1
|
Thi Pham KH, Tran MH, Nam LB, Pham PTV, Nguyen TK. Structure, Inhibitors, and Biological Function in Nervous System and Cancer of Ubiquitin-Specific Protease 46. Bioinform Biol Insights 2024; 18:11779322241285982. [PMID: 39410943 PMCID: PMC11475357 DOI: 10.1177/11779322241285982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) prevent ubiquitination by eliminating ubiquitin from their substrates. Deubiquitinating enzymes have important roles in a number of cell biology subfields that are highly relevant to diseases like neurodegeneration, cancer, autoimmune disorders, and long-term inflammation. Deubiquitinating enzymes feature a well-defined active site and, for the most part, catalytic cysteine, which makes them appealing targets for small-molecule drug development. Ubiquitin-specific protease 46 (USP46) is a member of the ubiquitin-specific protease family, the largest subfamily of DUBs. Over the past 10 years, some studies have steadily demonstrated the significance of USP46 in several biological processes, although it was identified later and early research progress was modest. Specifically, in the last few years, the carcinogenic properties of USP46 have become more apparent. In the current review, we provide a comprehensive overview of the current knowledge about USP46 including its characteristics, structure, inhibitors, function in diseases, especially in the nervous system, and the correlation of USP46 with cancers.
Collapse
Affiliation(s)
- Khanh Huyen Thi Pham
- Department of Pharmacy, School of Medicine and Pharmacy, The University of Danang, Danang City, Vietnam
- College of Pharmacy, Dongguk University, Seoul, Republic of Korea
| | - Manh Hung Tran
- Department of Pharmacy, School of Medicine and Pharmacy, The University of Danang, Danang City, Vietnam
| | - Le Ba Nam
- Faculty of Pharmacy, Thanh Do University, Hanoi City, Vietnam
| | - Phu Tran Vinh Pham
- Department of Biomedical Science, VN-UK Institute for Research and Executive Education, The University of Danang, Danang City, Vietnam
| | - Tan Khanh Nguyen
- Scientific Management Department, Dong A University, Danang City, Vietnam
| |
Collapse
|
2
|
Qiu F, Li Y, Zhou L, Wu Y, Wu Y, Fan Z, Wang Y, Qin D, Li C. Mapping and visualization of global research progress on deubiquitinases in ovarian cancer: a bibliometric analysis. Front Pharmacol 2024; 15:1445037. [PMID: 39329115 PMCID: PMC11424541 DOI: 10.3389/fphar.2024.1445037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Background Ovarian cancer is a highly aggressive malignancy with limited therapeutic options and a poor prognosis. Deubiquitinating enzymes (DUBs) have emerged as critical regulators of protein ubiquitination and proteasomal degradation, influencing various cellular processes relevant to cancer pathogenesis. In this study, the research progress between ovarian cancer and DUBs was mapped and visualized using bibliometrics, and the expression patterns and biological roles of DUBs in ovarian cancer were summarized. Methods Studies related to DUBs in ovarian cancer were extracted from the Web of Science Core Collection (WoSCC) database. VOSviewer 1.6.20, CiteSpace 6.3.R1, and R4.3.3 were used for bibliometric analysis and visualization. Results For analysis 243 articles were included in this study. The number of publications on DUBs in ovarian cancer has gradually increased each year. China, the United States, and the United Kingdom are at the center of this field of research. The Johns Hopkins University, Genentech, and Roche Holding are the main research institutions. David Komander, Zhihua Liu, and Richard Roden are the top authors in this field. The top five journals with the largest publication volumes in this field are Biochemical and Biophysical Research Communications, Journal of Biological Chemistry, PLOS One, Nature Communications, and Oncotarget. Keyword burst analysis identified five research areas: "deubiquitinating enzyme," "expression," "activation," "degradation," and "ubiquitin." In addition, we summarized the expression profiles and biological roles of DUBs in ovarian cancer, highlighting their roles in tumor initiation, growth, chemoresistance, and metastasis. Conclusion An overview of the research progress is provided in this study on DUBs in ovarian cancer over the last three decades. It offers insight into the most cited papers and authors, core journals, and identified new trends.
