1
|
Huang Q, Zhu L, Liu Y, Zhang Y. Thymic epithelial tumor medical treatment: A narrative review. Biochim Biophys Acta Rev Cancer 2024; 1879:189167. [PMID: 39117091 DOI: 10.1016/j.bbcan.2024.189167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Thymic epithelial tumors, a malignancy originating in the thymus, are the commonest primary neoplasm of the anterior mediastinum; however, among thoracic tumors, they have a relatively low incidence rare. Thymic epithelial tumors can be broadly classified into thymic carcinoma and thymoma. As the cornerstone of thymic tumor treatment, surgery is the preferred treatment for early-stage patients, whereas, for advanced unresectable thymic tumors, the treatment is chemoradiotherapy. Targeted therapy is less effective for thymic tumors. Moreover, the use of immune checkpoint inhibitors as another effective treatment option for advanced unresectable thymic tumors, particularly thymomas, is limited owing to immune-related adverse effects. Here, we have summarized all pertinent information regarding chemotherapy, especially preoperative neoadjuvant chemotherapy, and chemotherapy in combination with other treatments, and reviewed the effectiveness of these procedures and recent advances in targeted therapy. In addition, we analyzed the efficacy and safety of immune checkpoint inhibitors in thymic epithelial tumors, to provide a holistic treatment view.
Collapse
Affiliation(s)
- Qian Huang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyang Liu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Perrino M, Voulaz E, Balin S, Cazzato G, Fontana E, Franzese S, Defendi M, De Vincenzo F, Cordua N, Tamma R, Borea F, Aliprandi M, Airoldi M, Cecchi LG, Fazio R, Alloisio M, Marulli G, Santoro A, Di Tommaso L, Ingravallo G, Russo L, Da Rin G, Villa A, Della Bella S, Zucali PA, Mavilio D. Autoimmunity in thymic epithelial tumors: a not yet clarified pathologic paradigm associated with several unmet clinical needs. Front Immunol 2024; 15:1288045. [PMID: 38629065 PMCID: PMC11018877 DOI: 10.3389/fimmu.2024.1288045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/29/2024] [Indexed: 04/19/2024] Open
Abstract
Thymic epithelial tumors (TETs) are rare mediastinal cancers originating from the thymus, classified in two main histotypes: thymoma and thymic carcinoma (TC). TETs affect a primary lymphoid organ playing a critical role in keeping T-cell homeostasis and ensuring an adequate immunological tolerance against "self". In particular, thymomas and not TC are frequently associated with autoimmune diseases (ADs), with Myasthenia Gravis being the most common AD present in 30% of patients with thymoma. This comorbidity, in addition to negatively affecting the quality and duration of patients' life, reduces the spectrum of the available therapeutic options. Indeed, the presence of autoimmunity represents an exclusion criteria for the administration of the newest immunotherapeutic treatments with checkpoint inhibitors. The pathophysiological correlation between TETs and autoimmunity remains a mystery. Several studies have demonstrated the presence of a residual and active thymopoiesis in adult patients affected by thymomas, especially in mixed and lymphocytic-rich thymomas, currently known as type AB and B thymomas. The aim of this review is to provide the state of art in regard to the histological features of the different TET histotype, to the role of the different immune cells infiltrating tumor microenvironments and their impact in the break of central immunologic thymic tolerance in thymomas. We discuss here both cellular and molecular immunologic mechanisms inducing the onset of autoimmunity in TETs, limiting the portfolio of therapeutic strategies against TETs and greatly impacting the prognosis of associated autoimmune diseases.
