1
|
Yu L, Wang C, Liu M, Xia L, Liu T, Che Q, Cai W, Dong X, Pan B, Wang B, Liu S, Guo W. Follicular fluid-derived exosomal LncRNA LIPE-AS1 modulates steroid metabolism and survival of granulosa cells leading to oocyte maturation arrest in polycystic ovary syndrome. J Assist Reprod Genet 2024; 41:1387-1401. [PMID: 38656738 PMCID: PMC11143127 DOI: 10.1007/s10815-024-03092-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/08/2024] [Indexed: 04/26/2024] Open
Abstract
OBJECTIVE Women who are of reproductive age can suffer from polycystic ovary syndrome (PCOS), an endocrine disorder. Anovulatory infertility is mostly caused by aberrant follicular development, which is seen in PCOS patients. Due to the dysfunction of reproductive and endocrine function in PCOS patients, assisted reproduction treatment is one of the main means to obtain clinical pregnancy for PCOS patients. Long non-coding RNA (lncRNA) as a group of functional RNA molecules have been found to participate in the regulation of oocyte function, hormone metabolism, and proliferation and apoptosis of granulosa cells. In this study, we investigated the role of lncRNAs in follicular fluid-derived exosomes and the underlying mechanism of lncRNA LIPE-AS1. METHODS We used RNA sequencing to analyze the lncRNA profiles of follicular fluid-derived exosomes in PCOS patients and controls. RT-qPCR was performed to detect the expression levels of these lncRNAs in control (n = 30) and PCOS (n = 30) FF exosome samples. Furthermore, we validated the performance of lncRNA LIPE-AS1 in oocyte maturation by in vitro maturation (IVM) experiments in mouse and steroid metabolism in granulosa cells. RESULTS We found 501 lncRNAs were exclusively expressed in the control group and another 273 lncRNAs were found to be specifically expressed in the PCOS group. LncRNA LIPE-AS1, highly expressed in PCOS exosomes, was related to a poor oocyte maturation and embryo development in PCOS patients. Reduced number of MII oocytes were observed in the LIPE-AS1 group by in vitro maturation (IVM) experiments in mouse. LIPE-AS1 was also shown to modulate steroid metabolism and granulosa cell proliferation and apoptosis by LIPE-AS1/miR-4306/LHCGR axis. CONCLUSION These findings suggested that the increased expression of LIPE-AS1, facilitated by follicular fluid exosomes, had a significant impact on both oocyte maturation and embryo development. We demonstrated the ceRNA mechanism involving LIPE-AS1, miR-4306, and LHCGR as a regulator of hormone production and metabolism. These findings indicate that LIPE-AS1 is essential in PCOS oocyte maturation and revealed a ceRNA network of LIPE-AS1 and provided new information on abnormal steroid metabolism and oocyte development in PCOS.
Collapse
Affiliation(s)
- Li Yu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, No. 111 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Chen Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, No. 111 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Miao Liu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, No. 250 Xiao Mu Qiao Road, Shanghai, 200032, People's Republic of China
| | - Lingjin Xia
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, No. 2140 Xietu Road, Shanghai, 200000, People's Republic of China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No.725 South Wan Ping Road, Shanghai, 200031, People's Republic of China
| | - Qi Che
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, No. 250 Xiao Mu Qiao Road, Shanghai, 200032, People's Republic of China
| | - Wei Cai
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, No. 250 Xiao Mu Qiao Road, Shanghai, 200032, People's Republic of China
| | - Xi Dong
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, No. 250 Xiao Mu Qiao Road, Shanghai, 200032, People's Republic of China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, No. 111 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, No. 111 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China.
| | - Suying Liu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, No. 250 Xiao Mu Qiao Road, Shanghai, 200032, People's Republic of China.
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, No. 111 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China.
- Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Zhongshan Hospital, Fudan University, No. 2560 Chun Shen Road, Shanghai, 201100, People's Republic of China.
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, No.216 Mudanjiang Road, Shanghai, 200940, People's Republic of China.
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, No. 668 Jin Hu Road, Xiamen, 361015, People's Republic of China.
