1
|
Xiaoqing S, Yinghua C, Xingxing Y. The autophagy in ischemic stroke: A regulatory role of non-coding-RNAs. Cell Signal 2023; 104:110586. [PMID: 36608737 DOI: 10.1016/j.cellsig.2022.110586] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/17/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
Ischemic stroke (IS) is a central nervous system neurological disorder ascribed to an acute focal trauma, with high mortality and disability, leading to a heavy burden on family and society. Autophagy is a self-digesting process by which damaged organelles and useless proteins are recycled to maintain cellular homeostasis, and plays a pivotal role in the process of IS. Non-coding RNAs (ncRNAs), mainly contains microRNA, long non-coding RNA and circular RNA, have been extensively investigated on regulation of autophagy in human diseases. Recent studies have implied that ncRNAs-regulating autophagy participates in pathophysiological process of IS, including cell apoptosis, inflammation, oxidative stress, blood-brain barrier damage and glial activation, which indicates that regulating autophagy by ncRNAs may be beneficial for IS treatment. This review summarizes the role of autophagy in IS, as well as focuses on the role of ncRNAs-mediated autophagy in IS, for the development of potential therapeutic strategies in this disease.
Collapse
Affiliation(s)
- Su Xiaoqing
- The Fifth Department of Acupuncture, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, PR China
| | - Chen Yinghua
- The Fifth Department of Acupuncture, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, PR China.
| | - Yuan Xingxing
- Heilongjiang University of traditional Chinese Medicine, Harbin, Heilongjiang 150040, PR China; Department of internal medicine, Heilongjiang Academy of traditional Chinese Medicine, Harbin, Heilongjiang 150001, PR China.
| |
Collapse
|
2
|
Mastroiacovo F, Biagioni F, Lenzi P, Lazzeri G, Ferrucci M, Puglisi-Allegra S, Frati A, Nicoletti F, Fornai F. Within the Ischemic Penumbra, Sub-Cellular Compartmentalization of Heat Shock Protein 70 Overlaps with Autophagy Proteins and Fails to Merge with Lysosomes. Molecules 2022; 27:molecules27103122. [PMID: 35630599 PMCID: PMC9144499 DOI: 10.3390/molecules27103122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
The brain area which surrounds the frankly ischemic region is named the area penumbra. In this area, most cells are spared although their oxidative metabolism is impaired. area penumbra is routinely detected by immunostaining of a molecule named Heat Shock Protein 70 (HSP70). Within the area penumbra, autophagy-related proteins also increase. Therefore, in the present study, the autophagy-related microtubule-associated protein I/II-Light Chain 3 (LC3) was investigated within the area penumbra along with HSP70. In C57 black mice, ischemia was induced by permanent occlusion of the distal part of the middle cerebral artery. Immunofluorescence and electron microscopy show that LC3 and HSP70 are overexpressed and co-localize within the area penumbra in the same cells and within similar subcellular compartments. In the area penumbra, marked loss of co-localization of HSP70 and LC3-positive autophagy vacuoles, with lysosomal-associated membrane protein 1 (LAMP1) or cathepsin-D-positive lysosome vacuoles occurs. This study indicates that, within the area penumbra, a failure of autophagolysosomes depends on defective compartmentalization of LC3, LAMP1 and cathepsin-D and a defect in merging between autophagosomes and lysosomes. Such a deleterious effect is likely to induce a depletion of autophagolysosomes and cell clearing systems, which needs to be rescued in the process of improving neuronal survival.
Collapse
Affiliation(s)
- Federica Mastroiacovo
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.M.); (F.B.); (S.P.-A.); (A.F.); (F.N.)
| | - Francesca Biagioni
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.M.); (F.B.); (S.P.-A.); (A.F.); (F.N.)
| | - Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (P.L.); (G.L.); (M.F.)
| | - Gloria Lazzeri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (P.L.); (G.L.); (M.F.)
| | - Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (P.L.); (G.L.); (M.F.)
| | - Stefano Puglisi-Allegra
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.M.); (F.B.); (S.P.-A.); (A.F.); (F.N.)
| | - Alessandro Frati
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.M.); (F.B.); (S.P.-A.); (A.F.); (F.N.)
- Neurosurgery Division, Department of Human Neurosciences, Sapienza University, 00135 Rome, Italy
| | - Ferdinando Nicoletti
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.M.); (F.B.); (S.P.-A.); (A.F.); (F.N.)
- Department of Physiology and Pharmacology, University Sapienza of Rome, 00135 Rome, Italy
| | - Francesco Fornai
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.M.); (F.B.); (S.P.-A.); (A.F.); (F.N.)
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (P.L.); (G.L.); (M.F.)
