1
|
Yin Y, Zeng Z, Wei S, Shen Z, Cong Z, Zhu X. Using the sympathetic system, beta blockers and alpha-2 agonists, to address acute respiratory distress syndrome. Int Immunopharmacol 2024; 139:112670. [PMID: 39018694 DOI: 10.1016/j.intimp.2024.112670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
Acute Respiratory Distress Syndrome (ARDS) manifests as an acute inflammatory lung injury characterized by persistent hypoxemia, featuring a swift onset, high mortality, and predominantly supportive care as the current therapeutic approach, while effective treatments remain an area of active investigation. Adrenergic receptors (AR) play a pivotal role as stress hormone receptors, extensively participating in various inflammatory processes by initiating downstream signaling pathways. Advancements in molecular biology and pharmacology continually unveil the physiological significance of distinct AR subtypes. Interventions targeting these subtypes have the potential to induce specific alterations in cellular and organismal functions, presenting a promising avenue as a therapeutic target for managing ARDS. This article elucidates the pathogenesis of ARDS and the basic structure and function of AR. It also explores the relationship between AR and ARDS from the perspective of different AR subtypes, aiming to provide new insights for the improvement of ARDS.
Collapse
Affiliation(s)
- Yiyuan Yin
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China
| | - Zhaojin Zeng
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China
| | - Senhao Wei
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China
| | - Ziyuan Shen
- Department of Anaesthesiology, Peking University Third Hospital, Beijing, China
| | - Zhukai Cong
- Department of Anaesthesiology, Peking University Third Hospital, Beijing, China.
| | - Xi Zhu
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
2
|
Zorrilla-Vaca A, Grant MC, Law M, Messinger CJ, Pelosi P, Varelmann D. Dexmedetomidine improves pulmonary outcomes in thoracic surgery under one-lung ventilation: A meta-analysis. J Clin Anesth 2024; 93:111345. [PMID: 37988813 PMCID: PMC11034816 DOI: 10.1016/j.jclinane.2023.111345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023]
Abstract
INTRODUCTION Dexmedetomidine improves intrapulmonary shunt in thoracic surgery and minimizes inflammatory response during one-lung ventilation (OLV). However, it is unclear whether such benefits translate into less postoperative pulmonary complications (PPCs). Our objective was to determine the impact of dexmedetomidine on the incidence of PPCs after thoracic surgery. METHODS Major databases were used to identify randomized trials that compared dexmedetomidine versus placebo during thoracic surgery in terms of PPCs. Our primary outcome was atelectasis within 7 days after surgery. Other specific PPCs included hypoxemia, pneumonia, and acute respiratory distress syndrome (ARDS). Secondary outcome included intraoperative respiratory mechanics (respiratory compliance [Cdyn]) and postoperative lung function (forced expiratory volume [FEV1]). Random effects models were used to estimate odds ratios (OR). RESULTS Twelve randomized trials, including 365 patients in the dexmedetomidine group and 359 in the placebo group, were analyzed in this meta-analysis. Patients in the dexmedetomidine group were less likely to develop postoperative atelectasis (2.3% vs 6.8%, OR 0.42, 95%CI 0.18-0.95, P = 0.04; low certainty) and hypoxemia (3.4% vs 11.7%, OR 0.26, 95%CI 0.10-0.68, P = 0.01; moderate certainty) compared to the placebo group. The incidence of postoperative pneumonia (3.2% vs 5.8%, OR 0.57, 95%CI 0.25-1.26, P = 0.17; moderate certainty) or ARDS (0.9% vs 3.5%, OR 0.39, 95%CI 0.07-2.08, P = 0.27; moderate certainty) was comparable between groups. Both intraoperative Cdyn and postoperative FEV1 were higher among patients that received dexmedetomidine with a mean difference of 4.42 mL/cmH2O (95%CI 3.13-5.72) and 0.27 L (95%CI 0.12-0.41), respectively. CONCLUSION Dexmedetomidine administration during thoracic surgery may potentially reduce the risk of postoperative atelectasis and hypoxemia. However, current evidence is insufficient to demonstrate an effect on pneumonia or ARDS.
