1
|
Li B, Zhou W, Zhang J, Wang N, Yang X, Ge X. Schisandrin a Ameliorates Cardiac Injury and Dysfunction Induced by Hemorrhagic Shock via Activating the Nrf2 Signaling Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2453-2468. [PMID: 39686793 DOI: 10.1142/s0192415x24500939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Hemorrhagic shock (HS) is a critical condition with high mortality caused by acute blood loss. Cardiac injury and dysfunction induced by HS is a major factor associated with the poor prognosis of affected patients. Schisandrin A (Sch A), a dibenzocyclooctadiene lignan extracted from Fructus schisandrae, exhibits multiple biological activities, including anti-inflammatory, and antioxidant effects. However, the effect of Sch A on HS-caused cardiac injury and its underlying mechanism still lack research. In this study, we established an HS rat model through blood loss from the femoral artery and monitoring mean arterial pressure (MAP) followed by fluid resuscitation. Our findings suggested that cardiac dysfunction and pathological injury were induced by HS and attenuated by Sch A treatment in a dose-dependent manner. Apoptosis in cardiac tissue was promoted by HS, but suppressed after administration of Sch A by decreasing the protein expressions of cleaved-caspase-3 and -9. Moreover, excessive ROS production induced by HS was mitigated by Sch A, and the levels of oxidative stress indicators were improved by Sch A. Additionally, HS triggered the reduction of mitochondrial membrane potential (MMP), and led to mitochondrial dysfunction. Sch A reversed this effect of HS on mitochondria. The transformation of cytochrome c (Cyto c) induced by HS was also restored by Sch A. Importantly, the activation of the Nrf2 signaling pathway mediated the protective effects of Sch A against cardiac injury induced by HS. In conclusion, it was found that Sch A ameliorated HS-induced cardiac injury and dysfunction through suppressing apoptosis and oxidative stress, as well as alleviating mitochondrial dysfunction via the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Bo Li
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P. R. China
| | - Wuming Zhou
- Department of Emergency and Critical Care Medicine, Wuxi 9th People's Hospital, Affiliated to Soochow University, Wuxi, Jiangsu 214000, P. R. China
| | - Jiacheng Zhang
- Department of Emergency and Critical Care Medicine, Wuxi 9th People's Hospital, Affiliated to Soochow University, Wuxi, Jiangsu 214000, P. R. China
| | - Nan Wang
- Department of Emergency and Critical Care Medicine, Wuxi 9th People's Hospital, Affiliated to Soochow University, Wuxi, Jiangsu 214000, P. R. China
| | - Xingguan Yang
- Department of ICU, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P. R. China
| | - Xin Ge
- Department of Emergency and Critical Care Medicine, Wuxi 9th People's Hospital, Affiliated to Soochow University, Wuxi, Jiangsu 214000, P. R. China
- Orthopedic Institution of Wuxi City, Wuxi, Jiangsu 214000, P. R. China
| |
Collapse
|
2
|
Xu G, Xu Y, Zhang Y, Kao G, Li J. miR-1268a Regulates Fatty Acid Metabolism by Targeting CD36 in Angiotensin II-induced Heart Failure. Cell Biochem Biophys 2024; 82:1193-1201. [PMID: 38619643 DOI: 10.1007/s12013-024-01268-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Multiple RNAs have been involved in the progress of heart failure. However, the role of miR-1268a in heart failure is still unclear. The differentially expressed miRNAs in heart failure was analyzed based on GEO dataset GSE104150. AC16 cells were treated with Angiotensin II (Ang II) to explore the role of miR-1268a in heart failure. The web tool miRWalk was used to analyze the targets of miR-1268a. miR-1268a was up-regulated in Ang II-treated AC16 cells. Ang II treatment markedly inhibited cell proliferation, ATP production, fatty acid (FA) uptake and enhanced levels of HF markers BNP and ST2, and oxidative stress of AC16 cells. Notably, inhibition of miR-1268a eliminated the inhibiting effect of Ang II on cell proliferation, ATP production, FA uptake and decreased levels of BNP an ST2, and oxidative stress on AC16 cells. Furthermore, CD36 was a target of miR-1268a and the CD36 level was decreased by miR-1268a mimics but increased by miR-1268a inhibitor in AC16 cells. miR-1268a regulates FA metabolism and oxidative stress in myocardial cells by targeting CD36 in heart failure.
