certain disease stages, it is valuable to identify abnormal epigenetic modifications as early diagnosis and treatment targets to prevent the progression of end-stage renal disease (ESRD). Because the current understanding of the epigenetic mechanism of DKD is not comprehensive, the purpose of this review is to summarize the role of epigenetic modification in the occurrence and development of DKD and evaluate the value of epigenetic therapies in DKD.
Collapse
Affiliation(s)
- Zhe Liu
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
- College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Jiahui Liu
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Wanning Wang
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xingna An
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Ling Luo
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Dehai Yu
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Weixia Sun
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
9
|
Circ_0000181 regulates miR-667-5p/NLRC4 axis to promote pyroptosis progression in diabetic nephropathy. Sci Rep 2022; 12:11994. [PMID: 35835791 PMCID: PMC9283475 DOI: 10.1038/s41598-022-15607-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Our previous research demonstrated that NOD-like receptor family CARD domain-containing protein 4 (NLRC4) inflammasome was overexpressed in renal tissues of patients with diabetic nephropathy (DN). This study further investigated the effect of circRNAs-miRNAs interaction on NLRC4 and their potential mechanisms. DN mice models were first established using STZ. Then, pyroptosis related marker expression was detected using qPCR, western blot (WB), and immunohistochemistry analysis. After that, differentially expressed circRNAs, miRNAs, and mRNAs were investigated using next-generation sequencing. Additionally, the function and potential mechanism of circ_0000181 and miR-667-5p on pyroptosis were measured in vitro DN cell model using MTS, WB, and Enzyme-linked immunosorbent assay. There was an apparent elevation of NLRC4, Caspase1, IL-1β, and IL-18 levels in DN mice. The next-generation sequencing results revealed that there were 947 circRNAs and 390 miRNAs significantly different between the DN and sham kidney tissue, of which circ_0000181 and miR-667-5p had potential targeting effects with NLRC4. Dual-luciferase and functional rescue experiments demonstrated that circ_0000181 promoted NLRC4 inflammasome activation via competitive sponge of miR-667-5p, promoted the release of IL-1β and IL-18, and caused pyroptosis. Altogether, circ_0000181 regulates miR-667-5p/NLRC4 axis to promote pyroptosis progression in DN.
Collapse
|
10
|
Liu Q, Cui Y, Ding N, Zhou C. Knockdown of circ_0003928 ameliorates high glucose-induced dysfunction of human tubular epithelial cells through the miR-506-3p/HDAC4 pathway in diabetic nephropathy. Eur J Med Res 2022; 27:55. [PMID: 35392987 PMCID: PMC8991937 DOI: 10.1186/s40001-022-00679-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background Previous data have indicated the importance of circular RNA (circRNA) in the pathogenesis of diabetic nephropathy (DN). The study is designed to investigate the effects of circ_0003928 on oxidative stress and apoptosis of high glucose (HG)-treated human tubular epithelial cells (HK-2) and the underlying mechanism. Methods The DN cell model was established by inducing HK-2 cells using 30 mmol/L D-glucose. RNA expression of circ_0003928, miR-506-3p and histone deacetylase 4 (HDAC4) was detected by quantitative real-time polymerase chain reaction. Cell viability and proliferation were investigated by cell counting kit-8 and 5-Ethynyl-29-deoxyuridine (EdU) assays, respectively. Oxidative stress was evaluated by commercial kits. Caspase 3 activity and cell apoptotic rate were assessed by a caspase 3 activity assay and flow cytometry analysis, respectively. Protein expression was detected by Western blotting analysis. The interactions among circ_0003928, miR-506-3p and HDAC4 were identified by dual-luciferase reporter and RNA pull-down assays. Results Circ_0003928 and HDAC4 expression were significantly upregulated, while miR-506-3p was downregulated in the serum of DN patients and HG-induced HK-2 cells. HG treatment inhibited HK-2 cell proliferation, but induced oxidative stress and cell apoptosis; however, these effects were reversed after circ_0003928 depletion. Circ_0003928 acted as a miR-506-3p sponge, and HDAC4 was identified as a target gene of miR-506-3p. Moreover, the circ_0003928/miR-506-3p/HDAC4 axis regulated HG-induced HK-2 cell dysfunction. Conclusion Circ_0003928 acted as a sponge for miR-506-3p to regulate HG-induced oxidative stress and apoptosis of HK-2 cells through HDAC4, which suggested that circ_0003928 might be helpful in the therapy of DN. Supplementary Information The online version contains supplementary material available at 10.1186/s40001-022-00679-y.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Nephrology, Hebei General Hospital, Shijiazhuang, China
| | - Yuanyuan Cui
- Department of Endocrine Rheumatology and Immunology, People's Hospital of Gaotang County, Gaotang, China
| | - Nan Ding
- Department of Clinical Laboratory, Hebei General Hospital, Shijiazhuang, China
| | - Changxue Zhou
- Department of Kidney Internal Medicine, Zaozhuang Municipal Hospital, No. 41 Longtou Road, Central District, Zaozhuang, 277100, China.