Collapse
Affiliation(s)
- Andres Zorrilla-Vaca
- Department of Anesthesiology, Pain and Perioperative Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Anesthesiology, Universidad del Valle, Cali, Colombia.
| | - Michael C Grant
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Martin Law
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Chelsea J Messinger
- Department of Anesthesiology, Pain and Perioperative Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paolo Pelosi
- Anesthesiology and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy; Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Dirk Varelmann
- Department of Anesthesiology, Pain and Perioperative Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Liu Y, Cai X, Fang R, Peng S, Luo W, Du X. Future directions in ventilator-induced lung injury associated cognitive impairment: a new sight. Front Physiol 2023; 14:1308252. [PMID: 38164198 PMCID: PMC10757930 DOI: 10.3389/fphys.2023.1308252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024] Open
Abstract
Mechanical ventilation is a widely used short-term life support technique, but an accompanying adverse consequence can be pulmonary damage which is called ventilator-induced lung injury (VILI). Mechanical ventilation can potentially affect the central nervous system and lead to long-term cognitive impairment. In recent years, many studies revealed that VILI, as a common lung injury, may be involved in the central pathogenesis of cognitive impairment by inducing hypoxia, inflammation, and changes in neural pathways. In addition, VILI has received attention in affecting the treatment of cognitive impairment and provides new insights into individualized therapy. The combination of lung protective ventilation and drug therapy can overcome the inevitable problems of poor prognosis from a new perspective. In this review, we summarized VILI and non-VILI factors as risk factors for cognitive impairment and concluded the latest mechanisms. Moreover, we retrospectively explored the role of improving VILI in cognitive impairment treatment. This work contributes to a better understanding of the pathogenesis of VILI-induced cognitive impairment and may provide future direction for the treatment and prognosis of cognitive impairment.
Collapse
Affiliation(s)
- Yinuo Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Clinical Medical College of Nanchang University, Nanchang, China
| | - Xintong Cai
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Clinical Medical College of Nanchang University, Nanchang, China
| | - Ruiying Fang
- The Clinical Medical College of Nanchang University, Nanchang, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Rofaeil RR, Ibrahim MA, Mohyeldin RH, El-Tahawy NF, Abdelzaher WY. Role of EGF/ERK1/2/HO-1 axis in mediating methotrexate induced testicular damage in rats and the ameliorative effect of xanthine oxidase inhibitors. Immunopharmacol Immunotoxicol 2023; 45:511-520. [PMID: 36883686 DOI: 10.1080/08923973.2023.2181684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/11/2023] [Indexed: 03/09/2023]
Abstract
Objectives: Methotrexate (MTX) is commonly used in the management of several malignancies and autoimmune disorders; however, testicular damage is one of the most detrimental effects of MTX administration. The current the protective effect of xanthine oxidase inhibitors either purine analogue; allopurinol (ALL) or non-purine analogue; febuxostat (FEB) in testicular injury induced by MTX in rats.Materials and methods: Thirty-two rats were randomly allocated to four groups; control (received vehicles), MTX (received single dose, 20 mg/kg, i.p.), MTX + ALL (received MTX plus ALL) and MTX + FEB (received MTX plus ALL). ALL and FEB were administered orally at 100- and 10 mg/kg, respectively for 15 days. Total and free testosterone were measured in serum. In addition, total antioxidant capacity (TAC), epidermal growth factor (EGF), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), extracellular signal-regulating kinase1/2 (ERK1/2), and total nitrite/nitrate (NOx) end products were measured in testicular tissues. At the same time, immunoexpression of HO-1in testicular tissue was measured. Histopathological examination was done.Results: ALL and FEB increased total and free serum testosterone. Both drugs showed a significant reduction in testicular MDA, NOx, TNF-α levels with an increase in TAC, EGF, and ERK1/2 levels in testicular tissue. Furthermore, both drugs enhanced HO-1 immunoexpression in testicular tissue. All these findings were parallel to the preservation of normal testicular architecture in rats treated with ALL and FEB.Conclusion: All and FEB were equally protective against testicular damage induced by MTX through anti-inflammatory, anti-apoptotic, and antioxidant actions. Their effects might be through activation of the EGF/ERK1/2/HO-1 pathway.