Collapse
Affiliation(s)
- Gang Xu
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400010, China
| | - Yi Xu
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400010, China
| | - Ying Zhang
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400010, China
| | - Guoying Kao
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400010, China.
| | - Jun Li
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400010, China.
| |
Collapse
|
3
|
Eshraghi R, Rafiei M, Hadian Jazi Z, Shafie D, Raisi A, Mirzaei H. MicroRNA-155 and exosomal microRNA-155: Small pieces in the cardiovascular diseases puzzle. Pathol Res Pract 2024; 257:155274. [PMID: 38626659 DOI: 10.1016/j.prp.2024.155274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/18/2024]
Abstract
MicroRNAs (miRs, miRNAs) are known to have a part in various human illnesses, such as those related to the heart. One particular miRNA, miR-155, has been extensively studied and has been found to be involved in hematopoietic lineage differentiation, immunity, viral infections, inflammation, as well as vascular remodeling. These processes have all been connected to cardiovascular diseases, including heart failure, diabetic heart disease, coronary artery disease, and abdominal aortic aneurysm. The impacts of miR-155 depend on the type of cell it is acting on and the specific target genes involved, resulting in different mechanisms of disease. Although, the exact part of miR-155 in cardiovascular illnesses is yet not fully comprehended, as some studies have shown it to promote the development of atherosclerosis while others have shown it to prevent it. As a result, to comprehend the underlying processes of miR-155 in cardiovascular disorders, further thorough study is required. It has been discovered that exosomes that could be absorbed by adjacent or distant cells, control post-transcriptional regulation of gene expression by focusing on mRNA. Exosomal miRNAs have been found to have a range of functions, including participating in inflammatory reactions, cell movement, growth, death, autophagy, as well as epithelial-mesenchymal transition. An increasing amount of research indicates that exosomal miRNAs are important for cardiovascular health and have a major role in the development of a number of cardiovascular disorders, including pulmonary hypertension, atherosclerosis, acute coronary syndrome, heart failure, and myocardial ischemia-reperfusion injury. Herein the role of miR-155 and its exosomal form in heart diseases are summarized.
Collapse
Affiliation(s)
- Reza Eshraghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Moein Rafiei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Hadian Jazi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Davood Shafie
- Cardiology/Heart Failure and Transplantation, Heart Failure Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arash Raisi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Guo B, Yu Y, Wang M, Li R, He X, Tang S, Liu Q, Mao Y. Targeting the JAK2/STAT3 signaling pathway with natural plants and phytochemical ingredients: A novel therapeutic method for combatting cardiovascular diseases. Biomed Pharmacother 2024; 172:116313. [PMID: 38377736 DOI: 10.1016/j.biopha.2024.116313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024] Open
Abstract
The aim of this article is to introduce the roles and mechanisms of the JAK2/STAT3 pathway in various cardiovascular diseases, such as myocardial fibrosis, cardiac hypertrophy, atherosclerosis, myocardial infarction, and myocardial ischemiareperfusion. In addition, the effects of phytochemical ingredients and different natural plants, mainly traditional Chinese medicines, on the regulation of different cardiovascular diseases via the JAK2/STAT3 pathway are discussed. Surprisingly, the JAK2 pathway has dual roles in different cardiovascular diseases. Future research should focus on the dual regulatory effects of different phytochemical ingredients and natural plants on JAK2 to pave the way for their use in clinical trials.
Collapse
Affiliation(s)
- Bing Guo
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China
| | - Yunfeng Yu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Min Wang
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Ronghui Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xuan He
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China
| | - Siqin Tang
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China
| | - Qili Liu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Yilin Mao
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China.
| |
Collapse
|
5
|
Jin J, Chen M, Wang H, Li S, Ma L, Wang B. Schizandrin A attenuates early brain injury following subarachnoid hemorrhage through suppressing neuroinflammation. Mol Biol Rep 2024; 51:236. [PMID: 38285214 DOI: 10.1007/s11033-023-08956-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/17/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Early brain injury (EBI) is the vital factor in determining the outcome of subarachnoid hemorrhage (SAH). Schizandrin A (Sch A), the bioactive ingredient extracted from Schisandra chinensis, has been proved to exert beneficial effects in multiple human diseases. However, the effect of Sch A on SAH remains unknown. The current study was designed to explored role and mechanism of Sch A in the pathophysiological process of EBI following SAH. METHOD A total of 74 male C57BL/6 J mice were subjected to endovascular perforation to establish the SAH model. Different dosages of Sch A were administrated post-modeling. The post-modeling assessments included neurological test, brain water content, RT-PCR, immunofluorescence, Nissl staining. Oxygenated hemoglobin was introduced into microglia to establish a SAH model in vitro. RESULT Sch A significantly alleviated SAH-induced brain edema and neurological impairment. Moreover, application of Sch A remarkably inhibited SAH-induced neuroinflammation, evidenced by the decreased microglial activation and downregulated TNF-α, IL-1β and IL-6 and expression. Additionally, Sch A, both in vivo and in vitro, protected neurons against SAH-induced inflammatory injury. Mechanismly, administration of Sch A inhibited miR-155/NF-κB axis and attenuated neuroinflammation, as well as alleviating neuronal injury. CONCLUSION Our data suggested that Sch A could attenuated EBI following SAH via modulating neuroinflammation. The anti-inflammatory effect was exerted, at least partly through the miR-155/NF-κB axis, which may shed light on a possible therapeutic target for SAH.
