1
|
Jing MR, Liang XY, Zhang YX, Zhu YW, Wang Y, Chu T, Jin YQ, Zhang CH, Zhu SG, Zhang CJ, Wang QM, Feng ZF, Ji XY, Wu DD. Role of hydrogen sulfide-microRNA crosstalk in health and disease. Nitric Oxide 2024; 152:19-30. [PMID: 39260562 DOI: 10.1016/j.niox.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/15/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
The mutual regulation between hydrogen sulfide (H2S) and microRNA (miRNA) is involved in the development of many diseases, including cancer, cardiovascular disease, inflammatory disease, and high-risk pregnancy. Abnormal expressions of endogenous H2S-producing enzyme and miRNA in tissues and cells often indicate the occurrence of diseases, so the maintenance of their normal levels in the body can mitigate damages caused by various factors. Many studies have found that H2S can promote the migration, invasion, and proliferation of cancer cells by regulating the expression of miRNA, while many H2S donors can inhibit cancer progression by interfering with the proliferation, apoptosis, cell cycle, metastasis, and angiogenesis of cancer cells. Furthermore, the mutual regulation between H2S and miRNA can also prevent cell injury in cardiovascular disease and inflammatory disease through anti-inflammation, anti-oxidation, anti-apoptosis, and pro-autophagy. In addition, H2S can promote angiogenesis and relieve vasoconstriction by regulating the expression of miRNA, thereby improving fetal growth in high-risk pregnancy. In this review, we discuss the mechanism of mutual regulation between H2S and miRNA in various diseases, which may provide reliable therapeutic targets for these diseases.
Collapse
Affiliation(s)
- Mi-Rong Jing
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Chuan-Hao Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Shuai-Gang Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Chao-Jing Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Qi-Meng Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Zhi-Fen Feng
- School of Nursing and Health, Henan University, Kaifeng, Henan, 475004, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
2
|
Sun X, Jia D, Yu Y. Down regulation of RBM10 promotes proliferation and metastasis via miR-224-5p/RBM10/p53 feedback loop in lung adenocarcinoma. Heliyon 2024; 10:e35001. [PMID: 39144991 PMCID: PMC11320444 DOI: 10.1016/j.heliyon.2024.e35001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/21/2024] [Accepted: 07/21/2024] [Indexed: 08/16/2024] Open
Abstract
RNA-binding motif protein 10 (RBM10) has a tumor suppressor role in multiple cancers. Combining Oncomine database results with tissue samples, Western blot analysis showed that RBM10 was significantly lower in lung adenocarcinoma (LUAD) than in adjacent normal tissues. Moreover, KM analysis revealed that the group with higher RBM10 expression in LUAD correlated with better overall survival (OS). Luciferase reporter assay revealed that an important tumor-promotive miRNA, miR-224-5p, was directly bound to the 3'UTR of RBM10, resulting in inhibition of RBM10 expression, and promoted LUAD progression both in vitro and in vivo. Mechanistically, we found that miR-224-5p directly targeted RBM10 to inhibit p53 expression during LUAD progression. Meanwhile, p53 affected RBM10 expression through p53/miR-224-5p axis. Our study identified RBM10 as a key tumor suppressor in the proliferation and metastasis of LUAD. The findings provide a novel mechanism involving a feedback loop of miR-224-5p/RBM10/p53 regulated tumor progression in LUAD, which may help with the design of more effective LUAD treatments.
