1
|
Li J, Fu L, Lu Q, Guo S, Chen S, Xia T, Wang M, Chen L, Bai Y, Xia H. Comparison of the osteogenic potential of fibroblasts from different sources. Tissue Cell 2024; 88:102358. [PMID: 38537379 DOI: 10.1016/j.tice.2024.102358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 06/17/2024]
Abstract
OBJECTIVE With the growing interest in the role of fibroblasts in osteogenesis, this study presents a comparative evaluation of the osteogenic potential of fibroblasts derived from three distinct sources: human gingival fibroblasts (HGFs), mouse embryonic fibroblasts (NIH3T3 cells), and mouse subcutaneous fibroblasts (L929 cells). MC3T3-E1 pre-osteoblast cells were employed as a positive control for osteogenic behavior. DESIGN Our assessment involved multiple approaches, including vimentin staining for cell origin verification, as well as ALP and ARS staining in conjunction with RT-PCR for osteogenic characterization. RESULTS Our findings revealed the superior osteogenic differentiation capacity of HGFs compared to MC3T3-E1 and NIH3T3 cells. Analysis of ALP staining confirmed that early osteogenic differentiation was most prominent in MC3T3-E1 cells at 7 days, followed by NIH3T3 and HGFs. However, ARS staining at 21 days demonstrated that HGFs produced the highest number of calcified nodules, indicating their robust potential for late-stage mineralization. This late-stage osteogenic potential of HGFs was further validated through RT-PCR analysis. In contrast, L929 cells displayed no significant osteogenic differentiation potential. CONCLUSIONS In light of these findings, HGFs emerge as the preferred choice for seed cells in bone tissue engineering applications. This study provides valuable insights into the potential utility of HGFs in the fields of bone tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jiaojiao Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Liangliang Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qian Lu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Shuling Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Si Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ting Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Min Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Liangwen Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yi Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Haibin Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
2
|
Srinath A, Nakamura A, Haroon N. Sequence of Events in the Pathogenesis of Axial Spondyloarthritis: A Current Review-2023 SPARTAN Meeting Proceedings. Curr Rheumatol Rep 2024; 26:133-143. [PMID: 38324125 DOI: 10.1007/s11926-024-01136-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2024] [Indexed: 02/08/2024]
Abstract
PURPOSE OF REVIEW Over the past two decades, significant progress has been made to untangle the etiology of inflammation and new bone formation (NBF) associated with axial spondyloarthritis (axSpA). However, exact mechanisms as to how the disease initiates and develops remain elusive. RECENT FINDINGS Type 3 immunity, centered around the IL-23/IL-17 axis, has been recognized as a key player in the pathogenesis of axSpA. Multiple hypotheses associated with HLA-B*27 have been proposed to account for disease onset and progression of axSpA, potentially by driving downstream T cell responses. However, HLA-B*27 alone is not sufficient to fully explain the development of axSpA. Genome-wide association studies (GWAS) identified several genes that are potentially relevant to disease pathogenesis leading to a better understanding of the immune activation seen in axSpA. Furthermore, gut microbiome studies suggest an altered microbiome in axSpA, and animal studies suggest a pathogenic role for immune cells migrating from the gut to the joint. Recent studies focusing on the pathogenesis of new bone formation (NBF) have highlighted the importance of endochondral ossification, mechanical stress, pre-existing inflammation, and activated anabolic signaling pathways during the development of NBF. Despite the complex etiology of axSpA, recent studies have shed light on pivotal pieces that could lead to a better understanding of the pathogenic events in axSpA.
Collapse
Affiliation(s)
- Archita Srinath
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Akihiro Nakamura
- Department of Medicine, Division of Rheumatology, Queen's University, Kingston, ON, Canada
- School of Medicine, Translational Institute of Medicine, Queen's University, Kingston, ON, Canada
- Kingston Health Science Centre, Kingston, ON, Canada
| | - Nigil Haroon
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Division of Rheumatology, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
3
|
Liu Z, Cai M, Ke H, Deng H, Ye W, Wang T, Chen Q, Cen S. Fibroblast Insights into the Pathogenesis of Ankylosing Spondylitis. J Inflamm Res 2023; 16:6301-6317. [PMID: 38149115 PMCID: PMC10750494 DOI: 10.2147/jir.s439604] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/03/2023] [Indexed: 12/28/2023] Open
Abstract
Purpose of the Review Emerging evidence has shown that ankylosing spondylitis fibroblasts (ASFs) act as crucial participants in inflammation and abnormal ossification in ankylosing spondylitis (AS). This review examines the investigations into ASFs and their pathological behavior, which contributes to inflammatory microenvironments and abnormal bone formation. The review spans the period from 2000 to 2023, with a primary focus on the most recent decade. Additionally, the review provides an in-depth discussion on studies on ASF ossification at the cellular level. Recent Findings ASFs organize immune functions by recruiting immune cells and influencing their differentiation and activation, thus mediate the inflammatory response in the early phase of disease. ASFs promote joint destruction at sites of cartilage and actively promote abnormal ossification by recruiting osteoblasts, differentiation into myofibroblasts or ossification directly. Many signaling pathways and cytokines such as Wnt signaling and BMP/TGF-β signaling are involved in ASF ossification. Summary ASFs play a key role in AS inflammation and osteogenesis. Further studies are required to elucidate molecular mechanisms behind that and provide new targets and directions for AS diagnosis and treatment from a new perspective of fibroblasts.