Collapse
Affiliation(s)
- Remon Roshdy Rofaeil
- Department of Pharmacology, Minia University, Minia, Egypt
- Department of Pharmacology, Deraya University, New Minia, Minia, Egypt
| | | | - Reham H Mohyeldin
- Department of Pharmacology, Deraya University, New Minia, Minia, Egypt
| | - Nashwa F El-Tahawy
- Department of Histology and Cell Biology, Minia University, Minia, Egypt
| | | |
Collapse
|
5
|
Zhi J, Duan Q, Wang QY, Du X, Yang D. Dexmedetomidine reduces IL-4 and IgE expression through downregulation of theTLR4/NF-κB signaling pathway to alleviate airway hyperresponsiveness in OVA mice. Pulm Pharmacol Ther 2022; 75:102147. [PMID: 35863724 DOI: 10.1016/j.pupt.2022.102147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/25/2022] [Accepted: 07/14/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Airway hyperresponsiveness (AHR) is a clinical manifestation of airflow limitation due to abnormal tracheal and bronchial sensitivity and is the main basis for the diagnosis of asthma. Patients with AHR are at high risk of perioperative tracheal and bronchospasm, which can lead to hypoxaemia and haemodynamic instability and, in severe cases, to a life-threatening 'silent lung'. It is therefore important to reduce the incidence or intensity of AHR episodes in the perioperative period. The inflammatory response is key to the development and progression of AHR. HYPOTHESIS/PURPOSE Based on the modulatory role of dexmedetomidine (DEX) in the inflammatory response, we hypothesised that dexmedetomidine (DEX) attenuates inflammatory properties by inhibiting the toll-like receptor 4 (TLR4)/nuclear factor (NF-κB) signalling pathway and can reduce the respiratory parameters of mechanical ventilation in ovalbumin-induced allergic airway hyperresponsiveness. STUDY DESIGN BABL/C mice were divided into control and OVA groups (ovalbumin-induced allergy. Ten mice in all OVA models were randomly selected for in vivo invasive lung function monitoring to analyse airway resistance parameters and demonstrate successful model establishment. The remaining OVA mice were treated with dexmedetomidine 25 μg/kg for 5 days (OVA + DEX group) or dexmedetomidine 25 μg/kg + yohimbine 1 mg/kg for 5 days (OVA + DEX + yohimbine). After treatment, bronchoalveolar lavage fluid (BAL) and peripheral blood (ELISA) and lung tissue (H&E and PAS) were collected for analysis of inflammatory factors, and lung tissue was verified by PCR for genes and proteins that do correlate with inflammatory mediators. RESULTS All airway resistance parameters were increased in OVA mice by invasive lung function monitoring. Proximal airway resistance (parameter Rn) and total respiratory resistance (parameter Rrs) were attenuated after dexmedetomidine intervention treatment. Dexmedetomidine reduced total inflammatory cell count and inflammatory infiltration of lung tissue in BALF and down-regulated IL-4 and IgE levels in BALF and peripheral blood, as shown by Giemsa, H&E, PAS staining and ELISA; this mechanism of action was found to be related to the TLR4/NFκB pathway, but not to TLR4/NFκB, as measured by PCR. CONCLUSION Dexmedetomidine reduces hyperresponsiveness and airway inflammatory responses. This mechanism of action may be related to the TLR4/NFκB signalling pathway. Overall conclusions are presented in.
Collapse
Affiliation(s)
- Juan Zhi
- Department of Anesthesia, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing, 100144, China.
| | - Qirui Duan
- Department of Anesthesia, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing, 100144, China.
| | - Qian Yu Wang
- Department of Anesthesia, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing, 100144, China
| | - Xiyu Du
- Huadong Hospital Affillated to Fudan University, 211 Yan'an West Road, Jing'an District, Shanghai, 200041, China.
| | - Dong Yang
- Department of Anesthesia, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shijingshan District, Beijing, 100144, China.