Collapse
Affiliation(s)
- Xi Sun
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dexin Jia
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yan Yu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
3
|
Jasim SA, Al-Hawary SIS, Kaur I, Ahmad I, Hjazi A, Petkov I, Ali SHJ, Redhee AH, Shuhata Alubiady MH, Al-Ani AM. Critical role of exosome, exosomal non-coding RNAs and non-coding RNAs in head and neck cancer angiogenesis. Pathol Res Pract 2024; 256:155238. [PMID: 38493725 DOI: 10.1016/j.prp.2024.155238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/13/2024] [Accepted: 03/02/2024] [Indexed: 03/19/2024]
Abstract
Head and neck cancer (HNC) refers to the epithelial malignancies of the upper aerodigestive tract. HNCs have a constant yet slow-growing rate with an unsatisfactory overall survival rate globally. The development of new blood vessels from existing blood conduits is regarded as angiogenesis, which is implicated in the growth, progression, and metastasis of cancer. Aberrant angiogenesis is a known contributor to human cancer progression. Representing a promising therapeutic target, the blockade of angiogenesis aids in the reduction of the tumor cells oxygen and nutrient supplies. Despite the promise, the association of existing anti-angiogenic approaches with severe side effects, elevated cancer regrowth rates, and limited survival advantages is incontrovertible. Exosomes appear to have an essential contribution to the support of vascular proliferation, the regulation of tumor growth, tumor invasion, and metastasis, as they are a key mediator of information transfer between cells. In the exocrine region, various types of noncoding RNAs (ncRNAs) identified to be enriched and stable and contribute to the occurrence and progression of cancer. Mounting evidence suggest that exosome-derived ncRNAs are implicated in tumor angiogenesis. In this review, the characteristics of angiogenesis, particularly in HNC, and the impact of ncRNAs on HNC angiogenesis will be outlined. Besides, we aim to provide an insight on the regulatory role of exosomes and exosome-derived ncRNAs in angiogenesis in different types of HNC.
Collapse
Affiliation(s)
| | | | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Iliya Petkov
- Medical University - Sofia, Department of Neurology, Sofia, Bulgaria
| | - Saad Hayif Jasim Ali
- Department of medical laboratory, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Huseen Redhee
- Medical laboratory technique college, the Islamic University, Najaf, Iraq; Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| | | | | |
Collapse
|
4
|
Meng T, Liu X, Zhang J, Li S, He W, Li W. MicroRNA-181b attenuates lipopolysaccharide-induced inflammatory responses in pulpitis via the PLAU/AKT/NF-κB axis. Int Immunopharmacol 2024; 127:111451. [PMID: 38154211 DOI: 10.1016/j.intimp.2023.111451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/17/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
OBJECTIVE This study aimed to investigate the role and underlying mechanisms of microRNA (miRNA)-181b in the inflammatory response in pulpitis. METHODS Quantitative reverse-transcription polymerase chain reaction (qRT-PCR), fluorescence in situ hybridization (FISH), and immunofluorescence techniques were used to determine the miRNA-181b and urokinase-type plasminogen activator (PLAU) expression levels in inflamed human dental pulp tissues (HDPTs) and lipopolysaccharide (LPS)-stimulated human dental pulp cells (hDPCs). The targets of miRNA-181b were identified and confirmed using a bioinformatics analysis, RNA sequencing, and dual-luciferase gene reporter assays. The effect of miRNA-181b or PLAU on proinflammatory cytokine expression in hDPCs was examined using qRT-PCR and western blotting. RNA sequencing was conducted to examine the signaling pathways implicated in miRNA-181b-mediated pulpitis. Western blotting and qRT-PCR were used to determine the miRNA-181b /PLAU/AKT/NF-κB signaling axis in pulpitis. A rat pulpitis model was created to observe the histopathological changes in the dental pulp tissue after the topical application of miRNA-181b agomir. RESULTS A significant decrease in miRNA-181b and an increase in PLAU were observed in HDPTs compared to the healthy controls, and these two factors showed a negative correlation. MiRNA-181b directly targeted PLAU. The miRNA-181b inhibitor resulted in a significant upregulation of IL-1β, IL-6 and TNF-α, whereas the knockdown of PLAU reversed this proinflammatory effect. Conversely, PLAU overexpression prevented the anti-inflammatory effects of the miRNA-181b mimics. Mechanistically, miRNA-181b inhibited the AKT/NF-κB pathway by targeting PLAU. In vivo application of the miRNA-181b agomir to inflamed pulp tissue alleviated inflammation. CONCLUSION MiRNA-181b targets PLAU, negatively regulating pro-inflammatory cytokine expression via the AKT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Tiantian Meng
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, 69# Mei Shan Road, Hefei 230032, Anhui, China.
