1
|
Zhou Z, Xie Y, Wei Q, Zhang X, Xu Z. Revisiting the role of MicroRNAs in the pathogenesis of idiopathic pulmonary fibrosis. Front Cell Dev Biol 2024; 12:1470875. [PMID: 39479511 PMCID: PMC11521927 DOI: 10.3389/fcell.2024.1470875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a prevalent chronic pulmonary fibrosis disease characterized by alveolar epithelial cell damage, fibroblast proliferation and activation, excessive extracellular matrix deposition, and abnormal epithelial-mesenchymal transition (EMT), resulting in tissue remodeling and irreversible structural distortion. The mortality rate of IPF is very high, with a median survival time of 2-3 years after diagnosis. The exact cause of IPF remains unknown, but increasing evidence supports the central role of epigenetic changes, particularly microRNA (miRNA), in IPF. Approximately 10% of miRNAs in IPF lung tissue exhibit differential expression compared to normal lung tissue. Diverse miRNA phenotypes exert either a pro-fibrotic or anti-fibrotic influence on the progression of IPF. In the context of IPF, epigenetic factors such as DNA methylation and long non-coding RNAs (lncRNAs) regulate differentially expressed miRNAs, which in turn modulate various signaling pathways implicated in this process, including transforming growth factor-β1 (TGF-β1)/Smad, mitogen-activated protein kinase (MAPK), and phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) pathways. Therefore, this review presents the epidemiology of IPF, discusses the multifaceted regulatory roles of miRNAs in IPF, and explores the impact of miRNAs on IPF through various pathways, particularly the TGF-β1/Smad pathway and its constituent structures. Consequently, we investigate the potential for targeting miRNAs as a treatment for IPF, thereby contributing to advancements in IPF research.
Collapse
Affiliation(s)
| | | | | | | | - Zhihao Xu
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| |
Collapse
|
2
|
Wibbe N, Steinbacher T, Tellkamp F, Beckmann N, Brinkmann F, Stecher M, Gerke V, Niessen CM, Ebnet K. RhoGDI1 regulates cell-cell junctions in polarized epithelial cells. Front Cell Dev Biol 2024; 12:1279723. [PMID: 39086660 PMCID: PMC11288927 DOI: 10.3389/fcell.2024.1279723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Cell-cell contact formation of polarized epithelial cells is a multi-step process that involves the co-ordinated activities of Rho family small GTPases. Consistent with the central role of Rho GTPases, a number of Rho guanine nucleotide exchange factors (GEFs) and Rho GTPase-activating proteins (GAPs) have been identified at cell-cell junctions at various stages of junction maturation. As opposed to RhoGEFs and RhoGAPs, the role of Rho GDP dissociation inhibitors (GDIs) during cell-cell contact formation is poorly understood. Here, we have analyzed the role of RhoGDI1/ARHGDIA, a member of the RhoGDI family, during cell-cell contact formation of polarized epithelial cells. Depletion of RhoGDI1 delays the development of linear cell-cell junctions and the formation of barrier-forming tight junctions. In addition, RhoGDI1 depletion impairs the ability of cells to stop migration in response to cell collision and increases the migration velocity of collectively migrating cells. We also find that the cell adhesion receptor JAM-A promotes the recruitment of RhoGDI1 to cell-cell contacts. Our findings implicate RhoGDI1 in various processes involving the dynamic reorganization of cell-cell junctions.
