1
|
Solidoro R, Centonze A, Miciaccia M, Baldelli OM, Armenise D, Ferorelli S, Perrone MG, Scilimati A. Fluorescent imaging probes for in vivo ovarian cancer targeted detection and surgery. Med Res Rev 2024; 44:1800-1866. [PMID: 38367227 DOI: 10.1002/med.22027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/05/2023] [Accepted: 01/25/2024] [Indexed: 02/19/2024]
Abstract
Ovarian cancer is the most lethal gynecological cancer, with a survival rate of approximately 40% at five years from the diagno. The first-line treatment consists of cytoreductive surgery combined with chemotherapy (platinum- and taxane-based drugs). To date, the main prognostic factor is related to the complete surgical resection of tumor lesions, including occult micrometastases. The presence of minimal residual diseases not detected by visual inspection and palpation during surgery significantly increases the risk of disease relapse. Intraoperative fluorescence imaging systems have the potential to improve surgical outcomes. Fluorescent tracers administered to the patient may support surgeons for better real-time visualization of tumor lesions during cytoreductive procedures. In the last decade, consistent with the discovery of an increasing number of ovarian cancer-specific targets, a wide range of fluorescent agents were identified to be employed for intraoperatively detecting ovarian cancer. Here, we present a collection of fluorescent probes designed and developed for fluorescence-guided ovarian cancer surgery. Original articles published between 2011 and November 2022 focusing on fluorescent probes, currently under preclinical and clinical investigation, were searched in PubMed. The keywords used were targeted detection, ovarian cancer, fluorescent probe, near-infrared fluorescence, fluorescence-guided surgery, and intraoperative imaging. All identified papers were English-language full-text papers, and probes were classified based on the location of the biological target: intracellular, membrane, and extracellular.
Collapse
Affiliation(s)
- Roberta Solidoro
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Antonella Centonze
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Morena Miciaccia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Olga Maria Baldelli
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Domenico Armenise
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Savina Ferorelli
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | | | - Antonio Scilimati
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| |
Collapse
|
2
|
Shwyiat R, Taso OA, Al-Edwan F, Khreisat B, Al-Dubees A. Retrospective analysis of patients with surgically proven ovarian torsion, our experience. J Family Med Prim Care 2023; 12:637-643. [PMID: 37312776 PMCID: PMC10259567 DOI: 10.4103/jfmpc.jfmpc_1450_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/17/2022] [Accepted: 10/17/2022] [Indexed: 06/15/2023] Open
Abstract
Aim To study the patients who were admitted to our hospital with surgically proven ovarian torsion and were operated for the same and to study for whom detorsion was done. Materials and Methods A retrospective analysis of the medical records and surgical notes of 150 patients with surgically proven ovarian torsion over a 10-year period between January 2011 and January 2021 was carried out. Surgical notes included details like mode of the surgery (laparotomy or laparoscopy), type of surgery (oophorectomy, detorsion, detorsion with cystectomy), whether fixation was done or not, size of mass/ovary, laterality, appearance of the torted ovary, color of the ovary, and number of twists. Histopathologic reports of the patients who underwent oophorectomy or detorsion with cystectomy were also recorded. Results During the 10-year study period, 88 (58.7%) patients had undergone laparotomy and 62 (41.2%) patients had undergone laparoscopy. Detorsion with cystectomy was done in 96 (64%) cases, detorsion alone in 14 (9.3%) cases, and oophorectomy was done in 40 (26.6%) cases. There was no significant difference in terms of increase in postoperative complications. Conclusion Laparoscopic detorsion with cystectomy is the most common surgical procedure used for ovarian torsion at King Hussein Medical Center.
Collapse
Affiliation(s)
- Rami Shwyiat
- Department of Obstetrics and Gynecology, Royal Medical Services, King Hussain Medical Center, Amman, Jordan
| | - Omar A. Taso
- Department of Obstetrics and Gynecology, Royal Medical Services, King Hussain Medical Center, Amman, Jordan
| | - Fatima Al-Edwan
- Department of Obstetrics and Gynecology, Royal Medical Services, King Hussain Medical Center, Amman, Jordan
| | - Basel Khreisat
- Department of Obstetrics and Gynecology, Royal Medical Services, King Hussain Medical Center, Amman, Jordan
| | - Ammal Al-Dubees
- Department of Obstetrics and Gynecology, Royal Medical Services, King Hussain Medical Center, Amman, Jordan
| |
Collapse
|
3
|
Wolak D, Hrabia A. Ovarian mRNA Expression and Regulation of Matrix Metalloproteinase 16 in the Domestic Hen. Folia Biol (Praha) 2022. [DOI: 10.3409/fb_70-4.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In mammals, membrane-bound matrix metalloproteinases (MT-MMPs) are thought to play an important role in ovarian remodeling. However, the role and regulation of these proteases in the ovary of birds remain largely unknown. One of MT-MMPs, i. e., MMP-16, has been found in the hen ovary;
therefore, this study was undertaken to examine whether the transcript level of MMP-16 changes during follicle development and whether gonadotropins and estrogen are involved in the regulation of this enzyme expression. The relative expression of MMP-16 mRNA in the ovarian follicles (white,
yellowish, small yellow, and the granulosa and theca layers of three of the largest yellow preovulatory [F3-F1]) was examined 22 h and 3 h before F1 follicle ovulation as well as following equine chorionic gonadotropin (eCG) or tamoxifen (estrogen receptor modulator, TMX) treatments by quantitative
real-time polymerase chain reaction (qRT-PCR). MMP-16 transcripts were detected in all examined ovarian tissues of control and treated hens. The relative expression of MMP-16 depended on follicular size/maturation and the layer of the follicular wall. A relatively higher expression of MMP-16
mRNA in the granulosa layer at 3 h compared to 22 h before ovulation of F1 was found. The injections of eCG decreased transcript abundance of MMP-16 in white and small yellow follicles, as well as in the theca layer of F3-F2 and the granulosa layer of the F1 follicle. In turn, TMX caused an
increase in mRNA expression of MMP-16 in the theca layer of the largest preovulatory follicles and a decrease in the granulosa layer of the F1 follicle. Our results provide the first mRNA expression analysis of MMP-16 in the hen ovary under different physiological states. In addition, results
indicate a possible role of gonadotropins and estrogen in regulating the transcription of MMP-16 in the chicken ovary.