| | - Xinpai Liu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, 69# Mei Shan Road, Hefei 230032, Anhui, China.
| | - Jing Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, 69# Mei Shan Road, Hefei 230032, Anhui, China.
| | - Song Li
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, 69# Mei Shan Road, Hefei 230032, Anhui, China.
| | - Wei He
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, 69# Mei Shan Road, Hefei 230032, Anhui, China; School of Basic Medical Sciences, Anhui Medical University, 81#Mei Shan Road, Hefei 230032, Anhui, China.
| | - Wuli Li
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, 69# Mei Shan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
5
|
Lv Y, Sun X. Role of miRNA in pathogenesis, diagnosis, and prognosis in hepatocellular carcinoma. Chem Biol Drug Des 2024; 103:e14352. [PMID: 37726253 DOI: 10.1111/cbdd.14352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers and is responsible for the second cancer-related death globally. Many treatment regimens have been developed to cure the disease; however, life expectancy is still low. Therefore, there is an urgent need to explore new selective, specific, and robust diagnosis markers for efficient early recognition of the ailment. Along with the diagnosis, the treatment's effectiveness can be determined by prognostic markers, and miRNAs are excellent tools for the diagnosis and prognosis of HCC. In addition, the altered expression profile of a few miRNAs promotes HCC cell migration and invasion, and selective up- or downregulation of these responsible genes may help mitigate the disorder. On one hand, few of the miRNAs have been found to enhance angiogenesis, a crucial step of tumor growth; on the other hand, upregulation of specific miRNAs is reported to suppress angiogenesis and resulting tumor growth of HCC cells. Exosomal miRNAs have significant implications in promoting angiogenesis, increased endothelial cell permeability, tube formation, and metastasis to hepatic and pulmonary tissues. miRNA also attributes to drug resistance toward chemotherapy and the prevention of autophagy also. Identifying novel miRNA and determining their differential expression in HCC tissue may serve as a potential tool for diagnosis, prognosis, and therapy to enhance the life expectancy and quality of life of HCC patients. In the present review, we have summarized the recent advances in HCC-related research.
Collapse
Affiliation(s)
- Yi Lv
- Hepatobiliary and Pancreatic Surgery, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Xiujuan Sun
- Department of Pathology, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| |
Collapse
|
6
|
Mafi A, Mannani R, Khalilollah S, Hedayati N, Salami R, Rezaee M, Dehmordi RM, Ghorbanhosseini SS, Alimohammadi M, Akhavan-Sigari R. The Significant Role of microRNAs in Gliomas Angiogenesis: A Particular Focus on Molecular Mechanisms and Opportunities for Clinical Application. Cell Mol Neurobiol 2023; 43:3277-3299. [PMID: 37414973 DOI: 10.1007/s10571-023-01385-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/25/2023] [Indexed: 07/08/2023]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs with only 20-22 nucleic acids that inhibit gene transcription and translation by binding to mRNA. MiRNAs have a diverse set of target genes and can alter most physiological processes, including cell cycle checkpoints, cell survival, and cell death mechanisms, affecting the growth, development, and invasion of various cancers, including gliomas. So optimum management of miRNA expression is essential for preserving a normal biological environment. Due to their small size, stability, and capability of specifically targeting oncogenes, miRNAs have emerged as a promising marker and new biopharmaceutical targeted therapy for glioma patients. This review focuses on the most common miRNAs associated with gliomagenesis and development by controlling glioma-determining markers such as angiogenesis. We also summarized the recent research about miRNA effects on signaling pathways, their mechanistic role and cellular targets in the development of gliomas angiogenesis. Strategies for miRNA-based therapeutic targets, as well as limitations in clinical applications, are also discussed.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Mannani
- Department of Surgery, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Shayan Khalilollah
- Department of Neurosurgery, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Raziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Malihe Rezaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rohollah Mousavi Dehmordi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyedeh Sara Ghorbanhosseini
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tübingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Hassan M, Shahzadi S, Malik A, Din SU, Yasir M, Chun W, Kloczkowski A. Oncomeric Profiles of microRNAs as New Therapeutic Targets for Treatment of Ewing's Sarcoma: A Composite Review. Genes (Basel) 2023; 14:1849. [PMID: 37895198 PMCID: PMC10606885 DOI: 10.3390/genes14101849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Ewing's sarcoma is a rare type of cancer that forms in bones and soft tissues in the body, affecting mostly children and young adults. Current treatments for ES are limited to chemotherapy and/or radiation, followed by surgery. Recently, microRNAs have shown favourable results as latent diagnostic and prognostic biomarkers in various cancers. Furthermore, microRNAs have shown to be a good therapeutic agent due to their involvement in the dysregulation of various molecular pathways linked to tumour progression, invasion, angiogenesis, and metastasis. In this review, comprehensive data mining was employed to explore various microRNAs that might have therapeutic potential as target molecules in the treatment of ES.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children Hospital, Columbus, OH 43205, USA;