Collapse
Affiliation(s)
- Nicolina Wibbe
- Institute-Associated Research Group “Cell Adhesion and Cell Polarity”, Institute of Medical Biochemistry, Zentrum für Molekularbiologie der Entzündung, University Münster, Münster, Germany
| | - Tim Steinbacher
- Institute-Associated Research Group “Cell Adhesion and Cell Polarity”, Institute of Medical Biochemistry, Zentrum für Molekularbiologie der Entzündung, University Münster, Münster, Germany
| | - Frederik Tellkamp
- Department Cell Biology of the Skin, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Niklas Beckmann
- Institute-Associated Research Group “Cell Adhesion and Cell Polarity”, Institute of Medical Biochemistry, Zentrum für Molekularbiologie der Entzündung, University Münster, Münster, Germany
| | - Frauke Brinkmann
- Institute of Medical Biochemistry, ZMBE, University Münster, Münster, Germany
| | - Manuel Stecher
- Institute of Medical Biochemistry, ZMBE, University Münster, Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, ZMBE, University Münster, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster, Münster, Germany
| | - Carien M. Niessen
- Department Cell Biology of the Skin, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Department Cell Biology of the Skin, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Klaus Ebnet
- Institute-Associated Research Group “Cell Adhesion and Cell Polarity”, Institute of Medical Biochemistry, Zentrum für Molekularbiologie der Entzündung, University Münster, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster, Münster, Germany
| |
Collapse
|
3
|
Soltaninezhad P, Arab F, Mohtasham N, FakherBaheri M, Kavishahi NN, Aghaee-Bakhtiari SH, Zare-Mahmoodabadi R, Pakfetrat A, Taban KI, Mohajertehran F. Unveiling the Potential of Serum MiR-483-5p: A Promising Diagnostic and Prognostic Biomarker in OLP and OSCC Patients by In silico Analysis of Differential Gene Expression. Curr Pharm Des 2024; 30:310-322. [PMID: 38310566 DOI: 10.2174/0113816128276149240108163407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) and oral lichen planus (OLP) are two separate conditions affecting the mouth and result in varying clinical outcomes and levels of malignancy. Achieving early diagnosis and effective therapy planning requires the identification of reliable diagnostic biomarkers for these disorders. MicroRNAs (miRNAs) have recently received attention as powerful biomarkers for various illnesses, including cancer. In particular, miR-483-5p is a promising diagnostic and prognostic biomarker in various cancers. Therefore, this study aimed to investigate the role of serum miR-483-5p in the diagnosis and prognosis of OLP and OSCC patients by in silico analysis of differential gene expression. METHODS GSE23558 and GSE52130 data sets were selected, and differential gene expression analysis was performed using microarray data from GSE52130 and GSE23558. The analysis focused on comparing OLP and OSCC samples with normal samples. The genes intersected through the differential gene expression analysis were then extracted to determine the overlapping genes among the upregulated or downregulated DEGs. The downregulated genes among the DEGs were subsequently imported into the miRWalk database to search for potential target genes of miRNA 483-5p that lacked validation. To gain insight into the biological pathways associated with the DEGs, we conducted pathway analysis utilizing tools, such as Enrichr. Additionally, the cellular components associated with these DEGs were investigated by analyzing the String database. On the other hand, blood serum samples were collected from 35 OSCC patients, 34 OLP patients, and 34 healthy volunteers. The expression level of miR-483-5p was determined using quantitative reverse transcription polymerase chain reaction (RT-qPCR). The Kruskal-Wallis test was utilized to investigate the considerable correlation. Moreover, this study explored the prognostic value of miR-483-5p through its association with clinicopathological parameters in OSCC patients. RESULTS The results showed that serum expression of miR-483-5p was considerably higher in OSCC patients compared to OLP patients and healthy controls (p 0.0001) and that this difference was statistically significant. Furthermore, elevated miR-483-5p expression was associated with tumor size, lymph node metastasis, and stage of tumor nodal metastasis in OSCC patients (p 0.001, p 0.038, and p 0.0001, respectively). In silico analysis found 71 upregulated genes at the intersection of upregulated DEGs and 44 downregulated genes at the intersection of downregulated DEGs, offering insight into the potential underlying mechanisms of miR-483-5p's engagement in OSCC and OLP. The majority of these DEGs were found to be involved in autophagy pathways, but DEGs involved in the histidine metabolism pathway showed significant results. Most of these DEGs were located in the extracellular region. After screening for downregulated genes that were invalidated, miRNA 483-5p had 7 target genes. CONCLUSION This study demonstrates the potential of serum miR-483-5p as a promising diagnostic and prognostic biomarker in OSCC and OLP patients. Its upregulation in OSCC patients and its association with advanced tumor stage and potential metastasis suggest the involvement of miR-483-5p in critical signaling pathways involved in cell proliferation, apoptosis, and cell cycle regulation, making it a reliable indicator of disease progression. Nevertheless, additional experimental studies are essential to validate these findings and establish a foundation for the advancement of targeted therapies and personalized treatment approaches.