| |
Collapse
|
11
|
Liu M, Zhao J. Circular RNAs in Diabetic Nephropathy: Updates and Perspectives. Aging Dis 2022; 13:1365-1380. [PMID: 36186139 PMCID: PMC9466972 DOI: 10.14336/ad.2022.0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/02/2022] [Indexed: 11/30/2022] Open
Abstract
Circular RNAs (circRNAs) are widespread endogenous transcripts lacking 5′-caps and 3′-polyadenylation tails. Their closed-loop structure confers exonuclease resistance and extreme stability. CircRNAs play essential roles in various diseases, including diabetes. Diabetic nephropathy (DN) is the leading cause of end-stage kidney disease and is one of the most common complications of diabetes. CircRNAs are key in DN and therefore important for understanding DN pathophysiology and developing new therapeutic strategies. In the present review, we briefly introduce the characteristics and functions of circRNAs and summarize recent discoveries on how circRNAs participate in DN. Based on these advances, we suggest future perspectives for studying circRNAs in DN to improve DN treatment and management.
Collapse
Affiliation(s)
| | - Junli Zhao
- Correspondence should be addressed to: Dr. Junli Zhao, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China. E-mail: .
| |
Collapse
|
12
|
Fan W, Pang H, Xie Z, Huang G, Zhou Z. Circular RNAs in diabetes mellitus and its complications. Front Endocrinol (Lausanne) 2022; 13:885650. [PMID: 35979435 PMCID: PMC9376240 DOI: 10.3389/fendo.2022.885650] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/12/2022] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus (DM) is an endocrine disorder characterized by a relative or absolute lack of insulin due to the dysfunction or destruction of β-cells. DM is one of the fastest growing challenges to global health in the 21st century and places a tremendous burden on affected individuals and their families and countries. Although insulin and antidiabetic drugs have been used to treat DM, a radical cure for the disease is unavailable. The pathogenesis of DM remains unclear. Emerging roles of circular RNAs (circRNAs) in DM have become a subject of global research. CircRNAs have been verified to participate in the onset and progression of DM, implying their potential roles as novel biomarkers and treatment tools. In the present review, we briefly introduce the characteristics of circRNAs. Next, we focus on specific roles of circRNAs in type 1 diabetes mellitus, type 2 diabetes mellitus, gestational diabetes mellitus and diabetes-associated complications.