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children Hospital, Columbus, OH 43205, USA;
| | - Amal Malik
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54590, Pakistan;
| | - Salah ud Din
- Department of Bioinformatics, University of Okara, Okara 56130, Pakistan;
| | - Muhammad Yasir
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
8
|
Azani A, Omran SP, Ghasrsaz H, Idani A, Eliaderani MK, Peirovi N, Dokhani N, Lotfalizadeh MH, Rezaei MM, Ghahfarokhi MS, KarkonShayan S, Hanjani PN, Kardaan Z, Navashenagh JG, Yousefi M, Abdolahi M, Salmaninejad A. MicroRNAs as biomarkers for early diagnosis, targeting and prognosis of prostate cancer. Pathol Res Pract 2023; 248:154618. [PMID: 37331185 DOI: 10.1016/j.prp.2023.154618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
Globally, prostate cancer (PC) is leading cause of cancer-related mortality in men worldwide. Despite significant advances in the treatment and management of this disease, the cure rates for PC remains low, largely due to late detection. PC detection is mostly reliant on prostate-specific antigen (PSA) and digital rectal examination (DRE); however, due to the low positive predictive value of current diagnostics, there is an urgent need to identify new accurate biomarkers. Recent studies support the biological role of microRNAs (miRNAs) in the initiation and progression of PC, as well as their potential as novel biomarkers for patients' diagnosis, prognosis, and disease relapse. In the advanced stages, cancer-cell-derived small extracellular vesicles (SEVs) may constitute a significant part of circulating vesicles and cause detectable changes in the plasma vesicular miRNA profile. Recent computational model for the identification of miRNA biomarkers discussed. In addition, accumulating evidence indicates that miRNAs can be utilized to target PC cells. In this article, the current understanding of the role of microRNAs and exosomes in the pathogenesis and their significance in PC prognosis, early diagnosis, chemoresistance, and treatment are reviewed.
Collapse
Affiliation(s)
- Alireza Azani
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Parvizi Omran
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haniyeh Ghasrsaz
- Faculty of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Asra Idani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Niloufar Peirovi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Dokhani
- Student Research Committee, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | | | | | - Sepideh KarkonShayan
- Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Parisa Najari Hanjani
- Department of Genetics, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Science, Gorgan, Iran
| | - Zahra Kardaan
- Department of Cellular Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | | - Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mitra Abdolahi
- Department of Pathology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arash Salmaninejad
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Regenerative Medicine, Organ Procurement and Transplantation Multi-Disciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
9
|
Pekarek L, Torres-Carranza D, Fraile-Martinez O, García-Montero C, Pekarek T, Saez MA, Rueda-Correa F, Pimentel-Martinez C, Guijarro LG, Diaz-Pedrero R, Alvarez-Mon M, Ortega MA. An Overview of the Role of MicroRNAs on Carcinogenesis: A Focus on Cell Cycle, Angiogenesis and Metastasis. Int J Mol Sci 2023; 24:ijms24087268. [PMID: 37108432 PMCID: PMC10139430 DOI: 10.3390/ijms24087268] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, the importance of epigenetic markers in the carcinogenesis of different malignant neoplasms has been demonstrated, also demonstrating their utility for understanding metastatic spread and tumor progression in cancer patients. Among the different biomarkers, microRNAs represent a set of non-coding RNAs that regulate gene expression, having been involved in a wide variety of neoplasia acting in different oncogenic pathways. Both the overexpression and downregulation of microRNAs represent a complex interaction with various genes whose ultimate consequence is increased cell proliferation, tumor invasion and interaction with various driver markers. It should be noted that in current clinical practice, even though the combination of different microRNAs has been shown to be useful by different authors at diagnostic and prognostic levels, there are no diagnostic kits that can be used for the initial approach or to assess recurrences of oncological diseases. Previous works have cited microRNAs as having a critical role in several carcinogenic mechanisms, ranging from cell cycle alterations to angiogenesis and mechanisms of distant metastatic dissemination. Indeed, the overexpression or downregulation of specific microRNAs seem to be tightly involved in the modulation of various components related to these processes. For instance, cyclins and cyclin-dependent kinases, transcription factors, signaling molecules and angiogenic/antiangiogenic products, among others, have been recognized as specific targets of microRNAs in different types of cancer. Therefore, the purpose of this article is to describe the main implications of different microRNAs in cell cycle alterations, metastasis and angiogenesis, trying to summarize their involvement in carcinogenesis.