Collapse
Affiliation(s)
- Matteo Perrino
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Emanuele Voulaz
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Simone Balin
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Gerardo Cazzato
- Section of Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Bari, Italy
| | - Elena Fontana
- Istituto di Ricerca Genetica e Biomedica (IRGB), National Research Council (CNR), Milan, Italy
- Human Genome and Biomedical Technologies Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Sara Franzese
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Martina Defendi
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Fabio De Vincenzo
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Nadia Cordua
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Roberto Tamma
- Section of Human Anatomy and Histology, Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari “Aldo Moro”, Bari, Italy
| | - Federica Borea
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Marta Aliprandi
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Marco Airoldi
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Luigi Giovanni Cecchi
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Roberta Fazio
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Marco Alloisio
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Giuseppe Marulli
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Armando Santoro
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Luca Di Tommaso
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Pathology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giuseppe Ingravallo
- Section of Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Bari, Italy
| | - Laura Russo
- Clinical Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giorgio Da Rin
- Clinical Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Anna Villa
- Istituto di Ricerca Genetica e Biomedica (IRGB), National Research Council (CNR), Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Della Bella
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Paolo Andrea Zucali
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Domenico Mavilio
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
3
|
Wang HJ, Jiang YP, Zhang JY, Tang XQ, Lou JS, Huang XY. Roles of Fascin in Dendritic Cells. Cancers (Basel) 2023; 15:3691. [PMID: 37509352 PMCID: PMC10378208 DOI: 10.3390/cancers15143691] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that play a crucial role in activating naive T cells through presenting antigen information, thereby influencing immunity and anti-cancer responses. Fascin, a 55-kDa actin-bundling protein, is highly expressed in mature DCs and serves as a marker protein for their identification. However, the precise role of fascin in intratumoral DCs remains poorly understood. In this review, we aim to summarize the role of fascin in both normal and intratumoral DCs. In normal DCs, fascin promotes immune effects through facilitating DC maturation and migration. Through targeting intratumoral DCs, fascin inhibitors enhance anti-tumor immune activity. These roles of fascin in different DC populations offer valuable insights for future research in immunotherapy and strategies aimed at improving cancer treatments.
Collapse
Affiliation(s)
- Hao-Jie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ya-Ping Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Jun-Ying Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiao-Qi Tang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Jian-Shu Lou
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA
| |
Collapse
|
4
|
Maniar R, Loehrer PJ. Understanding the landscape of immunotherapy in thymic epithelial tumors. Cancer 2023; 129:1162-1172. [PMID: 36808725 DOI: 10.1002/cncr.34678] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 02/22/2023]
Abstract
Thymic epithelial tumors (TETs) are a rare group of malignancies arising from the thymus. Surgery remains the foundation of treatment for patients with early-stage disease. Limited treatment options are available for the treatment of unresectable, metastatic, or recurrent TETs and are associated with modest clinical efficacy. The emergence of immunotherapies in the treatment of solid tumors has generated significant interest in understanding their role in TET treatment. However, the high rates of comorbid paraneoplastic autoimmune disorders, particularly in thymoma, have tempered expectations regarding the role of immune-based therapies. Clinical studies of immune checkpoint blockade (ICB) in thymoma and thymic carcinoma have revealed higher frequencies of immune-related adverse events (IRAEs) and limited efficacy. Despite these setbacks, the growing understanding of the thymic tumor microenvironment and systemic immune system has advanced the understanding of these diseases and provided opportunities for novel immunotherapy modalities. Ongoing studies are evaluating numerous immune-based treatments in TETs with the goal of improving clinical efficacy and mitigating IRAE risk. This review will provide insight into the current understanding of the thymic immune microenvironment, outcomes of previous ICB studies, and review treatments currently being explored for the management of TET.
Collapse
Affiliation(s)
- Rohan Maniar
- Department of Medicine, Division of Hematology & Oncology, Indiana University School of Medicine, Indiana Cancer Pavilion, Indianapolis, Indiana, USA
| | - Patrick J Loehrer
- Department of Medicine, Division of Hematology & Oncology, Indiana University School of Medicine, Indiana Cancer Pavilion, Indianapolis, Indiana, USA
| |
Collapse
|
5
|
Kuhn E, Pescia C, Mendogni P, Nosotti M, Ferrero S. Thymic Epithelial Tumors: An Evolving Field. Life (Basel) 2023; 13:314. [PMID: 36836670 PMCID: PMC9964105 DOI: 10.3390/life13020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Despite their rarity, thymic epithelial tumors (TETs) have attracted much interest over the years, leading to an impressive number of histological and staging classifications. At present, TETs are divided by the WHO classification into four main subtypes: type A, type AB, and type B thymomas (subdivided into B1, B2, and B3), and thymic carcinomas, going from the more indolent to the most aggressive ones. Among many debated staging proposals, the TNM and the Masaoka-Koga staging systems have been widely accepted and used in routine practice. The four-tiered histological classification is symmetrically mirrored by the molecular subgrouping of TETs, which identifies an A-like and an AB-like cluster, with frequent GTF2I and HRAS mutations; an intermediate B-like cluster, with a T-cell signaling profile; and a carcinoma-like cluster comprising thymic carcinomas with frequent CDKN2A and TP53 alterations and a high tumor molecular burden. Molecular investigations have opened the way to tailored therapies, such as tyrosine kinase inhibitors targeting KIT, mTOR, and VEGFR, and immune-checkpoints that have been adopted as second-line systemic treatments. In this review, we discuss the crucial events that led to the current understanding of TETs, while disclosing the next steps in this intriguing field.