Collapse
Affiliation(s)
- Dominika Wolak
- Department of Animal Physiology and Endocrinology, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059 Kraków, Poland
| | - Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059 Kraków, Poland
| |
Collapse
|
4
|
Pal P, Starkweather KN, Hales KH, Hales DB. A Review of Principal Studies on the Development and Treatment of Epithelial Ovarian Cancer in the Laying Hen Gallus gallus. Comp Med 2021; 71:271-284. [PMID: 34325771 DOI: 10.30802/aalas-cm-20-000116] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Often referred to as the silent killer, ovarian cancer is the most lethal gynecologic malignancy. This disease rarely shows any physical symptoms until late stages and no known biomarkers are available for early detection. Because ovarian cancer is rarely detected early, the physiology behind the initiation, progression, treatment, and prevention of this disease remains largely unclear. Over the past 2 decades, the laying hen has emerged as a model that naturally develops epithelial ovarian cancer that is both pathologically and histologically similar to that of the human form of the disease. Different molecular signatures found in human ovarian cancer have also been identified in chicken ovarian cancer including increased CA125 and elevated E-cadherin expression, among others. Chemoprevention studies conducted in this model have shown that decreased ovulation and inflammation are associated with decreased incidence of ovarian cancer development. The purpose of this article is to review the major studies performed in laying hen model of ovarian cancer and discuss how these studies shape our current understanding of the pathophysiology, prevention, and treatment of epithelial ovarian cancer.
Collapse
Affiliation(s)
- Purab Pal
- Department of Physiology, Southern Illinois University, Carbondale, Illinois
| | | | - Karen Held Hales
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, Illinois
| | - Dale Buchanan Hales
- Department of Physiology, Southern Illinois University, Carbondale, Illinois; Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, Illinois;,
| |
Collapse
|
5
|
Matrix Metalloproteinases (MMPs) and Inhibitors of MMPs in the Avian Reproductive System: An Overview. Int J Mol Sci 2021; 22:ijms22158056. [PMID: 34360823 PMCID: PMC8348296 DOI: 10.3390/ijms22158056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/31/2022] Open
Abstract
Many matrix metalloproteinases (MMPs) are produced in the mammalian reproductive system and participate in the regulation of its functions. In birds, the limited information available thus far indicates that MMPs are significant regulators of avian ovarian and oviductal functions, too. Some MMPs and inhibitors of MMPs are present in the hen reproductive tissues and their abundances and/or activities change according to the physiological state. The intraovarian role of MMPs likely includes the remodeling of the extracellular matrix (ECM) during folliculogenesis, follicle atresia, and postovulatory regression. In the oviduct, MMPs are also involved in ECM turnover during oviduct development and regression. This study provides a review of the current knowledge on the presence, activity, and regulation of MMPs in the female reproductive system of birds.
Collapse
|
6
|
Hrabia A, Wolak D, Sechman A. Response of the matrix metalloproteinase system of the chicken ovary to prolactin treatment. Theriogenology 2021; 169:21-28. [PMID: 33915314 DOI: 10.1016/j.theriogenology.2021.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
The expression and activity of several matrix metalloproteinases (MMPs) has been demonstrated in the chicken ovary during various physiological states; these data indicate that MMPs are involved in the remodeling of the extracellular matrix (ECM) during follicle development, ovulation, atresia, and regression. The regulation of MMPs in the avian ovary, however, remains largely unknown. The present study aimed to examine the effect of recombinant chicken prolactin (chPRL) treatment on the expression of selected MMPs and their tissue inhibitors (TIMPs), as well as MMP-2 and MMP-9 activity in the hen ovary. Real-time polymerase chain reaction revealed changes in the mRNA expression of MMP-2, MMP-7, MMP-9, MMP-10, MMP-13, TIMP-2, and TIMP-3 in the following ovarian follicles: white, yellowish, small yellow, and the largest yellow preovulatory (F3-F1). Western blot analysis showed alterations in the abundance of latent and active forms of the MMP-2 protein, as well as the abundance of the MMP-9 protein. Moreover, minor changes in MMP-2 and MMP-9 total activities were found in ovarian follicles of chPRL-treated hens. The response to chPRL treatment depended upon the stage of follicle development, the layer of follicular wall, and the type of MMPs or TIMPs studied. In general, the results indicate that chPRL, is a positive regulator of MMP expression in the yellow preovulatory follicles. Our findings suggest that PRL participates in the mechanisms orchestrating ECM turnover during ovarian follicular development in the hen ovary via regulating the transcription, translation, and/or activity of some constituents of the MMP system.