Collapse
Affiliation(s)
- Zhenhua Liu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Mingxi Cai
- The Second Clinical School, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Haoteng Ke
- The Second Clinical School, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Huazong Deng
- The Second Clinical School, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Weijia Ye
- The Second Clinical School, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Tao Wang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Qifan Chen
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Shuizhong Cen
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| |
Collapse
|
4
|
Zhang D, Wu J, Zhang S, Wu J. Identification of Immune Infiltration-Related ceRNAs as Novel Biomarkers for Prognosis of Patients With Primary Open-Angle Glaucoma. Front Genet 2022; 13:838220. [PMID: 35692841 PMCID: PMC9184720 DOI: 10.3389/fgene.2022.838220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Glaucoma is the leading cause of irreversible blindness globally; hence, relevant clinical biomarkers are necessary to enable diagnosis, early detection, and development of novel therapies. The differentially expressed genes were annotated and visualized using Gene Ontology and Kyoto Encyclopedia. In addition, a competitive endogenous ribonucleic acids network was constructed using Cytoscape, which explained the regulation of gene expression in glaucoma. The CIBERSORT algorithm was employed to analyze the immune microenvironment. We validated that the core genes could predict glaucoma occurrence and development and identified potential molecular mechanism pathways, which were associated with immune infiltration and participated in endogenous regulation networks. Our data may partially explain the pathogenesis of glaucoma and they provide potential theoretical support for targeted therapy.
Collapse
Affiliation(s)
- Daowei Zhang
- Eye and ENT Hospital, College of Medicine, Eye Institute, Fudan University, Shanghai, China
| | - Jiawen Wu
- Eye and ENT Hospital, College of Medicine, Eye Institute, Fudan University, Shanghai, China
| | - Shenghai Zhang
- Eye and ENT Hospital, College of Medicine, Eye Institute, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
- *Correspondence: Shenghai Zhang, ; Jihong Wu,
| | - Jihong Wu
- Eye and ENT Hospital, College of Medicine, Eye Institute, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai, China
- Key Laboratory of Myopia, Ministry of Health, Shanghai, China
- *Correspondence: Shenghai Zhang, ; Jihong Wu,
| |
Collapse
|
5
|
Sheng W, Jiang H, Yuan H, Li S. miR‑148a‑3p facilitates osteogenic differentiation of fibroblasts in ankylosing spondylitis by activating the Wnt pathway and targeting DKK1. Exp Ther Med 2022; 23:365. [PMID: 35493425 PMCID: PMC9019766 DOI: 10.3892/etm.2022.11292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/15/2021] [Indexed: 11/23/2022] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory form of arthritis. MicroRNAs (miRNAs) have been identified to serve as therapeutic targets in various inflammatory diseases. The aim of the present study was to determine the functional mechanism of miR-148a-3p on AS. Specimens were collected from AS patients and non-AS patients. Fibroblasts were delivered with the aid of miR-148a-3p inhibitor. Cell staining was performed to observe the morphological changes, calcified nodules, and mineralization degree. The binding sites of miR-148a-3p and DKK1 were predicted on the Starbase website and subsequently verified by means of dual-luciferase reporter assay. AS fibroblasts with silenced miR-148a-3p were transfected with si-DKK1. Levels of RUNX2 and Osteocalcin, DKK1 and Wnt1 protein and phosphorylation level of β-catenin were detected by means of western blot analysis. Results of the present study denoted that AS upregulated miR-148a-3p in fibroblasts to exacerbate osteogenic differentiation, resulting in increased calcified nodules and mineralization degree. Silencing miR-148a-3p could reverse the upregulation of RUNX2 and Osteocalcin in AS fibroblasts and reduce the calcified nodules and mineralization degree. miR-148a-3p targeted DKK1. DKK1 knockdown averted the effect of silencing miR-148a-3p in AS fibroblasts. In addition, silencing miR-148a-3p reversed the upregulation of Wnt1 and β-catenin proteins in AS fibroblasts. To conclude, miR-148a-3p exacerbated the osteogenic differentiation of AS fibroblasts by inhibiting DKK1 expression and activating the Wnt pathway.