Collapse
Affiliation(s)
- Elisabetta Kuhn
- S.C. Anatomia Patologica, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, 20122 Milano, Italy
| | - Carlo Pescia
- S.C. Anatomia Patologica, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, 20122 Milano, Italy
| | - Paolo Mendogni
- S.C. Chirurgia Toracica e Trapianti di Polmone, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Mario Nosotti
- S.C. Chirurgia Toracica e Trapianti di Polmone, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
- Dipartimento di Patofisiologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20122 Milano, Italy
| | - Stefano Ferrero
- S.C. Anatomia Patologica, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, 20122 Milano, Italy
| |
Collapse
|
6
|
Masaoutis C, Palamaris K, Kokkali S, Levidou G, Theocharis S. Unraveling the Immune Microenvironment of Thymic Epithelial Tumors: Implications for Autoimmunity and Treatment. Int J Mol Sci 2022; 23:ijms23147864. [PMID: 35887212 PMCID: PMC9323059 DOI: 10.3390/ijms23147864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Thymic Epithelial Tumors (TETs) represent a rare tumor family, originating from the epithelial component of the thymus gland. Clinicopathologically, they are segregated into six major subtypes, associated with distinct histological features and clinical outcomes. Their emergence and evolution are accompanied by the generation of a complex tumor microenvironment (TME), dominated by phenotypically and functionally divergent immune cellular subsets, in different maturation states and in analogies that vary significantly among different subtypes. These heterogenous leukocyte populations exert either immune-permissive and tumor-suppressive functions or vice versa, and the dynamic equilibrium established among them either dictates the tumor immune milieu towards an immune-tolerance state or enables the development of a productive spontaneous tumoricidal response. The immunologically “hot” microenvironment, defining a significant proportion of TETs, makes them a promising candidate for the implementation of immune checkpoint inhibitors (ICIs). A number of phase I and II clinical trials have already demonstrated significant, type-specific clinical efficacy of PD-L1 inhibitors, even though substantial limitations in their utilization derive from their immune-mediated adverse effects. Moreover, the completed clinical studies involved relatively restricted patient samples and an expansion in the enrolled cohorts is required, so that more trustworthy conclusions regarding the benefit from ICIs in TETs can be extracted.
Collapse
Affiliation(s)
- Christos Masaoutis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Str., Bld 10, Goudi, GR11527 Athens, Greece; (C.M.); (K.P.); (G.L.)
| | - Kostas Palamaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Str., Bld 10, Goudi, GR11527 Athens, Greece; (C.M.); (K.P.); (G.L.)
| | - Stefania Kokkali
- Oncology Unit, 2nd Department of Medicine, Medical School, National and Kapodistrian University of Athens, Hippocratio General Hospital of Athens, 114, V. Sofias Str., GR11527 Athens, Greece;
| | - Georgia Levidou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Str., Bld 10, Goudi, GR11527 Athens, Greece; (C.M.); (K.P.); (G.L.)
- Second Department of Pathology, Paracelsus Medical University, 90419 Nurenberg, Germany
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Str., Bld 10, Goudi, GR11527 Athens, Greece; (C.M.); (K.P.); (G.L.)
- Correspondence:
| |
Collapse
|
7
|
Yamada Y, Kurata A, Fujita K, Kuroda M. Fascin as a useful marker for cancer-associated fibroblasts in invasive lung adenocarcinoma. Medicine (Baltimore) 2021; 100:e27162. [PMID: 34477172 PMCID: PMC8416015 DOI: 10.1097/md.0000000000027162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/19/2021] [Indexed: 01/05/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) have been attracting attention in recent years, but their nature has not been fully elucidated. Although CAFs have been recognized as an important therapeutic target, therapeutic agents have not been developed to date. CAFs are characterized by their high migration rate and involvement in epithelial-to-mesenchymal transition with some displaying a dendritic morphology that is reminiscent of fascin expression.The present study was designed to immunohistochemically investigate fascin expression in lung adenocarcinoma including CAFs and compare the results with existing CAF markers.We immunohistochemically investigated fascin expression in not only cancer tissue but also CAFs from 26 autopsy cases of lung adenocarcinoma. Immunohistochemistry of α-smooth muscle actin and fibroblast activation protein was also performed.Fascin-positive staining in CAFs was observed in all cases, with a strong correlation observed with existing CAF markers α-smooth muscle actin and fibroblast activation protein (P < .001). In addition, the proportion of tumor cells showing fascin-positive staining was found to correlate with its expression in CAFs (P < .05).We propose that CAFs express fascin, and that fascin may mediate crosstalk between cancer tissue and CAFs. Fascin might be a novel therapeutic target for treatments that target the cancer stroma.