Collapse
Affiliation(s)
- Fang Qiu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Yuntong Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Lile Zhou
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunzhao Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, London, United Kingdom
| | - Zhilei Fan
- School of Public Health, Fudan University, Shanghai, China
| | - Yingying Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongjun Qin
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaoqun Li
- Department of Histology and Embryology, Shanghai Key Laboratory of Cell Engineering, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Gao H, Xi Z, Dai J, Xue J, Guan X, Zhao L, Chen Z, Xing F. Drug resistance mechanisms and treatment strategies mediated by Ubiquitin-Specific Proteases (USPs) in cancers: new directions and therapeutic options. Mol Cancer 2024; 23:88. [PMID: 38702734 PMCID: PMC11067278 DOI: 10.1186/s12943-024-02005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
Drug resistance represents a significant obstacle in cancer treatment, underscoring the need for the discovery of novel therapeutic targets. Ubiquitin-specific proteases (USPs), a subclass of deubiquitinating enzymes, play a pivotal role in protein deubiquitination. As scientific research advances, USPs have been recognized as key regulators of drug resistance across a spectrum of treatment modalities, including chemotherapy, targeted therapy, immunotherapy, and radiotherapy. This comprehensive review examines the complex relationship between USPs and drug resistance mechanisms, focusing on specific treatment strategies and highlighting the influence of USPs on DNA damage repair, apoptosis, characteristics of cancer stem cells, immune evasion, and other crucial biological functions. Additionally, the review highlights the potential clinical significance of USP inhibitors as a means to counter drug resistance in cancer treatment. By inhibiting particular USP, cancer cells can become more susceptible to a variety of anti-cancer drugs. The integration of USP inhibitors with current anti-cancer therapies offers a promising strategy to circumvent drug resistance. Therefore, this review emphasizes the importance of USPs as viable therapeutic targets and offers insight into fruitful directions for future research and drug development. Targeting USPs presents an effective method to combat drug resistance across various cancer types, leading to enhanced treatment strategies and better patient outcomes.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhuo Xi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jingwei Dai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xin Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Liang Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Zhiguang Chen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
4
|
Gao S, Wang Y, Xu Y, Liu L, Liu S. USP46 enhances tamoxifen resistance in breast cancer cells by stabilizing PTBP1 to facilitate glycolysis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167011. [PMID: 38176460 DOI: 10.1016/j.bbadis.2023.167011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/10/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Tamoxifen (TAM) is the primary drug for treating estrogen receptor alpha-positive (ER+) breast cancer (BC). However, resistance to TAM can develop in some patients, limiting its therapeutic efficacy. The ubiquitin-specific protease (USP) family has been associated with the development, progression, and drug resistance of various cancers. To explore the role of USPs in TAM resistance in BC, we used qRT-PCR to compare USP expression between TAM-sensitive (MCF-7 and T47D) and TAM-resistant cells (MCF-7R and T47DR). We then modulated USP46 expression and examined its impact on cell proliferation, drug resistance (via CCK-8 and EdU experiments), glycolysis levels (using a glycolysis detection assay), protein interactions (confirmed by co-IP), and protein changes (analyzed through Western blotting). Our findings revealed that USP46 was significantly overexpressed in TAM-resistant BC cells, leading to the inhibition of the ubiquitin degradation of polypyrimidine tract-binding protein 1 (PTBP1). Overexpression of PTBP1 increased the PKM2/PKM1 ratio, promoted glycolysis, and intensified TAM resistance in BC cells. Knockdown of USP46 induced downregulation of PTBP1 protein by promoting its K48-linked ubiquitination, resulting in a decreased PKM2/PKM1 ratio, reduced glycolysis, and heightened TAM sensitivity in BC cells. In conclusion, this study highlights the critical role of the USP46/PTBP1/PKM2 axis in TAM resistance in BC. Targeted therapy against USP46 may represent a promising strategy to improve the prognosis of TAM-resistant patients.
Collapse
Affiliation(s)
- Shun Gao
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuan Wang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yingkun Xu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shengchun Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
5
|
Que Z, Yang K, Wang N, Li S, Li T. Functional Role of RBP in Osteosarcoma: Regulatory Mechanism and Clinical Therapy. Anal Cell Pathol (Amst) 2023; 2023:9849719. [PMID: 37426488 PMCID: PMC10328736 DOI: 10.1155/2023/9849719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/06/2023] [Accepted: 06/11/2023] [Indexed: 07/11/2023] Open
Abstract
Malignant bone neoplasms can be represented by osteosarcoma (OS), which accounts for 36% of all sarcomas. To reduce tumor malignancy, extensive efforts have been devoted to find an ideal target from numerous candidates, among which RNA-binding proteins (RBPs) have shown their unparalleled competitiveness. With the special structure of RNA-binding domains, RBPs have the potential to establish relationships with RNAs or small molecules and are considered regulators of different sections of RNA processes, including splicing, transport, translation, and degradation of RNAs. RBPs have considerable significant roles in various cancers, and experiments revealed that there was a strong association of RBPs with tumorigenesis and tumor cell progression. Regarding OS, RBPs are a new orientation, but achievements in hand are noteworthy. Higher or lower expression of RBPs was first found in tumor cells compared to normal tissue. By binding to different molecules, RBPs are capable of influencing tumor cell phenotypes through different signaling pathways or other axes, and researches on medical treatment have been largely inspired. Exploring the prognostic and therapeutic values of RBPs in OS is a hotspot where diverse avenues on regulating RBPs have achieved dramatical effects. In this review, we briefly summarize the contribution of RBPs and their binding molecules to OS oncogenicity and generally introduce distinctive RBPs as samples. Moreover, we focus on the attempts to differentiate RBP's opposite functions in predicting prognosis and collect possible strategies for treatment. Our review provides forwards insight into improving the understanding of OS and suggests RBPs as potential biomarkers for therapies.