Collapse
MESH Headings
- Humans
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Carcinoma, Squamous Cell/diagnosis
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/blood
- Carcinoma, Squamous Cell/pathology
- Computer Simulation
- Gene Expression Regulation, Neoplastic
- Lichen Planus, Oral/genetics
- Lichen Planus, Oral/blood
- Lichen Planus, Oral/diagnosis
- MicroRNAs/blood
- MicroRNAs/genetics
- Mouth Neoplasms/genetics
- Mouth Neoplasms/blood
- Mouth Neoplasms/diagnosis
- Mouth Neoplasms/pathology
- Prognosis
Collapse
Affiliation(s)
| | - Fatemeh Arab
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nooshin Mohtasham
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadhossein FakherBaheri
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nima Nikbin Kavishahi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Reza Zare-Mahmoodabadi
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atessa Pakfetrat
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Izadi Taban
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farnaz Mohajertehran
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
He CH, Lv JM, Khan GJ, Duan H, Wang W, Zhai KF, Zou GA, Aisa HA. Total flavonoid extract from Dracocephalum moldavica L. improves pulmonary fibrosis by reducing inflammation and inhibiting the hedgehog signaling pathway. Phytother Res 2023. [PMID: 36794391 DOI: 10.1002/ptr.7771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/10/2022] [Accepted: 12/11/2022] [Indexed: 02/17/2023]
Abstract
Dracocephalum Moldavica L. is a traditional herb for improving pharynx and relieving cough. However, the effect on pulmonary fibrosis is not clear. In this study, we explored the impact and molecular mechanism of total flavonoid extract from Dracocephalum moldavica L. (TFDM) on bleomycin-induced pulmonary fibrosis mouse model. Lung function testing, lung inflammation and fibrosis, and the related factors were detected by the lung function analysis system, HE and Masson staining, ELISA, respectively. The expression of proteins was studied through Western Blot, immunohistochemistry, and immunofluorescence while the expression of genes was analyzed by RT-PCR. The results showed that TFDM significantly improved lung function in mice, reduced the content of inflammatory factors, thereby reducing the inflammation. It was found that expression of collagen type I, fibronectin, and α-smooth muscle actin was significantly decreased by TFDM. The results further showed that TFDM interferes with hedgehog signaling pathway by decreasing the expression of Shh, Ptch1, and SMO proteins and thereby inhibiting the generation of downstream target gene Gli1 and thus improving pulmonary fibrosis. Conclusively, these findings suggest that TFDM improve pulmonary fibrosis by reducing inflammation and inhibition of the hedgehog signaling pathway.
Collapse
Affiliation(s)
- Cheng-Hui He
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
- Pharmaceutical Preparation Laboratory, Xinjiang Medicine Research Institute, Urumqi, China
- Xinjiang Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Min Lv
- Pharmaceutical Preparation Laboratory, Xinjiang Medicine Research Institute, Urumqi, China
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, School of Biological and Food Engineering, Suzhou University, Suzhou, China
| | - Ghulam Jilany Khan
- Department of Pharmacology and therapeutics, Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Hong Duan
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, School of Biological and Food Engineering, Suzhou University, Suzhou, China
| | - Wei Wang
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, School of Biological and Food Engineering, Suzhou University, Suzhou, China
| | - Ke-Feng Zhai
- Pharmaceutical Preparation Laboratory, Xinjiang Medicine Research Institute, Urumqi, China
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, School of Biological and Food Engineering, Suzhou University, Suzhou, China
| | - Guo-An Zou
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
5
|