- Correspondence: or ; Tel.: +39-050-2218601
| |
Collapse
|
3
|
Wu Y, Shi H, Xu Y, Pei J, Song S, Chen W, Xu S. Ebselen ameliorates renal ischemia-reperfusion injury via enhancing autophagy in rats. Mol Cell Biochem 2022; 477:1873-1885. [PMID: 35338455 DOI: 10.1007/s11010-022-04413-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/10/2022] [Indexed: 12/13/2022]
Abstract
Renal ischemia-reperfusion (I/R) injury is one of the most common causes of chronic kidney disease (CKD). It brings unfavorable outcomes to the patients and leads to a considerable socioeconomic burden. The study of renal I/R injury is still one of the hot topics in the medical field. Ebselen is an organic selenide that attenuates I/R injury in various organs. However, its effect and related mechanism underlying renal I/R injury remains unclear. In this study, we established a rat model of renal I/R injury to study the preventive effect of ebselen on renal I/R injury and further explore the potential mechanism of its action. We found that ebselen pretreatment reduced renal dysfunction and tissue damage caused by renal I/R. In addition, ebselen enhanced autophagy and inhibited oxidative stress. Additionally, ebselen pretreatment activated the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. The protective effect of ebselen was suppressed by autophagy inhibitor wortmannin. In conclusion, ebselen could ameliorate renal I/R injury, probably by enhancing autophagy, activating the Nrf2 signaling pathway, and reducing oxidative stress.
Collapse
Affiliation(s)
- Yikun Wu
- School of Medicine, Guizhou University, Guiyang, Guizhou, China
| | - Hua Shi
- Department of Urology, Tongren City People's Hospital, Tongren, Guizhou, China
| | - Yuangao Xu
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Jun Pei
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Shang Song
- Department of Urology, Tongren City People's Hospital, Tongren, Guizhou, China
| | - Wei Chen
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Shuxiong Xu
- School of Medicine, Guizhou University, Guiyang, Guizhou, China.
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
| |
Collapse
|
4
|
Gupta R, Ambasta RK, Pravir Kumar. Autophagy and apoptosis cascade: which is more prominent in neuronal death? Cell Mol Life Sci 2021; 78:8001-8047. [PMID: 34741624 PMCID: PMC11072037 DOI: 10.1007/s00018-021-04004-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
Autophagy and apoptosis are two crucial self-destructive processes that maintain cellular homeostasis, which are characterized by their morphology and regulated through signal transduction mechanisms. These pathways determine the fate of cellular organelle and protein involved in human health and disease such as neurodegeneration, cancer, and cardiovascular disease. Cell death pathways share common molecular mechanisms, such as mitochondrial dysfunction, oxidative stress, calcium ion concentration, reactive oxygen species, and endoplasmic reticulum stress. Some key signaling molecules such as p53 and VEGF mediated angiogenic pathway exhibit cellular and molecular responses resulting in the triggering of apoptotic and autophagic pathways. Herein, based on previous studies, we describe the intricate relation between cell death pathways through their common genes and the role of various stress-causing agents. Further, extensive research on autophagy and apoptotic machinery excavates the implementation of selective biomarkers, for instance, mTOR, Bcl-2, BH3 family members, caspases, AMPK, PI3K/Akt/GSK3β, and p38/JNK/MAPK, in the pathogenesis and progression of neurodegenerative diseases. This molecular phenomenon will lead to the discovery of possible therapeutic biomolecules as a pharmacological intervention that are involved in the modulation of apoptosis and autophagy pathways. Moreover, we describe the potential role of micro-RNAs, long non-coding RNAs, and biomolecules as therapeutic agents that regulate cell death machinery to treat neurodegenerative diseases. Mounting evidence demonstrated that under stress conditions, such as calcium efflux, endoplasmic reticulum stress, the ubiquitin-proteasome system, and oxidative stress intermediate molecules, namely p53 and VEGF, activate and cause cell death. Further, activation of p53 and VEGF cause alteration in gene expression and dysregulated signaling pathways through the involvement of signaling molecules, namely mTOR, Bcl-2, BH3, AMPK, MAPK, JNK, and PI3K/Akt, and caspases. Alteration in gene expression and signaling cascades cause neurotoxicity and misfolded protein aggregates, which are characteristics features of neurodegenerative diseases. Excessive neurotoxicity and misfolded protein aggregates lead to neuronal cell death by activating death pathways like autophagy and apoptosis. However, autophagy has a dual role in the apoptosis pathways, i.e., activation and inhibition of the apoptosis signaling. Further, micro-RNAs and LncRNAs act as pharmacological regulators of autophagy and apoptosis cascade, whereas, natural compounds and chemical compounds act as pharmacological inhibitors that rescue neuronal cell death through inhibition of apoptosis and autophagic cell death.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
- , Delhi, India.