Collapse
|
13
|
Sun A, Sun N, Liang X, Hou Z. Circ-FBXW12 aggravates the development of diabetic nephropathy by binding to miR-31-5p to induce LIN28B. Diabetol Metab Syndr 2021; 13:141. [PMID: 34863268 PMCID: PMC8642853 DOI: 10.1186/s13098-021-00757-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The involvement of circular RNAs (circRNAs) in diabetic nephropathy (DN) has been gradually identified. In this study, we aimed to explore the functions of circRNA F-box/WD repeat-containing protein 12 (circ-FBXW12) in DN development. METHODS Reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay was performed for the levels of circ-FBXW12, FBXW12 mRNA, microRNA-31-5p (miR-31-5p) and Lin-28 homolog B (LIN28B) mRNA. RNase R assay was used to analyze the stability of circ-FBXW12. Cell Counting Kit-8 (CCK-8) assay, flow cytometry analysis and 5-ethynyl-2'- deoxyuridine (EdU) assay were employed to evaluate cell viability, cell cycle and proliferation, respectively. Enzyme linked immunosorbent assay (ELISA) was done to measure the concentrations of inflammatory cytokines. Western blot assay was conducted for protein levels. Superoxide dismutase (SOD) activity and malondialdehyde (MDA) level were examined with commercial kits. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to verify the relationships among circ-FBXW12, miR-31-5p and LIN28B. RESULTS Circ-FBXW12 level was increased in DN patients' serums and high glucose (HG)-induced human mesangial cells (HMCs). Circ-FBXW12 knockdown suppressed cell proliferation, arrested cell cycle, reduced extracellular matrix (ECM) production and oxidative stress in HG-induced HMCs. Circ-FBXW12 was identified as the sponge for miR-31-5p, which then directly targeted LIN28B. MiR-31-5p inhibition reversed circ-FBXW12 knockdown-mediated effects on cell proliferation, cell cycle process, ECM production and oxidative in HG-triggered HMCs. Moreover, miR-31-5p overexpression showed similar results with circ-FBXW12 knockdown in HG-stimulated HMC progression, while LIN28B elevation reversed the effects. CONCLUSION Circ-FBXW12 knockdown suppressed HG-induced HMC growth, inflammation, ECM accumulation and oxidative stress by regulating miR-31-5p/LIN28B axis.
Collapse
Affiliation(s)
- Aidong Sun
- Department of Endocrinology, Zibo First Hospital, Zibo, 255200, Shandong, China
| | - Ningshuang Sun
- Chinese Traditional College of Changchun University of Chinese Medicine, Changchun, 130022, Jilin, China
| | - Xiao Liang
- Department of Thoracic Surgery, Zibo Central Hospital, Zibo, 255000, Shandong, People's Republic of China
| | - Zhenbo Hou
- Department of Pathology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zhangdian District, Zibo, 255000, Shandong, People's Republic of China.
| |
Collapse
|
14
|
Wu R, Niu Z, Ren G, Ruan L, Sun L. CircSMAD4 alleviates high glucose-induced inflammation, extracellular matrix deposition and apoptosis in mouse glomerulus mesangial cells by relieving miR-377-3p-mediated BMP7 inhibition. Diabetol Metab Syndr 2021; 13:137. [PMID: 34801077 PMCID: PMC8606083 DOI: 10.1186/s13098-021-00753-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/01/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a common complication of diabetes mellitus. Accumulating studies suggest that the deregulation of circular RNA (circRNA) is involved in DN pathogenesis. This study aimed to investigate the role of circSMAD4 in DN models. METHODS Mice were treated with streptozotocin to establish DN models in vivo. Mouse glomerulus mesangial cells (SV40-MES13) were treated with high glucose to establish DN models in vitro. The expression of circSMAD4, miR-377-3p and bone morphogenetic protein 7 (BMP7) mRNA was measured by quantitative real-time PCR (qPCR). The releases of inflammatory factors were examined by ELISA. The protein levels of fibrosis-related markers, apoptosis-related markers and BMP7 were checked by western blot. Cell apoptosis was monitored by flow cytometry assay. The predicted relationship between miR-377-3p and circSMAD4 or BMP7 was validated by dual-luciferase reporter assay or pull-down assay. RESULTS CircSMAD4 was poorly expressed in DN mice and HG-treated SV40-MES13 cells. HG induced SV40-MES13 cell inflammation, extracellular matrix (ECM) deposition and apoptosis. CircSMAD4 overexpression alleviated, while circSMAD4 knockdown aggravated HG-induced SV40-MES13 cell injuries. MiR-377-3p was targeted by circSMAD4, and miR-377-3p enrichment partly reversed the effects of circSMAD4 overexpression. BMP7 was a target of miR-377-3p, and circSMAD4 regulated BMP7 expression by targeting miR-377-3p. MiR-377-3p overexpression aggravated HG-induced injuries by suppressing BMP7. CONCLUSION CircSMAD4 alleviates HG-induced SV40-MES13 cell inflammation, ECM deposition and apoptosis by relieving miR-377-3p-mediated inhibition on BMP7 in DN progression.