Collapse
Affiliation(s)
- Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Krakow, Poland.
| | - Dominika Wolak
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Krakow, Poland
| | - Andrzej Sechman
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|
7
|
Wolak D, Hrabia A. Alternations in the expression of selected matrix metalloproteinases (MMP-2, -9, -10, and -13) and their tissue inhibitors (TIMP-2 and -3) and MMP-2 and -9 activity in the chicken ovary during pause in laying induced by fasting. Theriogenology 2020; 161:176-186. [PMID: 33333443 DOI: 10.1016/j.theriogenology.2020.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/02/2020] [Accepted: 12/06/2020] [Indexed: 01/12/2023]
Abstract
Matrix metalloproteinases (MMPs) are a large group of proteolytic enzymes involved in extracellular matrix turnover in the ovary. Under physiological conditions, the activity of MMPs is controlled by specific tissue inhibitors of MMPs (TIMPs). Information concerning the role and regulation of MMPs in the chicken ovary is scarce. This study was undertaken to examine the expression of selected MMPs and their TIMPs in the chicken ovary during a pause in egg laying induced by feed deprivation. The activities of MMP-2 and MMP-9 were investigated as well. Real-time polymerase chain reaction and Western blot analyses showed changes in the expression of gelatinases (MMP-2, MMP-9), stromelysin (MMP-10), collagenase (MMP-13), TIMP-2, and TIMP-3 on mRNA and/or protein levels in the prehierarchical white (WFs) and yellowish (YFs) follicles, as well as in the largest yellow preovulatory (F3-F1) follicles. In feed-deprived hens, the occurrence of ovarian regression was accompanied by (1) a pronounced decrease in mRNA expression of the examined MMPs and TIMP-3 in all tissues except the YFs where the expression of MMP-13 was higher than in the control hen ovary; (2) an increase in the transcript abundance of TIMP-2 in the yellow atretic follicles; (3) a decrease or no changes in MMP-2 and MMP-9 protein expression in all tissues; (4) an increase in the total activity of gelatinases in the YFs and theca layer of F3; and (5) a decrease in the activity of MMP-2 in F3-F1 follicles and MMP-9 in the theca of F3. In summary, the results of the current study suggest that the selected MMPs and TIMPs may not be involved in the regulation of the advanced stages of atresia of the largest yellow preovulatory follicles in the chicken ovary. This event may require different cell signaling pathways.
Collapse
Affiliation(s)
- Dominika Wolak
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059, Krakow, Poland.
| |
Collapse
|
8
|
Wolak D, Sechman A, Hrabia A. Effect of eCG treatment on gene expression of selected matrix metalloproteinases (MMP-2, MMP-7, MMP-9, MMP-10, and MMP-13) and the tissue inhibitors of metalloproteinases (TIMP-2 and TIMP-3) in the chicken ovary. Anim Reprod Sci 2020; 224:106666. [PMID: 33260067 DOI: 10.1016/j.anireprosci.2020.106666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 01/30/2023]
Abstract
Several metalloproteinases (MMPs) are present and functional in the chicken ovary and regulate the extracellular matrix (ECM) during follicle development, ovulation, atresia, and regression. The regulation of the abundance of MMPs in avian ovarian follicles, however, is largely unknown. The aim of the present study was to examine effects of equine chorionic gonadotropin (eCG) on abundance of selected MMPs and relevant tissue inhibitors of MMPs (TIMPs) in the hen ovary. The MMP-2 and MMP-9 activity was also determined. Results indicated there were effects of eCG on abundances of MMP-2, MMP-7, MMP-9, MMP-10, MMP-13, TIMP-2, and TIMP-3 mRNA transcript and/or protein relative abundances in white, yellowish, small yellow, and the largest yellow preovulatory (F3-F1) ovarian follicles. The response to eCG depended on the stage of follicle development, layer of follicular wall, and the type of MMPs or TIMPs affected by eCG. Furthermore, there was a pause in egg laying when eCG was administered and there were morphological changes in the ovary following eCG treatment that were associated with alterations in MMP-2 and MMP-9 activity. In general, the results indicate that eCG, which has primarily follicle stimulating hormone (FSH)-like bioactivities, is a negative regulator of MMP abundance and activity in the largest yellow preovulatory follicles. Results from the present study indicate the gonadotropins, especially FSH, by the regulation of transcription, translation, and/or activity of proteins of the MMP system have effects on the mechanisms that underlie ECM remodeling and cell function throughout ovarian follicle development in the chicken ovary.
Collapse
Affiliation(s)
- Dominika Wolak
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 24/28, Krakow, 30-059, Poland
| | - Andrzej Sechman
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 24/28, Krakow, 30-059, Poland
| | - Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 24/28, Krakow, 30-059, Poland.
| |
Collapse
|
9
|
Azizi M, Dianat-Moghadam H, Salehi R, Farshbaf M, Iyengar D, Sau S, Iyer AK, Valizadeh H, Mehrmohammadi M, Hamblin MR. Interactions Between Tumor Biology and Targeted Nanoplatforms for Imaging Applications. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910402. [PMID: 34093104 PMCID: PMC8174103 DOI: 10.1002/adfm.201910402] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Indexed: 05/04/2023]
Abstract
Although considerable efforts have been conducted to diagnose, improve, and treat cancer in the past few decades, existing therapeutic options are insufficient, as mortality and morbidity rates remain high. Perhaps the best hope for substantial improvement lies in early detection. Recent advances in nanotechnology are expected to increase the current understanding of tumor biology, and will allow nanomaterials to be used for targeting and imaging both in vitro and in vivo experimental models. Owing to their intrinsic physicochemical characteristics, nanostructures (NSs) are valuable tools that have received much attention in nanoimaging. Consequently, rationally designed NSs have been successfully employed in cancer imaging for targeting cancer-specific or cancer-associated molecules and pathways. This review categorizes imaging and targeting approaches according to cancer type, and also highlights some new safe approaches involving membrane-coated nanoparticles, tumor cell-derived extracellular vesicles, circulating tumor cells, cell-free DNAs, and cancer stem cells in the hope of developing more precise targeting and multifunctional nanotechnology-based imaging probes in the future.