| |
Collapse
|
6
|
Ding HZ, Dong YL, Zhang KY, Bai JY. Comparison of Dexmedetomidine Versus Propofol in Mechanically Ventilated Patients With Sepsis: A Meta-Analysis of Randomized Controlled Trials. Front Pharmacol 2022; 13:901898. [PMID: 35694263 PMCID: PMC9178291 DOI: 10.3389/fphar.2022.901898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose: The aim of the present study was to evaluate the effects of dexmedetomidine compared with propofol in mechanically ventilated patients with sepsis. Methods: We searched PubMed, EMBASE, and Cochrane Library for randomized controlled trials comparing the effects of dexmedetomidine versus propofol in septic patients requiring mechanical ventilation from inception to December 2021. The primary outcome was 28/30-day mortality and secondary outcomes were ventilator-free days and the length of ICU stay. Pooled relative risk (RR), mean deviation (MD), along with 95% confidence intervals (CI) were used to express outcomes by the software of Review Manager 5.3. Results: Seven studies with a total of 1,212 patients were eligible for meta-analysis. The results primarily showed that dexmedetomidine had no significant effects on the 28/30-day mortality (RR = 1.04 [0.85–1.26], p = 0.70, I2 = 3%). As for secondary outcomes, the administration of dexmedetomidine was not associated with longer-ventilator-free days (MD = 0.50 [−2.15, 3.15], p = 0.71, I2 = 24%) compared with propofol. However, our results revealed dexmedetomidine could shorten the length of ICU stay (MD = −0.76 [−1.34, −0.18], p = 0.01, I2 = 33%). Conclusion: Administration of dexmedetomidine for sedation in septic patients who required mechanical ventilation had no effect on 28/30-day mortality and ventilator-free days, but it could shorten the length of ICU stay.
Collapse
|
7
|
Bai Y, Zhang J, Zhao B, Liu K, Bai Y. Dexmedetomidine attenuates one-lung ventilation associated lung injury by suppressing inflammatory responses: A systematic review and meta-analysis. Clin Exp Pharmacol Physiol 2021; 48:1203-1214. [PMID: 34042207 PMCID: PMC8453530 DOI: 10.1111/1440-1681.13525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/29/2022]
Abstract
One-lung ventilation (OLV), a common ventilation technique, is associated with perioperative lung injury, tightly connected with inflammatory responses. Dexmedetomidine has shown positive anti-inflammatory effects in lung tissues in pre-clinical models. This study investigated the efficacy of dexmedetomidine for suppressing inflammatory responses in patients requiring OLV. We searched PubMed, MEDLINE, Embase, Scopus, Ovid, and Cochrane Library for randomized controlled trials focusing on dexmedetomidine's anti-inflammatory effects on patients requiring OLV without any limitation on the year of publication or languages. 20 clinical trials were assessed with 870 patients in the dexmedetomidine group and 844 in the control group. Our meta-analysis investigated the anti-inflammatory property of dexmedetomidine perioperatively [T1 (30-min OLV), T2 (90-min OLV), T3 (end of surgery) and T4 (postoperative day 1)], demonstrating that dexmedetomidine's intraoperative administration resulted in a significant reduction in serum concentration of interleukin-6, tumor necrosis factor-α and other inflammatory cytokines perioperatively. By calculating specific I2 index, significant heterogeneity was observed on all occasions, with I2 index ranging from 95% to 99%. For IL-6 changes, sensitivity analysis showed that the exclusion of a single study led to a significant decrease of heterogeneity (96%-0%; p < 0.00001). Besides, pulmonary oxygenation was ameliorated in the dexmedetomidine group comparing with the control group. In conclusion, perioperative administration of dexmedetomidine can attenuate OLV induced inflammation, ameliorate pulmonary oxygenation, and may be conducive to a decreased occurrence of postoperative complications and better prognosis. However, the results should be prudently interpreted due to the evidence of heterogeneity and the limited number of studies.