Collapse
|
8
|
Gutierrez S, Eisenach JC, Boada MD. Seeding of breast cancer cell line (MDA-MB-231 LUC+) to the mandible induces overexpression of substance P and CGRP throughout the trigeminal ganglion and widespread peripheral sensory neuropathy throughout all three of its divisions. Mol Pain 2021; 17:17448069211024082. [PMID: 34229504 PMCID: PMC8267036 DOI: 10.1177/17448069211024082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Some types of cancer are commonly associated with intense pain even at the early stages of the disease. The mandible is particularly vulnerable to metastasis from breast cancer, and this process has been studied using a bioluminescent human breast cancer cell line (MDA-MB-231LUC+). Using this cell line and anatomic and neurophysiologic methods in the trigeminal ganglion (TG), we examined the impact of cancer seeding in the mandible on behavioral evidence of hypersensitivity and on trigeminal sensory neurons. Growth of cancer cells seeded to the mandible after arterial injection of the breast cancer cell line in Foxn1 animals (allogeneic model) induced behavioral hypersensitivity to mechanical stimulation of the whisker pad and desensitization of tactile and sensitization of nociceptive mechanically sensitive afferents. These changes were not restricted to the site of metastasis but extended to sensory afferents in all three divisions of the TG, accompanied by widespread overexpression of substance P and CGRP in neurons through the ganglion. Subcutaneous injection of supernatant from the MDA-MB-231LUC+ cell culture in normal animals mimicked some of the changes in mechanically responsive afferents observed with mandibular metastasis. We conclude that released products from these cancer cells in the mandible are critical for the development of cancer-induced pain and that the overall response of the system greatly surpasses these local effects, consistent with the widespread distribution of pain in patients. The mechanisms of neuronal plasticity likely occur in the TG itself and are not restricted to afferents exposed to the metastatic cancer microenvironment.
Collapse
Affiliation(s)
| | | | - M Danilo Boada
- Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| |
Collapse
|
9
|
Umehara R, Kurata A, Takanashi M, Hashimoto H, Fujita K, Nagao T, Kuroda M. Fascin as a Useful Marker for Identifying Neural Components in Immature Teratomas of Human Ovary and Those Derived From Murine Embryonic Stem Cells. Int J Gynecol Pathol 2019; 38:377-385. [PMID: 29851865 DOI: 10.1097/pgp.0000000000000528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Immature teratoma of the human ovary is a rare disease, and its diagnosis and grading are currently based on histologic evaluation of the presence and amount of immature neural components in the tumor. Despite the importance of tumor grading, immature neural components especially without rosette formation are difficult to identify, partly because useful biomarkers for them are not yet available. Toward this goal, we investigated 16 immature teratomas from human ovaries as well as 10 of those derived from murine embryonic stem cells transplanted into immunodeficient mice. Immunohistochemistry was performed for cytokeratin, glial fibrillary acidic protein, S100, and fascin. It was demonstrated that glial fibrillary acidic protein and S100 expression was not observed in the immature neural components of immature teratomas derived from both human ovary and embryonic stem cells, although their expression was detected in mature neural tissues. In contrast, fascin immunopositivity was clearly found in both mature and immature neural components regardless of rosette formation in immature teratomas derived from both human ovary and embryonic stem cells. Assessment of immature neural components by fascin immunostaining yielded the same or slightly increased quantity than quantification based on hematoxylin and eosin staining. These results suggest that fascin immunostaining is useful as a biomarker in correctly diagnosing and grading human immature teratomas. Further, fascin immunostaining may contribute to the development of regenerative medicine through accurate assessment of the maturation status of pluripotent stem cell-derived tumors transplanted into immunodeficient mice.