Collapse
Affiliation(s)
- Rina Wu
- Department of Endocrinology, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, China
| | - Zheli Niu
- Department of Nephrology, The First Hospital of Hebei Medical University, 9 Donggang Road, Shijiazhuang City, 050030, Hebei Province, China
| | - Guangwei Ren
- Department of Nephrology, The First Hospital of Hebei Medical University, 9 Donggang Road, Shijiazhuang City, 050030, Hebei Province, China
| | - Lin Ruan
- Department of Nephrology, The First Hospital of Hebei Medical University, 9 Donggang Road, Shijiazhuang City, 050030, Hebei Province, China
| | - Lijun Sun
- Department of Nephrology, The First Hospital of Hebei Medical University, 9 Donggang Road, Shijiazhuang City, 050030, Hebei Province, China.
| |
Collapse
|
15
|
Deng J, Liu Y, Liu Y, Li W, Nie X. The Multiple Roles of Fibroblast Growth Factor in Diabetic Nephropathy. J Inflamm Res 2021; 14:5273-5290. [PMID: 34703268 PMCID: PMC8524061 DOI: 10.2147/jir.s334996] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/30/2021] [Indexed: 12/31/2022] Open
Abstract
Diabetic nephropathy (DN) is a common microvascular complication in the late stages of diabetes. Currently, the etiology and pathogenesis of DN are not well understood. Even so, available evidence shows its development is associated with metabolism, oxidative stress, cytokine interaction, genetic factors, and renal microvascular disease. Diabetic nephropathy can lead to proteinuria, edema and hypertension, among other complications. In severe cases, it can cause life-threatening complications such as renal failure. Patients with type 1 diabetes, hypertension, high protein intake, and smokers have a higher risk of developing DN. Fibroblast growth factor (FGF) regulates several human processes essential for normal development. Even though FGF has been implicated in the pathological development of DN, the underlying mechanisms are not well understood. This review summarizes the role of FGF in the development of DN. Moreover, the association of FGF with metabolism, inflammation, oxidative stress and fibrosis in the context of DN is discussed. Findings of this review are expected to deepen our understanding of DN and generate ideas for developing effective prevention and treatments for the disease.
Collapse
Affiliation(s)
- Junyu Deng
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Ye Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Yiqiu Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Wei Li
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People's Republic of China.,Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563000, People's Republic of China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, People's Republic of China.,Joint International Research Laboratory of Ethnomedicine of Chinese Ministry of Education, Zunyi Medical University, Zunyi, 563000, People's Republic of China.,Key Laboratory of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, 563000, People's Republic of China.,Institute of Materia Medica, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, 400038, People's Republic of China
| |
Collapse
|
16
|
Zhao L, Chen H, Zeng Y, Yang K, Zhang R, Li Z, Yang T, Ruan H. Circular RNA circ_0000712 regulates high glucose-induced apoptosis, inflammation, oxidative stress, and fibrosis in (DN) by targeting the miR-879-5p/SOX6 axis. Endocr J 2021; 68:1155-1164. [PMID: 33980772 DOI: 10.1507/endocrj.ej20-0739] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Diabetic nephropathy (DN), a frequent diabetes complication, has complex pathogenesis. Circular RNAs (circRNAs) circ_0000712 has been reported to be upregulated in kidney tissues and high glucose (HG)-inducted Mesangial cells (MCs). This study is designed to explore the role and mechanism of circ_0000712 in the HG-inducted MCs injury in DN. Circ_0000712, microRNA-879-5p (miR-879-5p), and SRY-Box Transcription Factor 6 (SOX6) levels were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell apoptosis was examined by flow cytometry assay. Protein levels of B-cell lymphoma-2 (Bcl-2), Bcl-2 related X protein (Bax), fibronectin (FN), collagen type I (Col. I), collagen type IV (Col. IV), and SOX6 were assessed by western blot assay. Levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α) were measured by enzyme-linked immunosorbent assay (ELISA). Reactive oxygen species (ROS) generation, Lactate Dehydrogenase (LDH) activity, and Superoxide Dismutase (SOD) activity were detected by the corresponding kits. The binding relationship between miR-879-5p and circ_0000712 or SOX6 was predicted by starBase and Targetscan, and then verified by a dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. Circ_0000712 and SOX6 were highly expressed, and miR-879-5p was decreased in db/db DN mice and HG-inducted SV40-MES13 cells. Furthermore, circ_0000712 deficiency repressed HG-caused apoptosis, inflammation, oxidative stress, and fibrosis in SV40-MES13 cells. Mechanically, circ_0000712 could regulate SOX6 expression by sponging miR-879-5p. Circ_0000712 knockdown could hinder HG-inducted SV40-MES13 cell injury through targeting the miR-879-5p/SOX6 axis, implying a possible circRNA-targeted therapy for DN.