Collapse
Affiliation(s)
- Yun‐Xiao Bai
- College of AnesthesiologySouthern Medical UniversityGuangzhouChina
| | - Jie‐Han Zhang
- The First Clinical Medical CollegeSouthern Medical UniversityGuangzhouChina
| | - Bing‐Cheng Zhao
- Department of Anesthesiology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ke‐Xuan Liu
- Department of Anesthesiology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yao‐Wu Bai
- Department of AnesthesiologyTangshan Maternity and Child Health Care HospitalTangshanChina
| |
Collapse
|
8
|
A Peptide Inhibitor of Peroxiredoxin 6 Phospholipase A 2 Activity Significantly Protects against Lung Injury in a Mouse Model of Ventilator Induced Lung Injury (VILI). Antioxidants (Basel) 2021; 10:antiox10060925. [PMID: 34200443 PMCID: PMC8226847 DOI: 10.3390/antiox10060925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Ventilator induced lung injury (VILI) is a lung injury syndrome associated with mechanical ventilation, most frequently for treatment of Acute Lung Injury (ALI), and generally secondary to the use of greater than physiologic tidal volumes. To reproduce this syndrome experimentally, C57Bl/6 mice were intubated and ventilated with low (4 mL/Kg body weight) or high (12 mL/Kg) tidal volume for 6 h. Lung parameters with low volume ventilation were unchanged from non-ventilated (control) mice. High tidal volume ventilation resulted in marked lung injury with increased neutrophils in the bronchoalveolar lavage fluid (BALf) indicating lung inflammation, increase in both protein in BALf and lung dry/wet weight indicating lung edema, increased lung thiobarbituric acid reactive substances (TBARS) and 8-isoprostanes indicating lung lipid peroxidation, and increased lung protein carbonyls indicating protein oxidation. Either intratracheal or intravenous pretreatment of mice with a 9 amino acid peptide called peroxiredoxin 6 inhibitor peptide-2 (PIP-2) significantly reduced all parameters of lung injury by ~50–80%. PIP-2 inhibits NADPH oxidase type 2 (NOX2) activation. We propose that PIP-2 does not affect the mechanically induced lung damage component of VILI but does significantly reduce the secondary inflammatory component.
Collapse
|
9
|
Gu XX, Xu XX, Liao HH, Wu RN, Huang WM, Cheng LX, Lu YW, Mo J. Dexmedetomidine hydrochloride inhibits hepatocyte apoptosis and inflammation by activating the lncRNA TUG1/miR-194/SIRT1 signaling pathway. J Inflamm (Lond) 2021; 18:20. [PMID: 34039367 PMCID: PMC8157629 DOI: 10.1186/s12950-021-00287-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/06/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Liver injury seriously threatens the health of people. Meanwhile, dexmedetomidine hydrochloride (DEX) can protect against liver injury. However, the mechanism by which Dex mediates the progression of liver injury remains unclear. Thus, this study aimed to investigate the function of DEX in oxygen and glucose deprivation (OGD)-treated hepatocytes and its underlying mechanism. METHODS In order to investigate the function of DEX in liver injury, WRL-68 cells were treated with OGD. Cell viability was measured by MTT assay. Cell apoptosis was detected by flow cytometry. Inflammatory cytokines levels were measured by ELISA assay. The interaction between miR-194 and TUG1 or SIRT1 was detected by dual-luciferase reporter. Gene and protein levels were measured by qPCR or western blotting. RESULTS DEX notably reversed OGD-induced inflammation and apoptosis in WRL-68 cell. Meanwhile, the effect of OGD on TUG1, SIRT1 and miR-194 expression in WRL-68 cells was reversed by DEX treatment. However, TUG1 knockdown or miR-194 overexpression reversed the function of DEX in OGD-treated WRL-68 cells. Moreover, TUG1 could promote the expression of SIRT1 by sponging miR-194. Furthermore, knockdown of TUG1 promoted OGD-induced cell growth inhibition and inflammatory responses, while miR-194 inhibitor or SIRT1 overexpression partially reversed this phenomenon. CONCLUSIONS DEX could suppress OGD-induced hepatocyte apoptosis and inflammation by mediation of TUG1/miR-194/SIRT1 axis. Therefore, this study might provide a scientific basis for the application of DEX on liver injury treatment.
Collapse
Affiliation(s)
- Xiao-Xia Gu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, No.57, South People's Avenue, Xiashan District, 524001, Zhanjiang, Guangdong Province, P.R. China
| | - Xiao-Xia Xu
- Operating room, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong Province, P.R. China
| | - Hui-Hua Liao
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, No.57, South People's Avenue, Xiashan District, 524001, Zhanjiang, Guangdong Province, P.R. China
| | - Ruo-Na Wu
- Operating room, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong Province, P.R. China
| | - Wei-Ming Huang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Guangdong Medical University, 524001, Zhanjiang, Guangdong Province, P.R. China
| | - Li-Xia Cheng
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, No.57, South People's Avenue, Xiashan District, 524001, Zhanjiang, Guangdong Province, P.R. China
| | - Yi-Wen Lu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, No.57, South People's Avenue, Xiashan District, 524001, Zhanjiang, Guangdong Province, P.R. China
| | - Jian Mo
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, No.57, South People's Avenue, Xiashan District, 524001, Zhanjiang, Guangdong Province, P.R. China.
| |
Collapse
|