Collapse
Affiliation(s)
- Jianxiang Jin
- Department of Neurosurgery, Li Huili Hospital, Ningbo Medical Center, Xingning Road 57th, Yinzhou District, Ningbo, 315000, China
| | - Maosong Chen
- Department of Neurosurgery, Li Huili Hospital, Ningbo Medical Center, Xingning Road 57th, Yinzhou District, Ningbo, 315000, China
| | - Hongcai Wang
- Department of Neurosurgery, Li Huili Hospital, Ningbo Medical Center, Xingning Road 57th, Yinzhou District, Ningbo, 315000, China
| | - Shiwei Li
- Department of Neurosurgery, Li Huili Hospital, Ningbo Medical Center, Xingning Road 57th, Yinzhou District, Ningbo, 315000, China
| | - Lei Ma
- Department of Neurosurgery, Li Huili Hospital, Ningbo Medical Center, Xingning Road 57th, Yinzhou District, Ningbo, 315000, China
| | - Boding Wang
- Department of Neurosurgery, Li Huili Hospital, Ningbo Medical Center, Xingning Road 57th, Yinzhou District, Ningbo, 315000, China.
| |
Collapse
|
6
|
Erdogan BR, Michel MB, Matthes J, Castañeda TR, Christen U, Arioglu-Inan E, Michel MC, Pautz A. A comparison of urinary bladder weight in male and female mice across five models of diabetes and obesity. Front Pharmacol 2023; 14:1118730. [PMID: 36891264 PMCID: PMC9986474 DOI: 10.3389/fphar.2023.1118730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction: Diabetes often leads to lower urinary tract dysfunction. The most frequently assessed parameter of urinary bladder dysfunction in animal models of diabetes is an enlargement of the bladder, which is consistently observed in type 1 and less consistently in type 2 diabetes. The vast majority of studies on bladder weight in animal models of diabetes and obesity has been performed in males, and no studies have directly compared this outcome parameter between sexes. Methods: Therefore, we have compared bladder weight and bladder/body weight ratio in five mouse models of obesity and diabetes (RIP-LCMV, db/db, ob/ob (two studies), insulin receptor substrate 2 (IRS2) knock-out mice and mice on a high-fat diet; pre-specified secondary analysis of a previously reported study). Results: In a pooled analysis of the control groups of all studies, females exhibited slightly lower glucose levels, lower body weight, and lower bladder weight, but bladder/body weight ratio was similar in both sexes (0.957 vs. 0.986 mg/g, mean difference 0.029 [-0.06; 0.118]). Among the six diabetic/obese groups, bladder/body weight ratio was similar in both sexes in three but smaller in female mice in three other groups. The mRNA expression of a panel of genes implied in the pathophysiology of bladder enlargement and/or fibrosis and inflammation did not differ systematically between sexes. Conclusions: We conclude that sex differences in diabetes/obesity-associated bladder enlargement may be model dependent.