Collapse
Affiliation(s)
- Mehdi Azizi
- Proteomics Research Centre, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Hassan Dianat-Moghadam
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5165665621, Iran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Tabriz 516615731, Iran
| | - Masoud Farshbaf
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 6581151656, Iran
| | - Disha Iyengar
- U-BiND Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Samaresh Sau
- U-BiND Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Arun K Iyer
- U-BiND Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Hadi Valizadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Tabriz 516615731, Iran
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
10
|
Wolak D, Hrabia A. Tamoxifen-induced alterations in the expression of selected matrix metalloproteinases (MMP-2, -9, -10, and -13) and their tissue inhibitors (TIMP-2 and -3) in the chicken ovary. Theriogenology 2019; 148:208-215. [PMID: 31753476 DOI: 10.1016/j.theriogenology.2019.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/04/2019] [Accepted: 11/09/2019] [Indexed: 11/26/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of peptidases that disintegrate extracellular matrix (ECM) molecules associated with tissue remodeling, including reproductive tissues. Their actions are largely controlled by specific tissue inhibitors of MMPs (TIMPs). The role and regulation of MMPs in the chicken ovary is largely unknown. The aim of the present study was to examine the effect of tamoxifen (TMX; estrogen receptor modulator) treatment on the expression of selected members of the MMP system in the laying hen ovary. The activity of MMP-2 and -9 was also examined. Real-time polymerase chain reaction and western blot analyses revealed changes in mRNA and/or protein expression of MMP-2, -9, -10, -13, TIMP-2, and TIMP-3 in the following ovarian follicles after TMX treatment: white (WF), yellowish (YF), small yellow (SYF), and the largest yellow preovulatory (F3-F1). The response to TMX depended on the stage of follicle development and the layer of follicular wall. Moreover, ovarian regression following TMX treatment was accompanied by both an increase in total activity of MMP-2 in the theca layer of F3-F2 and granulosa layer of F2, and a decrease in total activity of MMP-2 in the WF, YF, and SYF, and MMP-9 in theca of F3-F1. In conclusion, the TMX-induced changes in MMP-2, -9, -10, and -13, and TIMP-2 and -3 mRNA expression, as well as MMP-2 and -9 activity, were dependent on tissue and the stage of follicular maturation. Our findings strongly suggests a role for estrogen in regulating the transcription, translation, and/or posttranslational activity of members of the MMP system. Further, these components may be involved in the orchestration of ECM turnover and cellular functions during ovary regression, which occur under conditions of reduced estrogenic activity.
Collapse
Affiliation(s)
- Dominika Wolak
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland.
| |
Collapse
|
11
|
Matrix Metalloproteinase Expressions Play Important role in Prediction of Ovarian Cancer Outcome. Sci Rep 2019; 9:11677. [PMID: 31406154 PMCID: PMC6691000 DOI: 10.1038/s41598-019-47871-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 06/12/2019] [Indexed: 11/11/2022] Open
Abstract
Ovarian cancer has a high death rate and is often not detected until late stages. While some studies found high expressions of MMPs correlated with cancer invasion, metastasis, and poor prognosis, however, several other studies indicated MMPs might inhibit cancer rather than promote cancer in certain situations. Thus, the role of different MMPs in different cancer types needs a systematic re-evaluation. In this study, we used RNA-Seq and corresponding clinical data downloaded from TCGA and analyzed the correlations between MMP expressions and the clinicopathologic characteristics and outcome in ovarian serous cystadenocarcinoma (OSC) patients. Among the MMPs investigated, MMP-3 was significantly increased in high-grade and high-stage tumors compared with low-grade and low-stage ones. Using univariate analysis and multivariate Cox model, high expressions of MMP-19 and -20 were found to associate with poor overall survival independent of clinicopathologic characteristics. Moreover, using in vitro studies, we found ovarian cancer cell lines with higher MMP-19 and -20 protein expressing levels were associated with anti-cancer drugs resistance, while knockdown of MMP-19 or -20 increased ovarian cancer cell sensitivities to several clinical using chemotherapy agents. Finally, knockdown of MMP-19 or -20 also decreased the invasion abilities of several ovarian cancer cell lines. These in vitro studies provided potential mechanisms of high MMP-19 and -20 expressions in the poor prognosis of ovarian cancer.
Collapse
|
12
|
Hrabia A, Wolak D, Kwaśniewska M, Kieronska A, Socha JK, Sechman A. Expression of gelatinases (MMP-2 and MMP-9) and tissue inhibitors of metalloproteinases (TIMP-2 and TIMP-3) in the chicken ovary in relation to follicle development and atresia. Theriogenology 2018; 125:268-276. [PMID: 30481606 DOI: 10.1016/j.theriogenology.2018.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/14/2018] [Accepted: 11/18/2018] [Indexed: 12/21/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of peptidases that possess the ability to break down extracellular matrix macromolecules associated with tissue turnover in various physiological and pathological conditions. Their activity is largely regulated by specific tissue inhibitors of MMPs (TIMPs). Information concerning the role of MMPs in the chicken ovary is very limited. The aim of the present study was to determine the expression and localization of selected members of the MMP system in different compartments of the laying hen ovary and to investigate whether their expression changes at different stages of the ovulatory cycle. MMP-2 and -9 activity was also examined. Expression of MMP-2, -9 and tissue inhibitors of MMPs (TIMP-2 and -3) in the ovarian follicles was examined 22 h and 3 h before F1 ovulation. Real-time polymerase chain reaction and western blot revealed differential mRNA and protein expression of MMP-2, MMP-9, TIMP-2, and TIMP-3 in the ovarian follicles: white, yellowish, small yellow, the largest preovulatory (F3-F1), and white atretic. Within the ovary, the relative expression of MMP and TIMP mRNA depended on follicle development, the layer of follicular wall, and ovulation stage. The relatively higher expression of MMP-2 and MMP-9 mRNA in the ovarian follicles 3 h compared to 22 h before ovulation was found. As follicle development progressed toward ovulation, elevated MMP-2 and -9 activity was noted. Atresia of white follicles was accompanied by an increase in gelatinase activities. Immunohistochemistry demonstrated tissue- and follicle-dependent immunoreactivity of the examined MMPs and TIMPs. In summary, the results show tissue- and stage of the ovulatory cycle-dependent differences in MMP and TIMP expression, as well as MMP-2 and -9 activity. Findings that suggest these molecules might significantly participate in the complex remodeling of extracellular matrix required for follicle development, ovulation, and atresia in the chicken ovary.