Collapse
Affiliation(s)
- Ziyuan Que
- Yangzhou University Medical College, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Kang Yang
- Department of Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Nan Wang
- Yangzhou University Medical College, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Shuying Li
- Yangzhou University Medical College, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Tao Li
- Department of Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| |
Collapse
|
6
|
Zhou W, Jie Q, Pan T, Shi J, Jiang T, Zhang Y, Ding N, Xu J, Ma Y, Li Y. Single-cell RNA binding protein regulatory network analyses reveal oncogenic HNRNPK-MYC signalling pathway in cancer. Commun Biol 2023; 6:82. [PMID: 36681772 PMCID: PMC9867709 DOI: 10.1038/s42003-023-04457-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
RNA-binding proteins (RBPs) are key players of gene expression and perturbations of RBP-RNA regulatory network have been observed in various cancer types. Here, we propose a computational method, RBPreg, to identify the RBP regulators by integration of single cell RNA-Seq (N = 233,591) and RBP binding data. Pan-cancer analyses suggest that RBP regulators exhibit cancer and cell specificity and perturbations of RBP regulatory network are involved in cancer hallmark-related functions. We prioritize an oncogenic RBP-HNRNPK, which is highly expressed in tumors and associated with poor prognosis of patients. Functional assays performed in cancer cells reveal that HNRNPK promotes cancer cell proliferation, migration, and invasion in vitro and in vivo. Mechanistic investigations further demonstrate that HNRNPK promotes tumorigenesis and progression by directly binding to MYC and perturbed the MYC targets pathway in lung cancer. Our results provide a valuable resource for characterizing RBP regulatory networks in cancer, yielding potential biomarkers for precision medicine.
Collapse
Affiliation(s)
- Weiwei Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Qiuling Jie
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Clinical Research Center for Thalassemia, Reproductive Medical Center, National Center for International Research "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease", The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199, China
| | - Tao Pan
- College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 571199, China
| | - Jingyi Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Tiantongfei Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Ya Zhang
- College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 571199, China
| | - Na Ding
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Clinical Research Center for Thalassemia, Reproductive Medical Center, National Center for International Research "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease", The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199, China.
| | - Yongsheng Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Clinical Research Center for Thalassemia, Reproductive Medical Center, National Center for International Research "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease", The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199, China.
- College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
7
|
Wang L, Zhao H, Fang Y, Yuan B, Guo Y, Wang W. LncRNA CARMN inhibits cervical cancer cell growth via the miR-92a-3p/BTG2/Wnt/β-catenin axis. Physiol Genomics 2023; 55:1-15. [PMID: 36314369 DOI: 10.1152/physiolgenomics.00088.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Long noncoding RNA (lncRNA) cardiac mesoderm enhancer-associated noncoding RNA (CARMN) is a newly discovered tumor-suppressor lncRNA in cancers. However, its role in cervical cancer (CC) remains elusive. This study was conducted to analyze the molecular mechanism of CARMN in CC cell growth and provide a novel theoretical basis for CC treatment. RT-qPCR and clinical analysis revealed that CARMN and B-cell translocation gene 2 (BTG2) were downregulated, whereas miR-92a-3p was upregulated in CC tissues and cells and their expressions were correlated with clinicopathological characteristics and prognosis. MTT assay, flow cytometry, and Transwell assays revealed that CARMN overexpression reduced proliferation, migration, and invasion and increased apoptosis rate in CC cells. Mechanically, CARMN repressed miR-92a-3p to promote BTG2 transcription. Functional rescue assays revealed that miR-92a-3p overexpression or BTG2 downregulation reversed the inhibitory role of CARMN overexpression in CC cell growth. Western blot analysis elicited that Wnt3a and β-catenin were elevated in CC cells and CARMN blocked the Wnt/β-catenin signaling pathway via the miR-92a-3p/BTG2 axis. Overall, our findings demonstrated that CARMN repressed miR-92a-3p to upregulate BTG2 transcription and then blocked the Wnt/β-catenin signaling pathway, thereby suppressing CC cell growth.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengshou, China
| | - Hu Zhao
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengshou, China
| | - Ying Fang
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengshou, China
| | - Bo Yuan
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengshou, China
| | - Yilin Guo