Collapse
Affiliation(s)
- Ryunosuke Umehara
- Tokyo Medical University (R.U.) Departments of Molecular Pathology (A.K., M.T., K.F., M.K.) Anatomic Pathology (T.N.), Tokyo Medical University Department of Diagnostic Pathology, NTT Medical Center Tokyo (H.H.), Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Gutierrez S, Boada MD. Neuropeptide-induced modulation of carcinogenesis in a metastatic breast cancer cell line (MDA-MB-231 LUC+). Cancer Cell Int 2018; 18:216. [PMID: 30598641 PMCID: PMC6303888 DOI: 10.1186/s12935-018-0707-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022] Open
Abstract
Background Metastatic cancer to bone is well-known to produce extreme pain. It has been suggested that the magnitude of this perceived pain is associated with disease progression and poor prognosis. These data suggest a potential cross-talk between cancer cells and nociceptors that contribute not only to pain, but also to cancer aggressiveness although the underlying mechanisms are yet to be stablished. Methods The in vitro dose dependent effect of neuropeptides (NPs) (substance P [SP], calcitonin gene-related peptide and neurokinin A [NKA]) and/or its combination, on the migration and invasion of MDA-MB-231LUC+ were assessed by wound healing and collagen-based cell invasion assays, respectively. The effect of NPs on the expression of its receptors (SP [NK1] and neurokinin A receptors [NK2], CALCRL and RAMP1) and kininogen (high-molecular-weight kininogen) release to the cell culture supernatant of MDA-MB-231LUC+, were measured using western-blot analysis and an ELISA assay, respectively. Statistical significance was tested using one-way ANOVA, repeated measures ANOVA, or the paired t-test. Post-hoc testing was performed with correction for multiple comparisons as appropriate. Results Our data show that NPs strongly modify the chemokinetic capabilities of a cellular line commonly used as a model of metastatic cancer to bone (MDA-MB-231LUC+) and increased the expression of their receptors (NK1R, NK2R, RAMP1, and CALCRL) on these cells. Finally, we demonstrate that NPs also trigger the acute release of HMWK (Bradykinin precursor) by MDA-MB-231LUC+, a molecule with both tumorigenic and pro-nociceptive activity. Conclusions Based on these observations we conclude that NPs exposure modulates this breast cancer cellular line aggressiveness by increasing its ability to migrate and invade new tissues. Furthermore, these results also support the pro nociceptive and cancer promoter role of the peripheral nervous system, during the initial stages of the disease.
Collapse
Affiliation(s)
- Silvia Gutierrez
- Department of Anesthesiology, Pain Mechanisms Lab, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1009 USA
| | - M Danilo Boada
- Department of Anesthesiology, Pain Mechanisms Lab, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1009 USA
| |
Collapse
|
11
|
Elizondo DM, Andargie TE, Kubhar DS, Gugssa A, Lipscomb MW. CD40-CD40L cross-talk drives fascin expression in dendritic cells for efficient antigen presentation to CD4+ T cells. Int Immunol 2018; 29:121-131. [PMID: 28369442 DOI: 10.1093/intimm/dxx013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 03/17/2017] [Indexed: 01/10/2023] Open
Abstract
Fascin is an actin-bundling protein that, among immune cells, is restricted to expression in dendritic cells (DCs). Previous reports have suggested that fascin plays an important role in governing DC antigen presentation to CD4+ T cells. However, no report has clearly linked the receptor-ligand engagement that can direct downstream regulation of fascin expression. In this study, bone marrow-derived DCs from wild-type versus CD40-knockout C57BL/6 mice were used to elucidate the mechanisms of fascin expression and activity upon CD40-CD40 ligand (CD40L) engagement. These investigations now show that CD40 engagement governs fascin expression in DCs to promote CD4+ T-cell cytokine production. Absence of CD40 signaling resulted in diminished fascin expression in DCs and was associated with impaired CD4+ T-cell responses. Furthermore, the study found that loss of CD40-CD40L engagement resulted in reduced DC-T-cell contacts. Rescue by ectopic fascin expression in CD40-deficient DCs was able to re-establish sustained contacts with T cells and restore cytokine production. Taken together, these results show that cross-talk through CD40-CD40L signaling drives elevated fascin expression in DCs to support acquisition of full T-cell responses.