Collapse
Affiliation(s)
- Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland.
| | - Dominika Wolak
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Maria Kwaśniewska
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Anna Kieronska
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Joanna K Socha
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Andrzej Sechman
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| |
Collapse
|
13
|
Distinct effects of SIRT1 in cancer and stromal cells on tumor promotion. Oncotarget 2018; 7:23975-87. [PMID: 26992208 PMCID: PMC5029678 DOI: 10.18632/oncotarget.8073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 02/28/2016] [Indexed: 12/21/2022] Open
Abstract
The lysyl deacetylase SIRT1 acts as a metabolic sensor in adjusting metabolic imbalance. To explore the role of SIRT1 in tumor-stroma interplay, we designed an in vivo tumor model using SIRT1-transgenic mice. B16F10 mouse melanoma grew more quickly in SIRT1-transgenic mice than in wild-type mice, whereas SIRT1-overexpressing one grew slowly in both mice. Of human tumors, SIRT1 expression in stromal fibroblasts was found to correlate with poor prognosis in ovarian cancer. B16F10 and human ovarian cancer (SKOV3 and SNU840) cells were more proliferative in co-culture with SIRT1-overexpressiong fibroblasts. In contrast, SIRT1 within cancer cells has a negative effect on cell proliferation. In conditioned media from SIRT1-overexpressing fibroblasts, matrix metalloproteinase-3 (MMP3) was identified in cytokine arrays to be secreted from fibroblasts SIRT1-dependently. Fibroblast-derived MMP3 stimulated cancer cell proliferation, and such a role of MMP3 was also demonstrated in cancer/fibroblast co-grafts. In conclusion, SIRT1 plays differential roles in cancer and stromal cells. SIRT1 in stromal cells promotes cancer growth by producing MMP3, whereas SIRT1 in cancer cells inhibits growth via an intracellular event. The present study provides a basis for setting new anticancer strategies targeting SIRT1.
Collapse
|
14
|
Optical imaging of ovarian cancer using a matrix metalloproteinase-3-sensitive near-infrared fluorescent probe. PLoS One 2018; 13:e0192047. [PMID: 29390034 PMCID: PMC5794152 DOI: 10.1371/journal.pone.0192047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/16/2018] [Indexed: 12/19/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the seventh most common cancer among women worldwide. The 5-year survival rate for women with EOC is only 30%-50%, which is largely due to the typically late diagnosis of this condition. EOC is difficult to detect in its early stage because of its asymptomatic nature. Recently, near-infrared fluorescent (NIRF) imaging has been developed as a potential tool for detecting EOC at the molecular level. In this study, a NIRF-sensitive probe was designed to detect matrix metalloproteinase (MMP) activity in ovarian cancer cells. A cyanine fluorochrome was conjugated to the amino terminus of a peptide substrate with enzymatic specificity for MMP-3. To analyze the novel MMP-3 probe, an in vivo EOC model was established by subcutaneously implanting SKOV3 cells, a serous-type EOC cell line, in mice. This novel MMP-3-sensitive probe specifically reacted with only the active MMP-3 enzyme, resulting in a significantly enhanced NIRF emission intensity. Histological analysis demonstrated that MMP-3 expression and activity were enhanced in the stromal cells surrounding the ovarian cancer cells. These studies establish a molecular imaging reporter for diagnosing early-stage EOC. Additional studies are required to confirm the early-stage activity of MMP-3 in EOC and its diagnostic and prognostic significance.
Collapse
|
15
|
Cymbaluk-Płoska A, Chudecka-Głaz A, Pius-Sadowska E, Machaliński B, Menkiszak J, Sompolska-Rzechuła A. Suitability assessment of baseline concentration of MMP3, TIMP3, HE4 and CA125 in the serum of patients with ovarian cancer. J Ovarian Res 2018; 11:1. [PMID: 29304854 PMCID: PMC5755423 DOI: 10.1186/s13048-017-0373-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/21/2017] [Indexed: 01/01/2023] Open
Abstract
Background MMP and TIMP play an important role in the degradation of extracellular matrix components which are essential for tumor growth, invasion and metastasis. Aim of this research was to assess MMP3 and TIMP3 as prognostic factors among patients with ovarian cancer. Results It was found that high levels of output MMP3 correlated with shortened overall survival time of patients by 9.7 months. In addition, it has been shown that high concentrations of output MMP3 were significantly associated with a shorter disease free time in median concentrations implemented p = 0.0059. Statistically significant dependence has been shown between an average concentration of TIMP3 protein to the overall survival of patients. The higher output concentration of TIMP3, the longer patients’ survival by 8.9 month. In addition, it was found that high TIMP3 concentrations output were associated with a significantly longer disease free duration at a median concentrations p = 0.007. Conclusion Preliminary research shows that output levels of MMP3 and TIMP3 proteins correlate with overall survival of patients. In some cases also time free of illness.