| |
Collapse
|
2
|
Ghafouri-Fard S, Harsij A, Hussen BM, Pourmoshtagh H, Taheri M. A review on the role of FOXD2-AS1 in human disorders. Pathol Res Pract 2024; 254:155101. [PMID: 38211387 DOI: 10.1016/j.prp.2024.155101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
FOXD2 adjacent opposite strand RNA 1 (FOXD2-AS1) is a long non-coding RNA being transcribed from a locus on chromosome 1p33. This transcript has been found to be up-regulated in tumor samples of almost all types of malignancies in association with a significant increase in malignant features. FOXD2-AS1 can affect activity of PI3K/AKT, AKT/mTOR, Hippo/YAP, Notch, NRf2, Wnt/β-catenin, NF-ƙB and ERK/MAPK pathways. Furthermore, it can enhance stem cell properties in cancer cells and prompt epithelial-mesenchymal transition. It is also involved in induction of resistance to a variety of anticancer agents such as adriamycin, cisplatin, 5-fluorouracil, temozolomide and gemcitabine. This article summarizes the impact of FOXD2-AS1 in diverse human disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Harsij
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq; Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Hasan Pourmoshtagh
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Cao W, Ren Y, Liu Y, Cao G, Chen Z, Wang F. KDM4A-AS1 Promotes Cell Proliferation, Migration, and Invasion via the miR-4306/STX6 Axis in Hepatocellular Carcinoma. Crit Rev Eukaryot Gene Expr 2024; 34:55-68. [PMID: 38505873 DOI: 10.1615/critreveukaryotgeneexpr.2024051414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
As a primary liver malignancy, hepatocellular carcinoma (HCC) is commonly induced by chronic liver disease and cirrhosis. Bioinformatics analysis reveals that long noncoding RNA KDM4A antisense RNA 1 (KDM4A-AS1) may be aberrantly expressed in HCC and its abnormal expression might influence prognosis in patients. We conducted this study to illustrate the functions and mechanism of KDM4A-AS1 in regulating HCC malignant cell behavior. KD-M4A-AS1, microRNA (miR)-4306 and messenger RNA syntaxin 6 (STX6) expression was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). HCC cell proliferation, apoptosis, migration, and invasion were measured by colony forming assays, flow cytometry, wound healing and Transwell assays. The interaction between genes was verified by RNA immunoprecipitation and luciferase reporter assays. Western blotting was performed to quantify protein expression of STX6 or apoptotic markers. KDM4A-AS1 was highly expressed in HCC cells and tissues. KDM4A-AS1 knockdown led to enhanced HCC cell apoptosis and suppressed HCC cell proliferation, migration, and invasion. MiR-4306 bound to and negatively regulated STX6. KDM4A-AS1 directly bound to miR-4306 and thus up-regulated STX6. STX6 overexpression reversed the inhibitory influence of KDM4A-AS1 depletion on HCC malignant behavior. KDM4A-AS1 promotes HCC cell migration, invasion, and growth by upregulating STX6 via miR-4306.
Collapse
Affiliation(s)
- Wei Cao
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, P.R. China
| | - Yuhan Ren
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, P.R. China
| | - Ying Liu
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, P.R. China
| | - Guoshu Cao
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, P.R. China
| | - Zhen Chen
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei Province, P.R. China
| | - Fan Wang
- Renmin Hospital, Hubei University of Medicine
| |
Collapse
|
4
|
Yang W, Yang X, Zhang Y, Li Y, Lv W. MiR-363 restrain the proliferation, migration and invasion of colorectal carcinoma cell by targeting E2F3. J Cancer 2023; 14:1362-1370. [PMID: 37283793 PMCID: PMC10240674 DOI: 10.7150/jca.83897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/10/2023] [Indexed: 06/08/2023] Open
Abstract
MicroRNA (miRNA) is associated with tumor cell proliferation, migration and invasion. Studies have shown that miRNAs are closely related to the occurrence and development of colorectal cancer (CRC), but the mechanisms deserve further investigation. In this study, we aim to explore the role of miR-363 on CRC tumorigenesis. Using CRC cell lines, we tested the expression of miR-363 by using RT-PCR, and miR-363 effect on cell behavior was test by using CCK-8 assay, wound-healing assay and cell invasion assay, and western blotting. Luciferase reporter assay and western blot confirmed that E2F3 was the target gene for miR-363. We further examined the effect of E2F3 on the regulation of miR-363 on cell behavior through knockdown of E2F3. Western blot and RT-PCR assay showed that miR-363 inhibited the expression of E2F3 in HCT-116 and SW480 cell. MiR-363 overexpression or E2F3 knockdown inhibited cell proliferation, migration and invasion of CRC. This study demonstrated that miR-363 is able to suppress cell proliferation, migration and invasion by negative regulating E2F3 in CRC cells, and inhibits tumor growth in vivo.
Collapse
Affiliation(s)
| | | | | | - Yunhai Li
- ✉ Corresponding author: Dr. Yunhai Li, Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, No. 188, Tanhualin, Wuchang District, Wuhan, China. ; Dr. Wenliang Lv, Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, No. 188, Tanhualin, Wuchang District, Wuhan, China.
| | - Wenliang Lv
- ✉ Corresponding author: Dr. Yunhai Li, Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, No. 188, Tanhualin, Wuchang District, Wuhan, China. ; Dr. Wenliang Lv, Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, No. 188, Tanhualin, Wuchang District, Wuhan, China.