Collapse
Affiliation(s)
- Li Zhao
- Department of Nephrology, Affliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442008, Hubei, P.R.China
| | - Huaqian Chen
- Department of Nephrology, Affliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442008, Hubei, P.R.China
| | - Yan Zeng
- Department of Nephrology, Affliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442008, Hubei, P.R.China
| | - Kun Yang
- Department of Endocrinology, Affliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442008, Hubei, P.R.China
| | - Ren Zhang
- Department of Nephrology, Affliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442008, Hubei, P.R.China
| | - Zhengdong Li
- Department of Nephrology, Affliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442008, Hubei, P.R.China
| | - Tao Yang
- Department of Nephrology, Affliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442008, Hubei, P.R.China
| | - Hualing Ruan
- Department of Endocrinology, Affliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442008, Hubei, P.R.China
| |
Collapse
|
17
|
Yu J, Xie D, Huang N, Zhou Q. Circular RNAs as Novel Diagnostic Biomarkers and Therapeutic Targets in Kidney Disease. Front Med (Lausanne) 2021; 8:714958. [PMID: 34604256 PMCID: PMC8481637 DOI: 10.3389/fmed.2021.714958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel type of non-coding RNAs that have aroused growing attention in this decade. They are widely expressed in eukaryotes and generally have high stability owing to their special closed-loop structure. Many circRNAs are abundant, evolutionarily conserved, and exhibit cell-type-specific and tissue-specific expression patterns. Mounting evidence suggests that circRNAs have regulatory potency for gene expression by acting as microRNA sponges, interacting with proteins, regulating transcription, or directly undergoing translation. Dysregulated expression of circRNAs were found in many pathological conditions and contribute to the pathogenesis and progression of various disorders, including renal diseases. Recent studies have revealed that circRNAs may serve as novel reliable biomarkers for the diagnosis and prognosis prediction of multiple kidney diseases, such as renal cell carcinoma (RCC), acute kidney injury (AKI), diabetic kidney disease (DKD), and other glomerular diseases. Furthermore, circRNAs expressed by intrinsic kidney cells are shown to play a substantial role in kidney injury, mostly reported in DKD and RCC. Herein, we review the biogenesis and biological functions of circRNAs, and summarize their roles as promising biomarkers and therapeutic targets in common kidney diseases.
Collapse
Affiliation(s)
- Jianwen Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National Health Commission Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Danli Xie
- Department of Nephrology, Shishi General Hospital, Quanzhou, China
| | - Naya Huang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National Health Commission Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qin Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,National Health Commission Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Wang J, Yang S, Li W, Zhao M, Li K. Circ_0000491 Promotes Apoptosis, Inflammation, Oxidative Stress, and Fibrosis in High Glucose-Induced Mesangial Cells by Regulating miR-455-3p/Hmgb1 Axis. Nephron Clin Pract 2021; 146:72-83. [PMID: 34474408 DOI: 10.1159/000516870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/22/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a severe microvascular complication of diabetes. Recently, many circular RNAs can exert crucial roles in DN progression. This study intended to explore the role and mechanism of circ_0000491 in DN. METHODS The DN mouse model was constructed by streptozotocin injection, and the DN cell model was established using high glucose (HG) treatment in mouse mesangial cells (SV40-MES13). The expression of circ_0000491 and microRNA-455-3p (miR-455-3p) was detected by quantitative real-time polymerase chain reaction. Cell apoptosis was evaluated by flow cytometry. The expression levels of high-mobility group box 1 (Hmgb1) protein, apoptosis-related proteins, and fibrosis-related proteins were examined by the Western blot assay. The release of inflammatory cytokines was assessed by enzyme-linked immunosorbent assay. The oxidative stress factors were analyzed by corresponding kits. The predicted interaction between miR-455-3p and circ_0000491 or Hmgb1 was verified by dual-luciferase reporter assay and RNA immunoprecipitation assay. RESULTS Circ_0000491 was overexpressed in the DN mouse model and HG-induced SV40-MES13 cells. Knockdown of circ_0000491 weakened HG-induced apoptosis, inflammation, oxidative stress, and fibrosis in SV40-MES13 cells. miR-455-3p was a direct target of circ_0000491, and miR-455-3p inhibition could reverse the role of circ_0000491 silencing in HG-induced SV40-MES13 cells. Moreover, Hmgb1 was a target gene of miR-455-3p, and miR-455-3p played a protective role against HG-induced cell injury by targeting Hmgb1. In addition, circ_0000491 regulated Hmgb1 expression by sponging miR-455-3p. CONCLUSION Circ_0000491 knockdown inhibited HG-induced apoptosis, inflammation, oxidative stress, and fibrosis in SV40-MES13 cells by regulating miR-455-3p/Hmgb1 axis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Nephrology, Baoji People's Hospital, Baoji, China
| | - Shifeng Yang
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wendong Li
- Department of Nephrology, Baoji People's Hospital, Baoji, China
| | - Ming Zhao
- Department of Endocrine Nephropathy, Aviation Industry 3201 Hospital, Hanzhong, China
| | - Kai Li
- Department of Endocrine Nephropathy, Hanzhong People's Hospital of Shaanxi Province, Hanzhong, China
| |
Collapse
|
19
|
Yun J, Ren J, Liu Y, Dai L, Song L, Ma X, Luo S, Song Y. Circ-ACTR2 aggravates the high glucose-induced cell dysfunction of human renal mesangial cells through mediating the miR-205-5p/HMGA2 axis in diabetic nephropathy. Diabetol Metab Syndr 2021; 13:72. [PMID: 34174955 PMCID: PMC8236153 DOI: 10.1186/s13098-021-00692-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been considered as pivotal biomarkers in Diabetic nephropathy (DN). CircRNA ARP2 actin-related protein 2 homolog (circ-ACTR2) could promote the HG-induced cell injury in DN. However, how circ-ACTR2 acts in DN is still unclear. This study aimed to explore the molecular mechanism of circ-ACTR2 in DN progression, intending to provide support for the diagnostic and therapeutic potentials of circ-ACTR2 in DN. METHODS RNA expression analysis was conducted by the quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Cell growth was measured via Cell Counting Kit-8 and EdU assays. Inflammatory response was assessed by Enzyme-linked immunosorbent assay. The protein detection was performed via western blot. Oxidative stress was evaluated by the commercial kits. The molecular interaction was affirmed through dual-luciferase reporter and RNA immunoprecipitation assays. RESULTS Circ-ACTR2 level was upregulated in DN samples and high glucose (HG)-treated human renal mesangial cells (HRMCs). Silencing the circ-ACTR2 expression partly abolished the HG-induced cell proliferation, inflammation and extracellular matrix accumulation and oxidative stress in HRMCs. Circ-ACTR2 was confirmed as a sponge for miR-205-5p. Circ-ACTR2 regulated the effects of HG on HRMCs by targeting miR-205-5p. MiR-205-5p directly targeted high-mobility group AT-hook 2 (HMGA2), and HMGA2 downregulation also protected against cell injury in HG-treated HRMCs. HG-mediated cell dysfunction was repressed by miR-205-5p/HMGA2 axis. Moreover, circ-ACTR2 increased the expression of HMGA2 through the sponge effect on miR-205-5p in HG-treated HRMCs. CONCLUSION All data have manifested that circ-ACTR2 contributed to the HG-induced DN progression in HRMCs by the mediation of miR-205-5p/HMGA2 axis.