Collapse
Affiliation(s)
- Aneta Cymbaluk-Płoska
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland.
| | - Anita Chudecka-Głaz
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Ewa Pius-Sadowska
- General Pathology Department, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Bogusław Machaliński
- General Pathology Department, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Janusz Menkiszak
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Agnieszka Sompolska-Rzechuła
- Department of Mathematics Applications in Economy, West Pomeranian University of Technology, al. Piastów 17, 70-310, Szczecin, Poland
| |
Collapse
|
16
|
Kappelhoff R, Puente XS, Wilson CH, Seth A, López-Otín C, Overall CM. Overview of transcriptomic analysis of all human proteases, non-proteolytic homologs and inhibitors: Organ, tissue and ovarian cancer cell line expression profiling of the human protease degradome by the CLIP-CHIP™ DNA microarray. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2210-2219. [PMID: 28797648 DOI: 10.1016/j.bbamcr.2017.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 01/10/2023]
Abstract
The protease degradome is defined as the complete repertoire of proteases and inhibitors, and their nonfunctional homologs present in a cell, tissue or organism at any given time. We review the tissue distribution of virtually the entire degradome in 23 different human tissues and 6 ovarian cancer cell lines. To do so, we developed the CLIP-CHIP™, a custom microarray based on a 70-mer oligonucleotide platform, to specifically profile the transcripts of the entire repertoire of 473 active human proteases, 156 protease inhibitors and 92 non-proteolytically active homologs known at the design date using one specific 70-mer oligonucleotide per transcript. Using the CLIP-CHIP™ we mapped the expression profile of proteases and their inhibitors in 23 different human tissues and 6 ovarian cancer cell lines in 104 sample datasets. Hierarchical cluster analysis showed that expression profiles clustered according to their anatomic locations, cellular composition, physiologic functions, and the germ layer from which they are derived. The human ovarian cancer cell lines cluster according to malignant grade. 110 proteases and 42 inhibitors were tissue specific (1 to 3 tissues). Of these 110 proteases 69% (74) are mainly extracellular, 30% (34) intracellular and 1% intramembrane. Notably, 35% (197/565) of human proteases and 30% (47/156) of inhibitors were ubiquitously expressed in all 23 tissues; 27% (155) of proteases and 21% (32) of inhibitors were broadly expressed in 4-20 tissues. Our datasets provide a valuable resource for the community of baseline protease and inhibitor relative expression in normal human tissues and can be used for comparison with diseased tissue, e.g. ovarian cancer, to decipher pathogenesis, and to aid drug development. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Reinhild Kappelhoff
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xose S Puente
- Departamento de Bioquimica y Biologia Molecular, Universidad de Oviedo, Oviedo, Spain
| | - Claire H Wilson
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arun Seth
- Sunnybrook Research Institute, Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Carlos López-Otín
- Departamento de Bioquimica y Biologia Molecular, Universidad de Oviedo, Oviedo, Spain
| | - Christopher M Overall
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
17
|
Al-Alem L, Curry TE. Ovarian cancer: involvement of the matrix metalloproteinases. Reproduction 2015; 150:R55-64. [PMID: 25918438 DOI: 10.1530/rep-14-0546] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 04/24/2015] [Indexed: 12/12/2022]
Abstract
Ovarian cancer is the leading cause of death from gynecologic malignancies. One of the reasons for the high mortality rate associated with ovarian cancer is its late diagnosis, which often occurs after the cancer has metastasized throughout the peritoneal cavity. Cancer metastasis is facilitated by the remodeling of the extracellular tumor matrix by a family of proteolytic enzymes known as the matrix metalloproteinases (MMPs). There are 23 members of the MMP family, many of which have been reported to be associated with ovarian cancer. In the current paradigm, ovarian tumor cells and the surrounding stromal cells stimulate the synthesis and/or activation of various MMPs to aid in tumor growth, invasion, and eventual metastasis. The present review sheds light on the different MMPs in the various types of ovarian cancer and on their impact on the progression of this gynecologic malignancy.
Collapse
Affiliation(s)
- Linah Al-Alem
- Department of Obstetrics and GynecologyUniversity of Kentucky Medical Center, 800 Rose Street, Room C355, Lexington, Kentucky 40536-0293, USA
| | - Thomas E Curry
- Department of Obstetrics and GynecologyUniversity of Kentucky Medical Center, 800 Rose Street, Room C355, Lexington, Kentucky 40536-0293, USA
| |
Collapse
|
18
|
An Integrated In Silico Approach for the Structural and Functional Exploration of Lipocalin 2 and its Functional Insights with Metalloproteinase 9 and Lipoprotein Receptor-Related Protein 2. Appl Biochem Biotechnol 2015; 176:712-29. [DOI: 10.1007/s12010-015-1606-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 04/06/2015] [Indexed: 12/17/2022]
|
19
|
Hawkridge AM. The chicken model of spontaneous ovarian cancer. Proteomics Clin Appl 2015; 8:689-99. [PMID: 25130871 DOI: 10.1002/prca.201300135] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 02/24/2014] [Accepted: 08/07/2014] [Indexed: 12/24/2022]
Abstract
The chicken is a unique experimental model for studying the spontaneous onset and progression of ovarian cancer (OVC). The prevalence of OVC in chickens can range from 5 to 35% depending on age, genetic strain, reproductive history, and diet. Furthermore, the chicken presents epidemiological, morphological, and molecular traits that are similar to human OVC making it a relevant experimental model for translation research. Similarities to humans include associated increased risk of OVC with the number of ovulations, common histopathological subtypes including high-grade serous, and molecular-level markers or pathways such as CA-125 expression and p53 mutation frequency. Collectively, the similarities between chicken and human OVC combined with a tightly controlled genetic background and predictable onset window provides an outstanding experimental model for studying the early events and progression of spontaneous OVC tumors under controlled environmental conditions. This review will cover the existing literature on OVC in the chicken and highlight potential opportunities for further exploitation (e.g. biomarkers, prevention, treatment, and genomics).