Bu X, Ding W, Guo S, Wang Y, Feng J, Wang P, Chen Y, Ge Z. Differential expression of microRNAs in bile duct obstruction-induced liver fibrosis and the identification of a novel liver fibrosis marker miR-1295b-3p. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:22. [PMID: 36760242 PMCID: PMC9906198 DOI: 10.21037/atm-22-6416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Background Bile duct obstruction-induced liver fibrosis is mainly caused by cholestatic liver injury which stimulates liver cell inflammation and damages the liver structure, causing liver fibrosis. The differentially expressed microRNAs and the potential target genes and signal pathways that are involved in bile duct obstruction-induced liver fibrosis remain unclear. We examined the differential expression of microRNAs and the target genes in the liver tissues of patients with liver fibrosis. Methods High-throughput sequencing was used to detect the total microRNAs and identify the differentially expressed microRNAs. The topGO software was used to perform the Gene Ontology (GO) function enrichment analysis. The KOBAS software was used to analyze the associated biochemical metabolic pathways and signal transduction pathways. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analyses were conducted to detect the expression of miR-1295b-3p, alpha smooth muscle actin (α-SMA), Bcl-2, caspase-3, Bax, and β-arrestin1 (ARRB1). Cell viability and apoptosis were detected by the Cell Counting Kit 8 (CCK-8) assay and flow cytometry. The targeting relationship between ARRB1 and miR-1295b-3p was verified using luciferase reporter assays. Results A total of 44 microRNAs were found to be differentially expressed, including 18 upregulated and 26 downregulated microRNAs. Five downregulated microRNAs, including miR-483-3p, miR-5589-3p, miR-1271-5p, miR-1295b-3p, and miR-7977. GO functional enrichment analysis of the target genes revealed the molecular functions, cellular location, and biological processes involved. Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathway analysis showed that the target genes are mainly involved in metabolic pathways. In addition, the results of qRT-PCR revealed that miR-1295b-3p was downregulated in human fibrotic liver tissues and TGF-β1-activated LX-2 cells (human hepatic stellate cell line). Overexpression of miR-1295b-3p alleviated liver fibrosis, decreased the α-SMA levels, and inhibited proliferation and enhanced apoptosis in LX-2 cells. Dual-luciferase assays revealed that miR-1295b-3p suppressed ARRB1 expression by binding directly to its 3' untranslated region (UTR). Conclusions This study identified the differentially expressed microRNAs in bile duct obstruction-induced liver fibrosis and revealed the potential target genes and signal pathways involved. Overexpression of miR-1295b-3p alleviated liver fibrosis, however, the specific targeting mechanisms warrant further clarification. Therefore, overexpressing miR-1295b-3p may be a potential treatment method for liver fibrosis.
Collapse
Affiliation(s)
- Xiangyang Bu
- Department of Hepatobiliary-Pancreatic Surgery, Chinese PLA General Hospital, Beijing, China;,Department of Hepatobiliary-Pancreatic Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Weijie Ding
- Department of Hepatobiliary-Pancreatic Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Shanyuan Guo
- Department of Infectious Disease, Qingdao Central Hospital, Affiliated to Qingdao University, Qingdao, China
| | - Yongxin Wang
- Department of Hepatobiliary-Pancreatic Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Jian Feng
- Department of Hepatobiliary-Pancreatic Surgery, Chinese PLA General Hospital, Beijing, China
| | - Pengfei Wang
- Department of Hepatobiliary-Pancreatic Surgery, Chinese PLA General Hospital, Beijing, China
| | - Yongliang Chen
- Department of Hepatobiliary-Pancreatic Surgery, Chinese PLA General Hospital, Beijing, China
| | - Zhong Ge
- Department of Hepatobiliary-Pancreatic Surgery, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|
6
|
Zhu W, Wang Y, Liu C, Wu Y, Li Y, Wang Y. Connective tissue disease-related interstitial lung disease is alleviated by tripterine through inhibition of the PI3K/Akt, apoptosis, and TNF-α signalling pathways. Front Pharmacol 2022; 13:990760. [DOI: 10.3389/fphar.2022.990760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
Background: Interstitial lung disease (ILD) is the major cause of morbidity and mortality in patients with various rheumatic diseases. However, more interventions need to be sought. Tripterine, an extract of Tripterygium wilfordii Hook. F, has been widely studied for its powerful anti-inflammatory effect. However, its mechanism of action in treating connective tissue disease-related (CTD)-ILD remains unclear.Purpose: To investigate the mechanism of tripterine in CTD-ILD treatment by combining network pharmacology and an in vivo experiment.Methods: The related targets of tripterine were obtained after searching the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform, Comparative Toxicogenomics Database, GeneCards, Search Tool for Interacting Chemicals database, and SymMap database. Following this, Online Mendelian Inheritance in Man, GeneCards, Genebank, and DrugBank were used to screen the targets of CTD-ILD. A target-signalling pathway