Collapse
Affiliation(s)
- Jie Yun
- Department of Nephrology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jinyu Ren
- Department of Encephalopathy, Second Hospital Affiliated to Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yufei Liu
- Department of Blood Purification, Second Hospital Affiliated to Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lijuan Dai
- Department of Nephrology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liqun Song
- Department of Nephrology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaopeng Ma
- Department of Nephrology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shan Luo
- Department of Nephrology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yexu Song
- Department of Science and Technology, Heilongjiang University of Chinese Medicine, No 26, Heping Road, Harbin, 150000, China.
| |
Collapse
|
20
|
Srivastava SP, Goodwin JE, Tripathi P, Kanasaki K, Koya D. Interactions among Long Non-Coding RNAs and microRNAs Influence Disease Phenotype in Diabetes and Diabetic Kidney Disease. Int J Mol Sci 2021; 22:ijms22116027. [PMID: 34199672 PMCID: PMC8199750 DOI: 10.3390/ijms22116027] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Large-scale RNA sequencing and genome-wide profiling data revealed the identification of a heterogeneous group of noncoding RNAs, known as long noncoding RNAs (lncRNAs). These lncRNAs play central roles in health and disease processes in diabetes and cancer. The critical association between aberrant expression of lncRNAs in diabetes and diabetic kidney disease have been reported. LncRNAs regulate diverse targets and can function as sponges for regulatory microRNAs, which influence disease phenotype in the kidneys. Importantly, lncRNAs and microRNAs may regulate bidirectional or crosstalk mechanisms, which need to be further investigated. These studies offer the novel possibility that lncRNAs may be used as potential therapeutic targets for diabetes and diabetic kidney diseases. Here, we discuss the functions and mechanisms of actions of lncRNAs, and their crosstalk interactions with microRNAs, which provide insight and promise as therapeutic targets, emphasizing their role in the pathogenesis of diabetes and diabetic kidney disease.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06511, USA;
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06511, USA
- Correspondence: or (S.P.S.); (D.K.)
| | - Julie E. Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06511, USA;
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Pratima Tripathi
- Department of Biochemistry, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow 226010, India;
| | - Keizo Kanasaki
- Internal Medicine 1, Shimane University Faculty of Medicine, Izumo 693-0021, Japan;
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Ishikawa 920-0293, Japan
- Correspondence: or (S.P.S.); (D.K.)
| |
Collapse
|
21
|
Yang YY, Deng RR, Chen Z, Yao LY, Yang XD, Xiang DX. Piperazine ferulate attenuates high glucose‑induced mesangial cell injury via the regulation of p66 Shc. Mol Med Rep 2021; 23:374. [PMID: 33760157 PMCID: PMC7985999 DOI: 10.3892/mmr.2021.12013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/22/2021] [Indexed: 12/26/2022] Open
Abstract
Diabetic nephropathy (DN) is a severe microvascular complication of diabetes. Hyperglycemia-induced glomerular mesangial cells injury is associated with microvascular damage, which is an important step in the development of DN. Piperazine ferulate (PF) has been reported to exert protective effects against the progression of DN. However, whether PF prevents high glucose (HG)-induced mesangial cell injury remains unknown. The aim of the present study was to investigate the effects of PF on HG-induced mesangial cell injury and to elucidate the underlying mechanisms. Protein and mRNA expression levels were determined via western blot analysis and reverse transcription-quantitative PCR, respectively. IL-6 and TNF-α levels were measured using ELISA. Reactive oxygen species levels and NF-κB p65 nuclear translation were determined via immunofluorescence analysis. Apoptosis was assessed by measuring lactate dehydrogenase (LDH) release, as well as using MTT and flow cytometric assays. The mitochondrial membrane potential of mesangial cells was determined using the JC-1 kit. The results revealed that LDH release were increased; however, cell viability and mitochondrial membrane potential were decreased in the HG group compared with the control group. These changes were inhibited after the mesangial cells were treated with PF. Moreover, PF significantly inhibited the HG-induced production of inflammatory cytokines and the activation of NF-κB in mesangial cells. PF also attenuated the HG-induced upregulation of the expression levels of fibronectin and collagen 4A1. Furthermore, the overexpression of p66Src homology/collagen (Shc) abolished the protective effect of PF on HG-induced mesangial cell injury. In vivo experiments revealed that PF inhibited the activation of inflammatory signaling pathways, glomerular cell apoptosis and mesangial matrix expansion in diabetic mice. Collectively, the present findings demonstrated that PF attenuated HG-induced mesangial cells injury by inhibiting p66Shc.
Collapse
Affiliation(s)
- Yong-Yu Yang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Rong-Rong Deng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Zhuo Chen
- Department of Geriatrics, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Liang-Yuan Yao
- Hunan Provincial Engineering Research Central of Translational Medical and Innovative Drug, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Xi-Ding Yang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Da-Xiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|