Collapse
Affiliation(s)
- Diana M Elizondo
- Biology Department, Howard University, 415 College Street NW, Washington, DC 20059, USA
| | - Temesgen E Andargie
- Biology Department, Howard University, 415 College Street NW, Washington, DC 20059, USA
| | - Dineeta S Kubhar
- Biology Department, Howard University, 415 College Street NW, Washington, DC 20059, USA
| | - Ayele Gugssa
- Biology Department, Howard University, 415 College Street NW, Washington, DC 20059, USA
| | - Michael W Lipscomb
- Biology Department, Howard University, 415 College Street NW, Washington, DC 20059, USA
| |
Collapse
|
12
|
Huh YH, Oh S, Yeo YR, Chae IH, Kim SH, Lee JS, Yun SJ, Choi KY, Ryu JH, Jun CD, Song WK. Swiprosin-1 stimulates cancer invasion and metastasis by increasing the Rho family of GTPase signaling. Oncotarget 2016; 6:13060-71. [PMID: 26079945 PMCID: PMC4536999 DOI: 10.18632/oncotarget.3637] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/23/2015] [Indexed: 11/25/2022] Open
Abstract
Ectopic expression of Swiprosin-1, an actin-binding protein (also known as EF hand domain containing 2; EFHD2), enhanced motile protrusions associated with actin, such as lamellipodia and membrane ruffles. Swiprosin-1 levels were increased in various human cancer tissues, particularly at highly invasive stages of malignant melanoma. Expression of Swiprosin-1 was correlated with that of epidermal growth factor receptor (EGFR) and induced by EGF. In a mouse metastasis model, Swiprosin-1 overexpression induced pulmonary metastasis whereas its knockdown led to marked inhibition of metastasis of highly invasive melanoma cells. Swiprosin-1 at the lamellipodia and membrane ruffles controlled the direction of cell protrusion and enhanced migration velocity through activating the Rho family of small GTPases, including Rac1, Cdc42 and RhoA. Our collective findings support the potential utility of Swiprosin-1 as a therapeutic target to prevent cancer invasion and metastasis.
Collapse
Affiliation(s)
- Yun Hyun Huh
- Bio Imaging and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Sena Oh
- Bio Imaging and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea.,School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Yu Ra Yeo
- Bio Imaging and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea.,School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - In Hee Chae
- Bio Imaging and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea.,School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - So Hee Kim
- Bio Imaging and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea.,School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Ji Shin Lee
- Department of Pathology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Sook Jung Yun
- Department of Dermatology, Chonnam National University Hospital, Gwangju, Korea
| | - Kyu Yeong Choi
- The Division of Natural Medical Sciences, College of Health Science, Chosun University, Gwangju, Korea
| | - Je-Hwang Ryu
- Dental Science Research Institute and Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Woo Keun Song
- Bio Imaging and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea.,School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
13
|
Tajima S, Takahashi T, Itaya T, Koda K, Neyatani H. Cystic synovial sarcoma of the pleura mimicking a cystic thymoma: a case report illustrating the role of decreased INI-1 expression in differential diagnosis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:3262-3269. [PMID: 26045850 PMCID: PMC4440159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 02/23/2015] [Indexed: 06/04/2023]
Abstract
Less than 40 cases of primary pleural synovial sarcoma (SS) have been reported to date. Furthermore, only three cases of cystic SS have been documented in the English literature, including cases originating from sites other than the pleura. Herein, we present an exceedingly rare case of cystic SS originating from the mediastinal side of the visceral pleura in an asymptomatic 47-year-old man, which was detected during a checkup. On contrast-enhanced computed tomography, distinguishing between cystic SS and cystic thymoma was difficult because the tumor was attached to the anterior mediastinum where the latter type of malignancy is more often detected. Histopathological examination showed tumor cells with spindled morphology showing hypercellularity and moderate nuclear atypia, with less than one mitotic figure per high-power field. As these features are associated with both monophasic fibrous SS and type A thymoma, more data was required to determine proper diagnosis, and therefore, immunohistochemistry was performed. Along with a conventional panel of markers, the SS-specific marker integrase interactor 1 (INI-1) was applied and found to be decreased; decreased expression of INI-1 is characteristic of SS. A diagnosis of SS was confirmed by detection of the SYT-SSX fusion gene via fluorescence in situ hybridization. Given the relatively common availability of INI-1 testing in departments of pathology, this protein would be helpful incorporated into the standard panel of markers for diagnosing SS.