Collapse
Affiliation(s)
- Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain
| | - Diego Torres-Carranza
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Tatiana Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Francisco Rueda-Correa
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Carolina Pimentel-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Luis G Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Raul Diaz-Pedrero
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Teaching Hospital, 28805 Alcala de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|
10
|
Chen S, Lin X, He R, Zhang W, Kang M, Xu R. PHLDA3 activated by BARX2 transcription, suppresses the malignant development of esophageal squamous cell carcinoma by downregulating PI3K/AKT levels. Exp Cell Res 2023; 426:113567. [PMID: 36965748 DOI: 10.1016/j.yexcr.2023.113567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
BACKGROUND Low pleckstrin homology-like domain family A, member 3 (PHLDA3) expression has been reported to be associated with cancer specificity and disease-free survival in esophageal squamous cell carcinoma (ESCC), and was an independent predictor of postoperative recurrence. However, the specific mechanisms involved are still unclear. This paper aimed to explore the role and its mechanisms of PHLDA3 in ESCC. MATERIALS AND METHODS PHLDA3 and BarH-like homeobox 2 (BARX2) expressions in ESCC were predicted by Gene Expression Profiling Interactive Analysis (GEPIA) analysis and determined by quantitative real-time polymerase chain reaction (qRT-PCR) and western Blot. Western blot detected the expression of proteins associated with migration, angiogenesis and phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB/AKT) signaling pathway. The University of California Santa Cruz Genomics Institute (UCSC) database predicted that the relationship of BARX2 and PHLDA3 promoter and JASPAR identified the possible binding sites. Dual luciferase gene reporter verified PHLDA3 promoter activity, and the relationship of both was determined by chromatin immunoprecipitation (CHIP). Cell counting kit (CCK)-8, 5-ethynyl-2'-deoxyuridine (EDU) and colony formation were used to assess cell proliferation. Wound healing and transwell were used to detect cell migration and invasion ability. Tube formation assay was applied to assess angiogenesis. Mice were injected with transfected KYSE30 cells under the right axilla. Body weight and tumor volume and mass were recorded for each group of mice. Immunohistochemistry was performed to detect KI67 level in tumor tissues. RESULTS Both PHLDA3 and BARX2 were downregulated in ESCC. The upregulated PHLDA3 suppressed PI3K/AKT expression. In addition, BARX2 bound to the PHLDA3 promoter and transcriptionally activated PHLDA3. PHLDA3 overexpression inhibited ESCC cell proliferation, migration, invasion and angiogenesis, but this effect was reversed by BARX2 knockdown. In addition, BARX2 overexpression inhibited ESCC cell proliferation, migration, invasion and angiogenesis, but this effect was reversed by PHLDA3 knockdown. CONCLUSION PHLDA3 was transcriptionally activated by BARX2 and inhibited malignant progression of ESCC by downregulating PI3K/AKT levels.