network was constructed using Cytoscape. Additionally, topological analysis was performed. Protein interaction analysis was performed using the STRING online analysis platform. Following this, Gene Ontology (GO) and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) signalling pathway enrichment analyses were performed. Subsequently, the molecular docking between tripterine and the core targets was verified. Finally, experimental verification was performed in bleomycin-induced model mice.Results: A total of 134 common targets and 10 core targets of tripterine, including signal transducer and activator of transcription 3, tumour necrosis factor (TNF), v-rel avian reticuloendotheliosis viral oncogene homolog A, protein kinase B (Akt) α (Akt1), mitogen-activated protein kinase (MAPK) 1, Jun transcription factor family, tumour protein 53, MAPK3, nuclear factor kappa B subunit 1, and caspase 8, were obtained. GO enrichment analysis revealed that, while treating CTD-ILD, tripterine was mainly involved in cytokine receptor binding, receptor-ligand activity, signal receptor activation, cytokine activity, protein ubiquitination, deoxyribonucleic acid transcriptase activity, etc. The KEGG pathway enrichment analysis revealed that the most significant signalling pathways were multiple viral infections and the phosphatidylinositol-3-kinase (PI3K)/Akt, TNF, and apoptosis signalling pathways. Molecular docking results revealed that tripterine had good docking activity with the core targets. Experimental studies also demonstrated that tripterine could inhibit the activation of PI3K/Akt, apoptosis, and TNF-α signalling pathways in lung tissue and significantly improve lung pathology and collagen deposition in the model mice.Conclusions: This study preliminarily revealed the potential molecular biological mechanism of tripterine while treating CTD-ILD might be related to inhibiting the PI3K/Akt, apoptosis, and TNF-α signalling pathways. Tripterygium wilfordii Hook. F. and its extract could be used clinically for treating CTD-ILD.
Collapse
|
7
|
Prinz C, Fehring L, Frese R. MicroRNAs as Indicators of Malignancy in Pancreatic Ductal Adenocarcinoma (PDAC) and Cystic Pancreatic Lesions. Cells 2022; 11:cells11152374. [PMID: 35954223 PMCID: PMC9368175 DOI: 10.3390/cells11152374] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 12/04/2022] Open
Abstract
The dysregulation of microRNAs has recently been associated with cancer development and progression in pancreatic ductal adenocarcinoma (PDAC) and cystic pancreatic lesions. In solid pancreatic tumor tissue, the dysregulation of miR-146, miR-196a/b, miR-198, miR-217, miR-409, and miR-490, as well as miR-1290 has been investigated in tumor biopsies of patients with PDAC and was reported to predict cancer presence. However, the value of the predictive biomarkers may further be increased during clinical conditions suggesting cancer development such as hyperinsulinemia or onset of diabetes. In this specific context, the dysregulation of miR-486 and miR-196 in tumors has been observed in the tumor tissue of PDAC patients with newly diagnosed diabetes mellitus. Moreover, miR-1256 is dysregulated in pancreatic cancer, possibly due to the interaction with long non-coding RNA molecules that seem to affect cell-cycle control and diabetes manifestation in PDAC patients, and, thus, these three markers may be of special or “sentinel value”. In blood samples, Next-generation sequencing (NGS) has also identified a set of microRNAs (miR-20a, miR-31-5p, miR-24, miR-25, miR-99a, miR-185, and miR-191) that seem to differentiate patients with pancreatic cancer remarkably from healthy controls, but limited data exist in this context regarding the prediction of cancer presences and outcomes. In contrast to solid pancreatic tumors, in cystic pancreatic cancer lesions, as well as premalignant lesions (such as intraductal papillary neoplasia (IPMN) or mucinous-cystic adenomatous cysts (MCAC)), the dysregulation of a completely different expression panel of miR-31-5p, miR-483-5p, miR-99a-5p, and miR-375 has been found to be of high clinical value in differentiating benign from malignant lesions. Interestingly, signal transduction pathways associated with miR-dysregulation seem to be entirely different in patients with pancreatic cysts when compared to PDAC. Overall, the determination of these different dysregulation “panels” in solid tumors, pancreatic cysts, obtained via fine-needle aspirate biopsies and/or in blood samples at the onset or during the treatment of pancreatic diseases, seems to be a reasonable candidate approach for predicting cancer presence, cancer development, and even therapy responses.
Collapse
|