Collapse
Affiliation(s)
- Wenbo Sheng
- Department of Spine Surgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Haitao Jiang
- Department of Spine Surgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Hantao Yuan
- Department of Spine Surgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Sibo Li
- Department of Spine Surgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| |
Collapse
|
6
|
Harjacek M. Immunopathophysiology of Juvenile Spondyloarthritis (jSpA): The "Out of the Box" View on Epigenetics, Neuroendocrine Pathways and Role of the Macrophage Migration Inhibitory Factor (MIF). Front Med (Lausanne) 2021; 8:700982. [PMID: 34692718 PMCID: PMC8526544 DOI: 10.3389/fmed.2021.700982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
Juvenile spondyloarthritis (jSpA) is a an umbrella term for heterogeneous group of related seronegative inflammatory disorders sharing common symptoms. Although it mainly affects children and adolescents, it often remains active during adulthood. Genetic and environmental factors are involved in its occurrence, although the exact underlying immunopathophysiology remains incompletely elucidated. Accumulated evidence suggests that, in affected patients, subclinical gut inflammation caused by intestinal dysbiosis, is pivotal to the future development of synovial-entheseal complex inflammation. While the predominant role of IL17/23 axis, TNF-α, and IL-7 in the pathophysiology of SpA, including jSpA, is firmly established, the role of the cytokine macrophage migration inhibitory factor (MIF) is generally overlooked. The purpose of this review is to discuss and emphasize the role of epigenetics, neuroendocrine pathways and the hypothalamic-pituitary (HPA) axis, and to propose a novel hypothesis of the role of decreased NLRP3 gene expression and possibly MIF in the early phases of jSpA development. The decreased NLRP3 gene expression in the latter, due to hypomethylation of promotor site, is (one of) the cause for inflammasome malfunction leading to gut dysbiosis observed in patients with early jSpA. In addition, we highlight the role of MIF in the complex innate, adaptive cellular and main effector cytokine network, Finally, since treatment of advanced bone pathology in SpA remains an unmet clinical need, I suggest possible new drug targets with the aim to ultimately improve treatment efficacy and long-term outcome of jSpA patients.
Collapse
Affiliation(s)
- Miroslav Harjacek
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
7
|
Zhang Z, Zeng J, Li Y, Liao Q, Huang D, Zou Y, Liu G. Tail suspension delays ectopic ossification in proteoglycan-induced ankylosing spondylitis in mice via miR-103/DKK1. Exp Ther Med 2021; 22:965. [PMID: 34335907 PMCID: PMC8290398 DOI: 10.3892/etm.2021.10397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/15/2021] [Indexed: 11/14/2022] Open
Abstract
Ankylosing spondylitis (AS), characterized by inflammatory lesions and osteophyte formation, is a common immune rheumatic disease affecting the sacroiliac and axial joints. A high-intensity mechanical load is known to accelerate the heterotopic ossification associated with enthesitis in AS. Thus, the present study explored whether decreased mechanical load could delay the heterotopic ossification in AS. First, 24-week-old female BALB/c mice were induced with proteoglycan (PG) to establish an AS model. The AS-induced pathological and bone morphological changes of the sacroiliac joint were confirmed by hematoxylin and eosin staining and microCT analysis, respectively. Subsequently, the mice were treated with interventions of different mechanical loads. Using reverse transcription-quantitative PCR, it was revealed that expression levels of the osteogenesis-related genes bone morphogenetic protein-2, runt-related transcription factor 2 and osteocalcin were significantly reduced in sacroiliac bone tissue after intervention with a reduced mechanical load. The level of mechanosensory microRNA (miR)-103 increased in response to reduced mechanical loads. Consistently, in groups with reduced mechanical load, proteins with mechanical functions, including ρ-associated coiled-coil-containing protein kinase 1 (ROCK1), phosphorylated (p)-Erk1/2 and β-catenin, were reduced compared with the PG control. A dual-luciferase assay verified that miR-103 binds to the 3'-untranslated region end of Rock1 mRNA, thus negatively regulating the activity of Rock1 and affecting pathological ossification during AS. However, immunohistochemical staining indicated that the expression of dickkopf Wnt signaling pathway inhibitor 1, an inhibitor of the Wnt/β-catenin pathway, was increased in sacroiliac tissues. The results indicated that tail suspension decreased the mechanical load, thus reducing the bone formation in AS mice. Furthermore, tail suspension could inhibit the activation of mechanical kinase ROCK1 and p-Erk1/2 in the MAPK signaling pathway by upregulating miR-103, thereby inhibiting the classical osteogenesis-related Wnt/β-catenin pathway in AS. In summary, the present study uncovered the ameliorative effect of suspension on AS and its therapeutic potential for AS.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510000, P.R. China.,Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Department of Rehabilitation, Hankou Hospital, Wuhan, Hubei 430015, P.R. China
| | - Jing Zeng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Yang Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Qing Liao
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Dongdong Huang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Yucong Zou
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Gang Liu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510000, P.R. China.,Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|