Collapse
Affiliation(s)
- Adam M Hawkridge
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA; Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
20
|
Zhu G, Jiang Y. Polymorphism, genetic effect and association with egg production traits of chicken matrix metalloproteinases 9 promoter. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:1526-31. [PMID: 25358310 PMCID: PMC4213695 DOI: 10.5713/ajas.2014.14209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/05/2014] [Accepted: 07/17/2014] [Indexed: 11/27/2022]
Abstract
Matrix metalloproteinases (MMP) are key enzymes involved in cell and tissue remodeling during ovarian follicle development and ovulation. The control of MMP9 transcription in ovarian follicles occurs through a core promoter region (−2,400 to −1,700 bp). The aim of this study was to screen genetic variations in the core promoter region and examine MMP9 transcription regulation and reproduction performance. A single cytosine deletion/insertion polymorphism was found at −1954 C+/C−. Genetic association analysis indicated significant correlation between the deletion genotype (C−) with total egg numbers at 28 weeks (p = 0.031). Furthermore, luciferase-reporter assay showed the deletion genotype (C−) had significantly lower promoter activity than the insertion genotype (C+) in primary granulosa cells (p<0.01). Therefore, the identified polymorphism could be used for marker-assisted selection to improve chicken laying performance.
Collapse
Affiliation(s)
- Guiyu Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China ; Department of Biology Science and Technology, Taishan University, Taian 271021, China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
21
|
Kwon M, Lee SJ, Wang Y, Rybak Y, Luna A, Reddy S, Adem A, Beaty BT, Condeelis JS, Libutti SK. Filamin A interacting protein 1-like inhibits WNT signaling and MMP expression to suppress cancer cell invasion and metastasis. Int J Cancer 2014; 135:48-60. [PMID: 24327474 DOI: 10.1002/ijc.28662] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 11/28/2013] [Indexed: 12/20/2022]
Abstract
Identifying key mediators of cancer invasion and metastasis is crucial to the development of new and more effective therapies. We previously identified FILamin A Interacting Protein 1-Like (FILIP1L) as an important inhibitor of cell migration and invasion. FILIP1L expression was inversely correlated with the invasive potential of ovarian tumors. In our study, we established an orthotopic ovarian cancer model, wherein FILIP1L expression can be regulated in vivo. Using this model, we observed that expression of FILIP1L in ovarian cancer cells inhibited spontaneous lung metastasis. Experimental lung metastases (established via tail vein injection of cancer cells) as well as the extravasation step of metastasis were not inhibited by FILIP1L, suggesting that FILIP1L inhibits the earlier steps of metastasis such as invasion and intravasation. FILIP1L inhibited matrix metalloproteinase (MMP)-dependent invasion in vivo. MMP3, -7 and -9 were transcriptionally downregulated, and MMP9 protein expression and activity were inhibited in FILIP1L-expressing tumors. Importantly, overexpression of MMP9 compensated for the anti-invasive activity of FILIP1L. Furthermore, our studies suggest that FILIP1L regulates invasion and metastasis by inhibiting components of the WNT signaling pathway. FILIP1L expression reduced the induction of WNT target genes such as MMP3, -7 and -9, and β-catenin-directed transcriptional activity, suggesting inhibition of the canonical WNT pathway. Nuclear β-catenin, an indicator of an active canonical WNT pathway, was reduced in FILIP1L-expressing tumors. Overall, these findings suggest that FILIP1L reduces β-catenin levels, which may lead to the transcriptional downregulation of WNT target genes such as MMPs, resulting in inhibition of metastasis. Modulation of FILIP1L expression has the potential to be a target for cancer therapy.
Collapse
Affiliation(s)
- Mijung Kwon
- Department of Surgery, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wu YH, Chang TH, Huang YF, Huang HD, Chou CY. COL11A1 promotes tumor progression and predicts poor clinical outcome in ovarian cancer. Oncogene 2013; 33:3432-40. [PMID: 23934190 DOI: 10.1038/onc.2013.307] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/21/2013] [Accepted: 06/10/2013] [Indexed: 12/15/2022]
Abstract
Biomarkers that predict disease progression might assist the development of better therapeutic strategies for aggressive cancers, such as ovarian cancer. Here, we investigated the role of collagen type XI alpha 1 (COL11A1) in cell invasiveness and tumor formation and the prognostic impact of COL11A1 expression in ovarian cancer. Microarray analysis suggested that COL11A1 is a disease progression-associated gene that is linked to ovarian cancer recurrence and poor survival. Small interference RNA-mediated specific reduction in COL11A1 protein levels suppressed the invasive ability and oncogenic potential of ovarian cancer cells and decreased tumor formation and lung colonization in mouse xenografts. A combination of experimental approaches, including real-time RT-PCR, casein zymography and chromatin immunoprecipitation (ChIP) assays, showed that COL11A1 knockdown attenuated MMP3 expression and suppressed binding of Ets-1 to its putative MMP3 promoter-binding site, suggesting that the Ets-1-MMP3 axis is upregulated by COL11A1. Transforming growth factor (TGF)-beta (TGF-β1) treatment triggers the activation of smad2 signaling cascades, leading to activation of COL11A1 and MMP3. Pharmacological inhibition of MMP3 abrogated the TGF-β1-triggered, COL11A1-dependent cell invasiveness. Furthermore, the NF-YA-binding site on the COL11A1 promoter was identified as the major determinant of TGF-β1-dependent COL11A1 activation. Analysis of 88 ovarian cancer patients indicated that high COL11A1 mRNA levels are associated with advanced disease stage. The 5-year recurrence-free and overall survival rates were significantly lower (P=0.006 and P=0.018, respectively) among patients with high expression levels of tissue COL11A1 mRNA compared with those with low expression. We conclude that COL11A1 may promote tumor aggressiveness via the TGF-β1-MMP3 axis and that COL11A1 expression can predict clinical outcome in ovarian cancer patients.