Collapse
Affiliation(s)
- Shaogeng Chen
- Department of Thoracic Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Xianzuan Lin
- Department of Thoracic Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Rongqi He
- Department of Thoracic Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Wanfei Zhang
- Department of Thoracic Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Quanzhou, China
| | - Rongyu Xu
- Department of Thoracic Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China.
| |
Collapse
|
11
|
Makowska M, Smolarz B, Romanowicz H. microRNAs (miRNAs) in Glioblastoma Multiforme (GBM)-Recent Literature Review. Int J Mol Sci 2023; 24:3521. [PMID: 36834933 PMCID: PMC9965735 DOI: 10.3390/ijms24043521] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common, malignant, poorly promising primary brain tumor. GBM is characterized by an infiltrating growth nature, abundant vascularization, and a rapid and aggressive clinical course. For many years, the standard treatment of gliomas has invariably been surgical treatment supported by radio- and chemotherapy. Due to the location and significant resistance of gliomas to conventional therapies, the prognosis of glioblastoma patients is very poor and the cure rate is low. The search for new therapy targets and effective therapeutic tools for cancer treatment is a current challenge for medicine and science. microRNAs (miRNAs) play a key role in many cellular processes, such as growth, differentiation, cell division, apoptosis, and cell signaling. Their discovery was a breakthrough in the diagnosis and prognosis of many diseases. Understanding the structure of miRNAs may contribute to the understanding of the mechanisms of cellular regulation dependent on miRNA and the pathogenesis of diseases underlying these short non-coding RNAs, including glial brain tumors. This paper provides a detailed review of the latest reports on the relationship between changes in the expression of individual microRNAs and the formation and development of gliomas. The use of miRNAs in the treatment of this cancer is also discussed.
Collapse
Affiliation(s)
- Marianna Makowska
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
| |
Collapse
|
12
|
Ali A, Jamieson NB, Khan IN, Chang D, Giovannetti E, Funel N, Frampton AE, Morton J, Sansom O, Evans TRJ, Duthie F, McKay CJ, Samra J, Gill AJ, Biankin A, Oien KA. Prognostic implications of microRNA-21 overexpression in pancreatic ductal adenocarcinoma: an international multicenter study of 686 patients. Am J Cancer Res 2022; 12:5668-5683. [PMID: 36628279 PMCID: PMC9827095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/27/2022] [Indexed: 01/12/2023] Open
Abstract
Despite progress in genomic characterization, no single prognostic marker that can be evaluated using an easy-to-perform and relatively inexpensive method is available for pancreatic ductal adenocarcinoma (PDAC). MicroRNAs, which are stable, tumor- and tissue-specific molecules, are potentially ideal biomarkers, and we established an inter-laboratory validated method to investigate miR-21 as a prognostic biomarker in PDAC. The study samples of PDAC patients were recruited from a test cohort of Glasgow (n = 189) and three validation cohorts of Pisa (n = 69), Sydney (n = 249), and International Cancer Genome Consortium (ICGC) (n = 249). Tissue microarrays were used for miR-21 staining by chromogenic in situ hybridization (CISH). The patients were subdivided into no/low and high miR-21 staining groups using a specific histoscore. Furthermore, miR-21 staining was evaluated against clinicopathological variables and follow-up data by Fisher/log-rank test and Cox proportional models. The prognostic variables found to be significant in univariate analysis (P value < 0.10) were included in multivariate analysis in a backward-stepwise fashion. MiR-21 expression was cytoplasmic, with more consistent staining in the malignant ductal epithelium than in the stroma. The expression of miR-21 was significantly associated with tumor size and lymph node metastasis, whereas no association was observed with other clinicopathological variables. High miR-21 staining (histoscore ≥ 45 [median score]) was an independent predictor of survival in the Glasgow test cohort (HR 2.37, 95% CI: 1.42-3.96, P < 0.0001) and three validation cohorts (Pisa, HR 2.03, 95% CI: 1.21-3.39, P = 0.007; Sydney, HR 2.58, 95% CI (1.21-3.39), P < 0.0001; and ICGC, HR 3.34, 95% CI: 2.07-5.84, P = 0.002) when adjusted for clinical variables in a multivariate model. In comparison to the patients with low miR-21, the patients with high miR-21 expression had significant increase in OS as they benefit from gemcitabine-based adjuvant chemotherapy (Glasgow 16.5 months [with chemotherapy] vs 10.5 months [without chemotherapy]); Sydney 25.0 vs 10.6; ICGC 25.2 vs 11.9. These results indicated that miR-21 is a predictor of survival, prompting prospective trials. Evaluation of miR-21 offers new opportunities for the stratification of patients with PDAC and might facilitate the implementation of clinical management and therapeutic interventions for this devastating disease.