Collapse
Affiliation(s)
- Shogo Tajima
- Department of Pathology, Shizuoka Saiseikai General HospitalShizuoka, Japan
| | - Tsuyoshi Takahashi
- Department of Chest Surgery, Fujieda Municipal General HospitalShizuoka, Japan
| | - Toru Itaya
- Department of Chest Surgery, Fujieda Municipal General HospitalShizuoka, Japan
| | - Kenji Koda
- Department of Pathology, Fujieda Municipal General HospitalShizuoka, Japan
| | - Hiroshi Neyatani
- Department of Chest Surgery, Fujieda Municipal General HospitalShizuoka, Japan
| |
Collapse
|
14
|
Omatsu M, Kunimura T, Mikogami T, Shiokawa A, Nagai T, Masunaga A, Kitami A, Suzuki T, Kadokura M. Difference in distribution profiles between CD163+ tumor-associated macrophages and S100+ dendritic cells in thymic epithelial tumors. Diagn Pathol 2014; 9:215. [PMID: 25499804 PMCID: PMC4302590 DOI: 10.1186/s13000-014-0215-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/26/2014] [Indexed: 12/23/2022] Open
Abstract
Background In a number of human malignancies, tumor-associated macrophages (TAMs) are closely involved in tumor progression. On the other hand, dendritic cells (DCs) that infiltrate tumor tissues are involved in tumor suppression. However, there have been very few reports on the distribution profiles of TAMs and DCs in thymic epithelial tumors. We examined the difference in the distribution profiles between TAMs and DCs in thymoma and thymic carcinoma. Methods We examined 69 samples of surgically resected thymic epithelial tumors, namely, 16 thymic carcinomas and 53 thymomas, in which we immunohistochemically evaluated the presence of TAMs using CD68 and CD163 as markers and DCs using S100 as the marker in tumor tissue samples in comparison with normal thymic tissues. Results The percentage of samples with a large number of CD68+ TAMs was not significantly different between thymic carcinoma and thymoma (7/16 versus 16/53, p = 0.904). However, the percentage of sample with a large number of CD163+ TAMs was significantly higher in thymic carcinoma than in thymoma (15/16 versus 34/53, p = 0.024). In contrast, the percentage of samples with a large number of S100+ DCs was significantly lower in thymic carcinoma than in thymoma (2/16 versus 23/53, p = 0.021). Conclusions To the best of our knowledge, we are the first to show a high percentage of CD163+ TAMs and a low percentage of S100+ DCs in thymic carcinoma samples, and our findings may provide an idea for future targeted therapeutic strategies for thymic carcinoma using antibodies that inhibit monocyte differentiation to TAMs, thereby skewing TAMs differentiation toward DCs. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_215
Collapse
Affiliation(s)
- Mutsuko Omatsu
- Department of Clinico-diagnostic Pathology, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo, Tsuzuki-ku, Yokohama, 224-8503, Japan.
| | - Toshiaki Kunimura
- Department of Clinico-diagnostic Pathology, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo, Tsuzuki-ku, Yokohama, 224-8503, Japan.
| | - Tetsuya Mikogami
- Department of Clinico-diagnostic Pathology, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo, Tsuzuki-ku, Yokohama, 224-8503, Japan.
| | - Akira Shiokawa
- Department of Clinico-diagnostic Pathology, Showa University Northern Yokohama Hospital, 35-1 Chigasaki-chuo, Tsuzuki-ku, Yokohama, 224-8503, Japan.
| | - Tomoko Nagai
- Department of Clinico-diagnostic Pathology, Showa University School of Medicine, Tokyo, Japan.
| | - Atsuko Masunaga
- Respiratory Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan.
| | - Akihiko Kitami
- Respiratory Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan.
| | - Takashi Suzuki
- Respiratory Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan.
| | - Mitsutaka Kadokura
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Showa University School of Medicine, Tokyo, Japan.
| |
Collapse
|
15
|
Yang Z, Sun J, Yang X, Zhang Z, Lou B, Xiong J, Schluesener HJ, Zhang Z. Accumulation of fascin+ cells during experimental autoimmune neuritis. Diagn Pathol 2013; 8:213. [PMID: 24369046 PMCID: PMC3877979 DOI: 10.1186/1746-1596-8-213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 11/27/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Experimental autoimmune neuritis (EAN) is a well-known animal model of human demyelinating polyneuropathies and is characterized by inflammation and demyelination in the peripheral nervous system. Fascin is an evolutionarily highly conserved cytoskeletal protein of 55 kDa containing two actin binding domains that cross-link filamentous actin to hexagonal bundles. METHODS Here we have studied by immunohistochemistry the spatiotemporal accumulation of Fascin + cells in sciatic nerves of EAN rats. RESULTS A robust accumulation of Fascin + cell was observed in the peripheral nervous system of EAN which was correlated with the severity of neurological signs in EAN. CONCLUSION Our results suggest a pathological role of Fascin in EAN. VIRTUAL SLIDES The virtual slides for this article can be found here: http://www.diagnosticphatology.diagnomx.eu/vs/6734593451114811.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhiren Zhang
- Institute of Immunology, Third Military Medical University of PLA, 30 Gaotanyan Main Street, Chongqing 400038, People's Republic of China.