| |
Collapse
|
5
|
Identification and Validation of Cuproptosis-Related LncRNA Signatures in the Prognosis and Immunotherapy of Clear Cell Renal Cell Carcinoma Using Machine Learning. Biomolecules 2022; 12:biom12121890. [PMID: 36551318 PMCID: PMC9776244 DOI: 10.3390/biom12121890] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
(1) Objective: We aimed to mine cuproptosis-related LncRNAs with prognostic value and construct a corresponding prognostic model using machine learning. External validation of the model was performed in the ICGC database and in multiple renal cancer cell lines via qPCR. (2) Methods: TCGA and ICGC cohorts related to renal clear cell carcinoma were included. GO and KEGG analyses were conducted to determine the biological significance of differentially expressed cuproptosis-related LncRNAs (CRLRs). Machine learning (LASSO), Kaplan-Meier, and Cox analyses were conducted to determine the prognostic genes. The tumor microenvironment and tumor mutation load were further studied. TIDE and IC50 were used to evaluate the response to immunotherapy, a risk model of LncRNAs related to the cuproptosis genes was established, and the ability of this model was verified in an external independent ICGC cohort. LncRNAs were identified in normal HK-2 cells and verified in four renal cell lines via qPCR. (3) Results: We obtained 280 CRLRs and identified 66 LncRNAs included in the TCGA-KIRC cohort. Then, three hub LncRNAs (AC026401.3, FOXD2-AS1, and LASTR), which were over-expressed in the four ccRCC cell lines compared with the human renal cortex proximal tubule epithelial cell line HK-2, were identified. In the ICGC database, the expression of FOXD2-AS1 and LASTR was consistent with the qPCR and TCGA-KIRC. The results also indicated that patients with low-risk ccRCC-stratified by tumor-node metastasis stage, sex, and tumor grade-had significantly better overall survival than those with high-risk ccRCC. The predictive algorithm showed that, according to the three CRLR models, the low-risk group was more sensitive to nine target drugs (A.443654, A.770041, ABT.888, AG.014699, AMG.706, ATRA, AP.24534, axitinib, and AZ628), based on the estimated half-maximal inhibitory concentrations. In contrast, the high-risk group was more sensitive to ABT.263 and AKT inhibitors VIII and AS601245. Using the CRLR models, the correlation between the tumor immune microenvironment and cancer immunotherapy response revealed that high-risk patients are more likely to respond to immunotherapy than low-risk patients. In terms of immune marker levels, there were significant differences between the high- and low-risk groups. A high TMB score in the high-risk CRLR group was associated with worse survival, which could be a prognostic factor for KIRC. (4) Conclusions: This study elucidates the core cuproptosis-related LncRNAs, FOXD2-AS1, AC026401.3, and LASTR, in terms of potential predictive value, immunotherapeutic strategy, and outcome of ccRCC.
Collapse
|
6
|
Wu Q, You L, Nepovimova E, Heger Z, Wu W, Kuca K, Adam V. Hypoxia-inducible factors: master regulators of hypoxic tumor immune escape. J Hematol Oncol 2022; 15:77. [PMID: 35659268 PMCID: PMC9166526 DOI: 10.1186/s13045-022-01292-6] [Citation(s) in RCA: 153] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
Hypoxia, a common feature of the tumor microenvironment in various types of cancers, weakens cytotoxic T cell function and causes recruitment of regulatory T cells, thereby reducing tumoral immunogenicity. Studies have demonstrated that hypoxia and hypoxia-inducible factors (HIFs) 1 and 2 alpha (HIF1A and HIF2A) are involved in tumor immune escape. Under hypoxia, activation of HIF1A induces a series of signaling events, including through programmed death receptor-1/programmed death ligand-1. Moreover, hypoxia triggers shedding of complex class I chain-associated molecules through nitric oxide signaling impairment to disrupt immune surveillance by natural killer cells. The HIF-1-galactose-3-O-sulfotransferase 1-sulfatide axis enhances tumor immune escape via increased tumor cell-platelet binding. HIF2A upregulates stem cell factor expression to recruit tumor-infiltrating mast cells and increase levels of cytokines interleukin-10 and transforming growth factor-β, resulting in an immunosuppressive tumor microenvironment. Additionally, HIF1A upregulates expression of tumor-associated long noncoding RNAs and suppresses immune cell function, enabling tumor immune escape. Overall, elucidating the underlying mechanisms by which HIFs promote evasion of tumor immune surveillance will allow for targeting HIF in tumor treatment. This review discusses the current knowledge of how hypoxia and HIFs facilitate tumor immune escape, with evidence to date implicating HIF1A as a molecular target in such immune escape. This review provides further insight into the mechanism of tumor immune escape, and strategies for tumor immunotherapy are suggested.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Li You
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, 613 00, Czech Republic.,Central European Institute of Technology, Brno University of Technology, Brno, 602 00, Czech Republic
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China. .,Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, 613 00, Czech Republic. .,Central European Institute of Technology, Brno University of Technology, Brno, 602 00, Czech Republic.
| |
Collapse
|