Collapse
Affiliation(s)
- Asif Ali
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of GlasgowUK
- Institute of Pathology and Diagnostic Medicine, Khyber Medical UniversityPeshawar, Pakistan
- Gulf Medical UniversityAjman, United Arab Emirates
| | - Nigel Balfour Jamieson
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of GlasgowUK
| | - Ishaq N Khan
- Department of Pharmaceutical Sciences, Texas A&M Health Science Center, Joe H. Reynolds Medical Bld, Texas A&M University, College StationUnited States
- Cancer Cell Culture & Precision Oncomedicine Lab, Institute of Basic Medical Sciences, Khyber Medical UniversityPeshawar, Pakistan
| | - David Chang
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of GlasgowUK
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical CenterAmsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start-Up Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | - Nicola Funel
- Cancer Pharmacology Lab, AIRC Start-Up Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | - Adam E Frampton
- Department of Surgery & Cancer, Imperial College, Hammersmith Hospital CampusDu Cane Road, London, UK
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County HospitalEgerton Road, Guildford, Surrey, GU2 7XX, UK
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of SurreyGuildford, Surrey, UK
| | - Jennifer Morton
- Beatson Institute for Cancer Research, University of GlasgowUK
| | - Owen Sansom
- Beatson Institute for Cancer Research, University of GlasgowUK
| | | | - Fraser Duthie
- Department of Pathology, Laboratory Medicine Building, Queen Elizabeth University HospitalGreater Glasgow & Clyde NHS
| | - Colin J McKay
- West of Scotland Pancreatic Unit and Glasgow Royal InfirmaryAlexandra Parade, Glasgow
| | - Jas Samra
- Department of Upper Gastrointestinal Surgery, Royal North Shore HospitalPacific Highway St Leonards, Australia
| | - Anthony J Gill
- Sydney Medical School, University of SydneySydney, Australia
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, and Health Pathology Department of Anatomical Pathology, Royal North Shore HospitalSt Leonards, NSW, Australia
- The Kinghorn Cancer Centre, The Garvan Institute of Medical ResearchDarlinghurst, Sydney, Australia
- The Australian Pancreatic Genome InitiativeDarlinghurst NSW 2010, Australia
| | - Andrew Biankin
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of GlasgowUK
| | - Karin A Oien
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of GlasgowUK
- Department of Pathology, Laboratory Medicine Building, Queen Elizabeth University HospitalGreater Glasgow & Clyde NHS
| |
Collapse
|
13
|
A study of miRNAs as cornerstone in lung cancer pathogenesis and therapeutic resistance: A focus on signaling pathways interplay. Pathol Res Pract 2022; 237:154053. [DOI: 10.1016/j.prp.2022.154053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/16/2022] [Accepted: 07/28/2022] [Indexed: 02/06/2023]
|
14
|
Examination of Combined Treatment of Ginsenoside Rg3 and 5-Fluorouracil in Lung Adenocarcinoma Cells. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2813142. [PMID: 35799655 PMCID: PMC9256322 DOI: 10.1155/2022/2813142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/15/2022] [Indexed: 12/21/2022]
Abstract
Chemotherapy is a commonly used strategy for advanced lung cancer patients. However, its clinical application is restrained due to its toxicity and drug resistance. Ginsenoside Rg3 (Rg3) has a strong anticancer influence on colon cancer, breast cancer, lung cancer, and other malignant tumors. However, it is still unclear whether Rg3 can cooperate with 5-FU to inhibit the tumor growth and angiogenesis of lung adenocarcinoma (LUAD). This study examined the combined treatment of Rg3 and 5-FU in LUAD. It was revealed that the combined treatment could notably enhance the suppression on proliferative, invasive, and migratory abilities and angiogenesis in LUAD cells A549 and SPC-A-1. On the other hand, we also discovered that Rg3 or 5-FU could suppress the activity of the NF-κB signaling pathway and downregulate VEGFA expression in LUAD cells. Collectively, this study suggested that Rg3 combined chemotherapy may perform a more powerful drug efficiency in LUAD cells.