| |
Collapse
|
16
|
Khaki F, Javanbakht J, Sasani F, Gharagozlou MJ, Bahrami A, Moslemzadeh H, Sheikhzadeh R. Cervical type AB thymoma (Mixed) tumour diagnosis in a mynah as a model to study human: clinicohistological, immunohistochemical and cytohistopathological study. Diagn Pathol 2013; 8:98. [PMID: 23777537 PMCID: PMC3702390 DOI: 10.1186/1746-1596-8-98] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 06/03/2013] [Indexed: 11/25/2022] Open
Abstract
Abstract Thymoma is a primary mediastinal neoplasm arising from or exhibiting differentiation towards thymic epithelial cells, typically with the presence of non-neoplastic lymphocytes. A 13-year-old male Mynah bird (acridotheres tristis) was presented for evaluation of a 2.3 × 1.5 × 1.0 cm mass in the left ventrolateral cervical region. The clinical signs, radiology, cytohistopathology and immunohistochimy findings related to the thymoma are presented. These findings indicated that the tumor was a type AB thymoma according to the World Health Organization (WHO) and veterinary classification. Thymomas are rarely reported in avian species and this is the first report in a Mynah bird. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1159525819982779.
Collapse
|
17
|
Kurata A, Saji H, Ikeda N, Kuroda M. Intracaval and intracardiac extension of invasive thymoma complicated by superior and inferior vena cava syndrome. Pathol Int 2013; 63:56-62. [PMID: 23356226 DOI: 10.1111/pin.12023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/24/2012] [Indexed: 11/28/2022]
Abstract
We present a case of an aged male with invasive thymoma that extended into the right atrium and led to superior and inferior vena cava syndrome. The patient initially presented with edema of the face and bilateral lower extremities. Echocardiography revealed a mass within the right atrium. Imaging studies demonstrated an anterior mediastinal tumor that continuously occupied the bilateral brachiocephalic veins, superior vena cava, and right atrium. Pathological diagnosis of the tumor biopsy was highly suspicious of thymoma. Due to the high risk of wide spread of the tumor, treatments including resection of the tumor were impossible. Several days later he died, and an autopsy was performed. The tumor was type B2 thymoma invading bilateral brachiocephalic veins, superior vena cava and right atrium. Multiple tumor emboli within the pulmonary arteries were identified. Direct cause of death was deemed to be tumor strangulation at the tricuspid orifice. In addition to the superior vena cava syndrome, inferior vena cava syndrome including ectasia of the intrahepatic vessels was confirmed along with pericarditis. To our knowledge, this is the first English report of an autopsy case of intracardiac thymoma extension, and a detailed literature review of similar cases is also presented.
Collapse
Affiliation(s)
- Atsushi Kurata
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan.
| | | | | | | |
Collapse
|
18
|
Abstract
In order to metastasize away from the primary tumor site and migrate into adjacent tissues, cancer cells will stimulate cellular motility through the regulation of their cytoskeletal structures. Through the coordinated polymerization of actin filaments, these cells will control the geometry of distinct structures, namely lamella, lamellipodia and filopodia, as well as the more recently characterized invadopodia. Because actin binding proteins play fundamental functions in regulating the dynamics of actin polymerization, they have been at the forefront of cancer research. This review focuses on a subset of actin binding proteins involved in the regulation of these cellular structures and protrusions, and presents some general principles summarizing how these proteins may remodel the structure of actin. The main body of this review aims to provide new insights into how the expression of these actin binding proteins is regulated during carcinogenesis and highlights new mechanisms that may be initiated by the metastatic cells to induce aberrant expression of such proteins.
Collapse
Affiliation(s)
- Stephane R Gross
- School of Life and Health Sciences, Aston University, Birmingham, UK.
| |
Collapse
|