Collapse
Affiliation(s)
- Betül R. Erdogan
- Department of Pharmacology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Türkiye
| | - Martina B. Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | - Jan Matthes
- Centre of Pharmacology, University Medical Center, University of Cologne, Cologne, Germany
| | | | - Urs Christen
- Pharmazentrum, Goethe University, Frankfurt, Germany
| | - Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Türkiye
| | - Martin C. Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
7
|
Effect of injection of different doses of isoproterenol on the hearts of mice. BMC Cardiovasc Disord 2022; 22:409. [PMID: 36096747 PMCID: PMC9469628 DOI: 10.1186/s12872-022-02852-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
Background Heart failure (HF) is one of the diseases that seriously threaten human health today and its mechanisms are very complex. Our study aims to confirm the optimal dose ISO-induced chronic heart failure mice model for better study of HF-related mechanisms and treatments in the future. Methods C57BL/6 mice were used to establish mice model of chronic heart failure. We injected isoproterenol subcutaneously in a dose gradient of 250 mg/kg, 200 mg/kg, 150 mg/kg, 100 mg/kg and 50 mg/kg. Echocardiography and ELISA were performed to figure out the occurrence of HF. We also supplemented the echocardiographic changes in mice over 30 days. Results Except group S and group E, echocardiographic abnormalities were found in other groups, suggesting a decrease in cardiac function. Except group S, myofibrolysis were found in the hearts of mice in other groups. Brain natriuretic peptide was significantly increased in groups B and D, and C-reactive protein was significantly increased in each group. Conclusion Our research finally found that the HFrEF mice model created by injection at a dose of 100 mg/kg for 7 days was the most suitable and a relatively stable chronic heart failure model could be obtained by placing it for 21 days. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02852-x.
Collapse
|
8
|
Cai Y, Zhou Y, Li Z, Xia P, ChenFu X, Shi A, Zhang J, Yu P. Non-coding RNAs in necroptosis, pyroptosis, and ferroptosis in cardiovascular diseases. Front Cardiovasc Med 2022; 9:909716. [PMID: 35990979 PMCID: PMC9386081 DOI: 10.3389/fcvm.2022.909716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Accumulating evidence has proved that non-coding RNAs (ncRNAs) play a critical role in the genetic programming and gene regulation of cardiovascular diseases (CVDs). Cardiovascular disease morbidity and mortality are rising and have become a primary public health issue that requires immediate resolution through effective intervention. Numerous studies have revealed that new types of cell death, such as pyroptosis, necroptosis, and ferroptosis, play critical cellular roles in CVD progression. It is worth noting that ncRNAs are critical novel regulators of cardiovascular risk factors and cell functions by mediating pyroptosis, necroptosis, and ferroptosis. Thus, ncRNAs can be regarded as promising therapeutic targets for treating and diagnosing cardiovascular diseases. Recently, there has been a surge of interest in the mediation of ncRNAs on three types of cell death in regulating tissue homeostasis and pathophysiological conditions in CVDs. Although our understanding of ncRNAs remains in its infancy, the studies reviewed here may provide important new insights into how ncRNAs interact with CVDs. This review summarizes what is known about the functions of ncRNAs in modulating cell death-associated CVDs and their role in CVDs, as well as their current limitations and future prospects.
Collapse
Affiliation(s)
- Yuxi Cai
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yiwen Zhou
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Panpan Xia
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of National Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Xinxi ChenFu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of National Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Ao Shi
- School of Medicine, University of Nicosia, Nicosia, Cyprus
- School of Medicine, St. George University of London, London, United Kingdom
| | - Jing Zhang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jing Zhang
| | - Peng Yu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- *Correspondence: Peng Yu
| |
Collapse
|
9
|
Walkowski B, Kleibert M, Majka M, Wojciechowska M. Insight into the Role of the PI3K/Akt Pathway in Ischemic Injury and Post-Infarct Left Ventricular Remodeling in Normal and Diabetic Heart. Cells 2022; 11:cells11091553. [PMID: 35563860 PMCID: PMC9105930 DOI: 10.3390/cells11091553] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 02/07/2023] Open
Abstract
Despite the significant decline in mortality, cardiovascular diseases are still the leading cause of death worldwide. Among them, myocardial infarction (MI) seems to be the most important. A further decline in the death rate may be achieved by the introduction of molecularly targeted drugs. It seems that the components of the PI3K/Akt signaling pathway are good candidates for this. The PI3K/Akt pathway plays a key role in the regulation of the growth and survival of cells, such as cardiomyocytes. In addition, it has been shown that the activation of the PI3K/Akt pathway results in the alleviation of the negative post-infarct changes in the myocardium and is impaired in the state of diabetes. In this article, the role of this pathway was described in each step of ischemia and subsequent left ventricular remodeling. In addition, we point out the most promising substances which need more investigation before introduction into clinical practice. Moreover, we present the impact of diabetes and widely used cardiac and antidiabetic drugs on the PI3K/Akt pathway and discuss the molecular mechanism of its effects on myocardial ischemia and left ventricular remodeling.
Collapse
Affiliation(s)
- Bartosz Walkowski
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
- Correspondence: (M.K.); (M.M.)
| | - Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
- Correspondence: (M.K.); (M.M.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|