| |
Collapse
|
5
|
The Autophagy-Related Organelle Autophagoproteasome Is Suppressed within Ischemic Penumbra. Int J Mol Sci 2021; 22:ijms221910364. [PMID: 34638703 PMCID: PMC8508911 DOI: 10.3390/ijms221910364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
The peri-infarct region, which surrounds the irreversible ischemic stroke area is named ischemic penumbra. This term emphasizes the borderline conditions for neurons placed within such a critical region. Area penumbra separates the ischemic core, where frank cell loss occurs, from the surrounding healthy brain tissue. Within such a brain region, nervous matter, and mostly neurons are impaired concerning metabolic conditions. The classic biochemical marker, which reliably marks area penumbra is the over-expression of the heat shock protein 70 (HSP70). However, other proteins related to cell clearing pathways are modified within area penumbra. Among these, autophagy proteins like LC3 increase in a way, which recapitulates Hsp70. In contrast, components, such as P20S, markedly decrease. Despite apparent discrepancies, the present study indicates remarkable overlapping between LC3 and P20S redistribution within area penumbra. In fact, the amount of both proteins is markedly reduced within vacuoles. Specifically, a massive loss of LC3 + P20S immuno-positive vacuoles (autophagoproteasomes) is reported here. This represents the most relevant sub-cellular alteration here described in cell clearing pathways within area penumbra. The functional significance of these findings remains to be determined and it will take a novel experimental stream to decipher the fine-tuning of such a phenomenon.
Collapse
|
6
|
Etxebeste-Mitxeltorena M, Plano D, Astrain-Redín N, Morán-Serradilla C, Aydillo C, Encío I, Moreno E, Espuelas S, Sanmartín C. New Amides and Phosphoramidates Containing Selenium: Studies on Their Cytotoxicity and Antioxidant Activities in Breast Cancer. Antioxidants (Basel) 2021; 10:590. [PMID: 33920484 PMCID: PMC8069832 DOI: 10.3390/antiox10040590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/29/2022] Open
Abstract
Breast cancer is a multifactor disease, and many drug combination therapies are applied for its treatment. Selenium derivatives represent a promising potential anti-breast cancer treatment. This study reports the cytotoxic activity of forty-one amides and phosphoramidates containing selenium against five cancer cell lines (MCF-7, CCRF-CEM, HT-29, HTB-54 and PC-3) and two nonmalignant cell lines (184B5 and BEAS-2B). MCF-7 cells were the most sensitive and the selenoamides I.1f and I.2f and the selenium phosphoramidate II.2d, with GI50 values ranging from 0.08 to 0.93 µM, were chosen for further studies. Additionally, radical scavenging activity for all the compounds was determined using DPPH and ABTS colorimetric assays. Phosphoramidates turned out to be inactive as radical scavengers. No correlation was observed for the antioxidant activity and the cytotoxic effect, except for compounds I.1e and I.2f, which showed dual antioxidant and antitumor activity. The type of programmed cell death and cell cycle arrest were determined, and the results provided evidence that I.1f and I.2f induced cell death via autophagy, while the derivative II.2d provoked apoptosis. In addition, Western blot analysis corroborated these mechanisms with an increase in Beclin1 and LC3-IIB and reduced SQSTM1/p62 levels for I.1f and I.2f, as well as an increase in BAX, p21 and p53 accompanied by a decrease in BCL-2 levels for derivative II.2d.
Collapse
Affiliation(s)
- Mikel Etxebeste-Mitxeltorena
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (M.E.-M.); (D.P.); (N.A.-R.); (C.M.-S.); (C.A.); (E.M.); (S.E.)
- The Navarra Medical Research Institute (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Tropical Health Institute of the University of Navarra (ISTUN), University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain;
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (M.E.-M.); (D.P.); (N.A.-R.); (C.M.-S.); (C.A.); (E.M.); (S.E.)
- The Navarra Medical Research Institute (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Tropical Health Institute of the University of Navarra (ISTUN), University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain;
| | - Nora Astrain-Redín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (M.E.-M.); (D.P.); (N.A.-R.); (C.M.-S.); (C.A.); (E.M.); (S.E.)
| | - Cristina Morán-Serradilla
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (M.E.-M.); (D.P.); (N.A.-R.); (C.M.-S.); (C.A.); (E.M.); (S.E.)
| | - Carlos Aydillo
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (M.E.-M.); (D.P.); (N.A.-R.); (C.M.-S.); (C.A.); (E.M.); (S.E.)
- The Navarra Medical Research Institute (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Tropical Health Institute of the University of Navarra (ISTUN), University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain;
| | - Ignacio Encío
- Tropical Health Institute of the University of Navarra (ISTUN), University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain;
- Department of Health Sciences, Public University of Navarra, Avda. Barañain s/n, 31008 Pamplona, Spain
| | - Esther Moreno
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (M.E.-M.); (D.P.); (N.A.-R.); (C.M.-S.); (C.A.); (E.M.); (S.E.)
- The Navarra Medical Research Institute (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Tropical Health Institute of the University of Navarra (ISTUN), University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain;
| | - Socorro Espuelas
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (M.E.-M.); (D.P.); (N.A.-R.); (C.M.-S.); (C.A.); (E.M.); (S.E.)
- The Navarra Medical Research Institute (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Tropical Health Institute of the University of Navarra (ISTUN), University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain;
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (M.E.-M.); (D.P.); (N.A.-R.); (C.M.-S.); (C.A.); (E.M.); (S.E.)
- The Navarra Medical Research Institute (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Tropical Health Institute of the University of Navarra (ISTUN), University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain;
| |
Collapse
|