Collapse
|
15
|
Yazdanpanah Z, Kazemipour N, Kalantar SM, Vahidi Mehrjardi MY. Plasma miR-21 as a potential predictor in prediabetic individuals with a positive family history of type 2 diabetes mellitus. Physiol Rep 2022; 10:e15163. [PMID: 35076188 PMCID: PMC8787720 DOI: 10.14814/phy2.15163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 04/18/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a heritable metabolic perturbation, rapidly growing across the world. Primary recognition of susceptible individuals with a family history of type 2 diabetes (FHD) in the prediabetes stage could delay the onset of T2DM or reduce complications induced by diabetes. This study aims to evaluate the expression levels of miR-21, miR-126 as noninvasive predictive biomarkers in individuals with genetic predisposition and investigate the correlation of miRNAs and cardiometabolic risk factors. Our study demonstrated that miR-21 expression has a notable elevate in both groups of T2DM and pre-T2DM. miR-21 expression was distinguished in the pre-T2DM and T2DM from the nondiabetic individuals by ROC curve analysis with AUC of 0.77 (95% CI 0.65-0.90; p = 0.0004) and AUC of 0.78 (95% CI 0.64-0.92; p = 0.0042), respectively. The relative gene expression of miR-126 was nearly equal among groups. miR-21 expression was positively associated with glycosylated hemoglobin (HbA1c), fasting blood sugar (FBS), and triglyceride (TG) and might have diagnostic value for T2DM and pre-T2DM. This study has revealed that the expression level of miR-21 can be considered as a non-invasive and rapid tool for distinguishing pre-T2DM and T2DM counterparts from healthy individuals.
Collapse
Affiliation(s)
- Zakieh Yazdanpanah
- Biochemistry DivisionDepartment of Basic ScienceSchool of Veterinary Medicine, Shiraz UniversityShirazIran
| | - Nasrin Kazemipour
- Biochemistry DivisionDepartment of Basic ScienceSchool of Veterinary Medicine, Shiraz UniversityShirazIran
| | - Seyed Mehdi Kalantar
- Department of Medical GeneticMedical SchoolShahid Sadoughi University of Medical ScienceYazdIran
| | | |
Collapse
|
16
|
Liang W, He X, Bi J, Hu T, Sun Y. Role of reactive oxygen species in tumors based on the 'seed and soil' theory: A complex interaction (Review). Oncol Rep 2021; 46:208. [PMID: 34328200 PMCID: PMC8329912 DOI: 10.3892/or.2021.8159] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor microenvironment (TME) can serve as the 'soil' for the growth and survival of tumor cells and function synergically with tumor cells to mediate tumor progression and therapeutic resistance. Reactive oxygen species (ROS) is somewhat of a double‑edged sword for tumors. Accumulating evidence has reported that regulating ROS levels can serve an anti‑tumor role in the TME, including the promotion of cancer cell apoptosis, inhibition of angiogenesis, preventing immune escape, manipulating tumor metabolic reorganization and improving drug resistance. In the present review, the potential role of ROS in anti‑tumor therapy was summarized, including the possibility of directly or indirectly targeting the TME.
Collapse
Affiliation(s)
- Wei Liang
- Department of Radiation Oncology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Affiliated Hospital of Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Xinying He
- Department of Radiation Oncology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Affiliated Hospital of Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Jianqiang Bi
- Department of Radiation Oncology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Affiliated Hospital of Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Tingting Hu
- Department of Radiation Oncology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Affiliated Hospital of Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Yunchuan Sun
- Department of Radiation Oncology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Affiliated Hospital of Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|