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengshou, China
| | - Wuliang Wang
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengshou, China
| |
Collapse
|
8
|
Liu Q, Liu Y, Li Y, Hong Z, Li S, Liu C. PUM2 aggravates the neuroinflammation and brain damage induced by ischemia-reperfusion through the SLC7A11-dependent inhibition of ferroptosis via suppressing the SIRT1. Mol Cell Biochem 2023; 478:609-620. [PMID: 35997855 PMCID: PMC9938031 DOI: 10.1007/s11010-022-04534-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/30/2022] [Indexed: 12/18/2022]
Abstract
Cerebral ischemia-reperfusion (I/R) injury occurs due to the restoration of blood perfusion after cerebral ischemia, which results in the damage of the brain structures and functions. Unfortunately, currently there are no effective methods for preventing and treating it. The pumilio 2 (PUM2) is a type of RBPs that has been reported to participate in the progression of several diseases. Ferroptosis is reported to be involved in I/R injury. Whether PUM2 modulated I/R injury through regulating ferroptosis remains to be elucidated. The cerebral I/R models including animal middle cerebral artery occlusion/reperfusion (MCAO/R) model and oxygen-glucose deprivation/reperfusion (OGD/R)-induced cortical neuron injury cell model of were established and, respectively. RT-qPCR was applied for evaluating PUM2, SIRT1 and SLC7A11 expression. Western blot was employed for measuring the protein expression levels. The viability of cortical neurons was tested by MTT assay. The histological damage of the brain tissues was assessed by H&E staining. The level of PUM2 was boosted in both the brain tissues of the MCAO model and OGD/R-induced cortical neuron injury model. Silence of PUM2 alleviated MCAO-induced brain injury and decreased the death of PC12 cell exposed to OGD/R. PUM2 also aggravated the accumulation of free iron in MCAO mice and OGD/R-induced cortical neuron injury model. In addition, PUM2 suppressed SLC7A11 via inhibiting expression of SIRT1. Rescue assays unveiled that downregulation of SLC7A11 reversed PUM2 mediated neuroinflammation and brain damage induced by I/R. PUM2 aggravated I/R-induced neuroinflammation and brain damage through the SLC7A11-dependent inhibition of ferroptosis by suppressing SIRT1, highlighting the role of PUM2 in preventing or treating cerebral I/R injury.
Collapse
Affiliation(s)
- Qingran Liu
- Department of Neurovascular Intervention, Cangzhou Central Hospital, No. 16, Xinhua West Road, Cangzhou, 061000, Hebei, China.
| | - Yongchang Liu
- Department of Neurovascular Intervention, Cangzhou Central Hospital, No. 16, Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Yan Li
- Department of Neurovascular Intervention, Cangzhou Central Hospital, No. 16, Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Zhen Hong
- Department of Neurovascular Intervention, Cangzhou Central Hospital, No. 16, Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Shaoquan Li
- Department of Neurovascular Intervention, Cangzhou Central Hospital, No. 16, Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Chen Liu
- Department of Neurosurgery, Cangzhou Central Hospital, No.16, Xinhua West Road, Hebei, 061000, Cangzhou, China
| |
Collapse
|
9
|
Wen M, Xu H, Peng H, Sheng Y, Yang W, Yan J. MiR-27a-3p targets USP46 to inhibit the cell proliferation of hepatocellular carcinoma. Chem Biol Drug Des 2022; 100:280-289. [PMID: 35637630 DOI: 10.1111/cbdd.14063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/05/2022] [Accepted: 05/08/2022] [Indexed: 12/24/2022]
Abstract
Micro-RNAs are involved in the occurrence and development of hepatocellular carcinoma (HCC) as potential therapeutic targets for HCC. In this study, we found that miR-27a-3p was highly expressed in HCC, which was associated with lower survival rates of HCC patients. In vivo and in vitro functional experiments confirmed that over-expression or knock-down miR-27a-3p could significantly affect the proliferation ability of HCCLM3 and Huh-7, two HCC cell lines. Ubiquitin-specific protease 46 (USP46) was confirmed as the key target gene of miR-27a-3p in HCC via RNA-seq, quantitative polymerase chain reaction, Western blotting, and luciferase report. When knocking down USP46, the proliferation activity of HCC cells was significantly enhanced, while it was significantly inhibited after over-expressing USP4. Above results suggest that the abnormally over-expressed miR-27a-3p in liver promotes the proliferation of cancer cells and accelerates the development of HCC by targeting inhibition the expression of USP46. Targeting miR-27a-3p may be an effective strategy for prevention and treatment of HCC.
Collapse
Affiliation(s)
- Minghua Wen
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hongyan Xu
- Department of Pathology, The Affiliated Children's Hospital of Nanchang University, Nanchang, China
| | - Hong Peng
- Department of Colorectal Surgery, The 908th Hospital of Chinese People's Liberation Army Joint, Nanchang, China
| | - Yanling Sheng
- Department of Ultrasound, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Wenlong Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinlong Yan
- Department of general surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|