Collapse
Affiliation(s)
- Y-H Wu
- Cancer Research Center, National Cheng Kung University Hospital, Tainan, Taiwan, ROC
| | - T-H Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan, ROC
| | - Y-F Huang
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University and Hospital, Tainan, Taiwan, ROC
| | - H-D Huang
- 1] Department of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, ROC [2] Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin Chu, Taiwan, ROC
| | - C-Y Chou
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University and Hospital, Tainan, Taiwan, ROC
| |
Collapse
|
23
|
Wang Y, Xie Y, Wu X, Li L, Ma Y, Wang X. Laparoscopic management of pedicle torsion of adnexal cysts. Oncol Lett 2013; 5:1707-1709. [PMID: 23761838 PMCID: PMC3678865 DOI: 10.3892/ol.2013.1229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 02/15/2013] [Indexed: 12/28/2022] Open
Abstract
Pedicle torsion of adnexal cysts results from the increased weight of cysts, longer length of the ovarian and suspensory ligaments or ovarian teratoma. Color doppler ultrasonography is particularly important for detecting suspected cyst torsion. Laparoscopy is becoming more important in the early diagnosis and treatment of adnexal cyst torsion due to its advantages, such as its minimally invasive nature, reduced acute stress reaction and facilitation of direct observation of intra-abdominal lesions. The present study analyzed 28 cases of laparoscopic torsion surgery. The laparoscopic conservative surgery rate was 75% and loss of endocrine function and fertility was avoided. Since the torsion duration is the only variable factor for avoiding oophorectomy, laparoscopic exploration should be performed as soon as possible when pedicle torsion of an adnexal cyst is suspected. Detorsion while retaining ovarian function did not increase the risk of thromboembolism and laparoscopic surgery was minimally invasive with faster recovery times and minimal impact on fertility. Furthermore, the study showed that the laparoscopic management of pedicle torsion of adnexal cysts is safe and reliable with the retention of ovarian endocrine and reproductive function.
Collapse
Affiliation(s)
- Yuxia Wang
- Department of Obstetrics and Gynecology, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | | | | | | | | | | |
Collapse
|
24
|
Tiwari A, Hadley JA, Hendricks GL, Elkin RG, Cooper T, Ramachandran R. Characterization of ascites-derived ovarian tumor cells from spontaneously occurring ovarian tumors of the chicken: evidence for E-cadherin upregulation. PLoS One 2013; 8:e57582. [PMID: 23460878 PMCID: PMC3583847 DOI: 10.1371/journal.pone.0057582] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/23/2013] [Indexed: 12/31/2022] Open
Abstract
Ovarian cancer, a highly metastatic disease, is the fifth leading cause of cancer-related deaths in women. Chickens are widely used as a model for human ovarian cancer as they spontaneously develop epithelial ovarian tumors similar to humans. The cellular and molecular biology of chicken ovarian cancer (COVCAR) cells, however, have not been studied. Our objectives were to culture COVCAR cells and to characterize their invasiveness and expression of genes and proteins associated with ovarian cancer. COVCAR cell lines (n = 13) were successfully maintained in culture for up to19 passages, cryopreserved and found to be viable upon thawing and replating. E-cadherin, cytokeratin and α-smooth muscle actin were localized in COVCAR cells by immunostaining. COVCAR cells were found to be invasive in extracellular matrix and exhibited anchorage-independent growth forming colonies, acini and tube-like structures in soft agar. Using RT-PCR, COVCAR cells were found to express E-cadherin, N-cadherin, cytokeratin, vimentin, mesothelin, EpCAM, steroidogenic enzymes/proteins, inhibin subunits-α, βA, βB, anti-müllerian hormone, estrogen receptor [ER]-α, ER-β, progesterone receptor, androgen receptor, and activin receptors. Quantitative PCR analysis revealed greater N-cadherin, vimentin, and VEGF mRNA levels and lesser cytokeratin mRNA levels in COVCAR cells as compared with normal ovarian surface epithelial (NOSE) cells, which was suggestive of epithelial-mesenchymal transformation. Western blotting analyses revealed significantly greater E-cadherin levels in COVCAR cell lines compared with NOSE cells. Furthermore, cancerous ovaries and COVCAR cell lines expressed higher levels of an E-cadherin cleavage product when compared to normal ovaries and NOSE cells, respectively. Cancerous ovaries were found to express significantly higher ovalbumin levels whereas COVCAR cell lines did not express ovalbumin thus suggesting that the latter did not originate from oviduct. Taken together, COVCAR cell lines are likely to improve our understanding of the cellular and molecular biology of ovarian tumors and its metastasis.
Collapse
Affiliation(s)
- Anupama Tiwari
- Department of Animal Science, Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jill A. Hadley
- Department of Animal Science, Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Gilbert L. Hendricks
- Department of Animal Science, Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Robert G. Elkin
- Department of Animal Science, Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Timothy Cooper
- Department of Comparative Medicine, Penn State College of Medicine, Penn State Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Ramesh Ramachandran
- Department of Animal Science, Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|