1
|
Ye C, Ren S, Sadula A, Guo X, Yuan M, Meng M, Li G, Zhang X, Yuan C. The expression characteristics of transmembrane protein genes in pancreatic ductal adenocarcinoma through comprehensive analysis of bulk and single-cell RNA sequence. Front Oncol 2023; 13:1047377. [PMID: 37265785 PMCID: PMC10229874 DOI: 10.3389/fonc.2023.1047377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Abstract
Background Transmembrane (TMEM) protein genes are a class of proteins that spans membranes and function to many physiological processes. However, there is very little known about TMEM gene expression, especially in cancer tissue. Using single-cell and bulk RNA sequence may facilitate the understanding of this poorly characterized protein genes in PDAC. Methods We selected the TMEM family genes through the Human Protein Atlas and characterized their expression by single-cell and bulk transcriptomic datasets. Identification of the key TMEM genes was performed through three machine learning algorithms: LASSO, SVM-RFE and RF-SRC. Then, we established TMEM gene riskscore and estimate its implication in predicting survival and response to systematic therapy. Additionally, we explored the difference and impact of TMEM gene expression in PDAC through immunohistochemistry and cell line research. Results 5 key TMEM genes (ANO1, TMEM59, TMEM204, TMEM205, TMEM92) were selected based on the single-cell analysis and machine learning survival outcomes. Patients stratified into the high and low-risk groups based on TMEM riskscore, were observed with distinct overall survival in internal and external datasets. Moreover, through bulk RNA-sequence and immunohistochemical staining we verified the protein expression of TMEM genes in PDAC and revealed TMEM92 as an essential regulator of pancreatic cancer cell proliferation, migration, and invasion. Conclusion Our study on TMEM gene expression and behavior in PDAC has revealed unique characteristics, offering potential for precise therapeutic approaches. Insights into molecular mechanisms expand understanding of PDAC complexity and TMEM gene roles. Such knowledge may inform targeted therapy development, benefiting patients.
Collapse
Affiliation(s)
- Chen Ye
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Department of Hepatobiliary surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Siqian Ren
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | | | - Xin Guo
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Meng Yuan
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Meng Meng
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Gang Li
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Xiaowei Zhang
- Department of Hematology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chunhui Yuan
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
2
|
MORC protein family-related signature within human disease and cancer. Cell Death Dis 2021; 12:1112. [PMID: 34839357 PMCID: PMC8627505 DOI: 10.1038/s41419-021-04393-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023]
Abstract
The microrchidia (MORC) family of proteins is a highly conserved nuclear protein superfamily, whose members contain common domain structures (GHKL-ATPase, CW-type zinc finger and coiled-coil domain) yet exhibit diverse biological functions. Despite the advancing research in previous decades, much of which focuses on their role as epigenetic regulators and in chromatin remodeling, relatively little is known about the role of MORCs in tumorigenesis and pathogenesis. MORCs were first identified as epigenetic regulators and chromatin remodelers in germ cell development. Currently, MORCs are regarded as disease genes that are involved in various human disorders and oncogenes in cancer progression and are expected to be the important biomarkers for diagnosis and treatment. A new paradigm of expanded MORC family function has raised questions regarding the regulation of MORCs and their biological role at the subcellular level. Here, we systematically review the progress of researching MORC members with respect to their domain architectures, diverse biological functions, and distribution characteristics and discuss the emerging roles of the aberrant expression or mutation of MORC family members in human disorders and cancer development. Furthermore, the illustration of related mechanisms of the MORC family has made MORCs promising targets for developing diagnostic tools and therapeutic treatments for human diseases, including cancers.
Collapse
|
3
|
Ma X, Chen H, Wang G, Li L, Tao K. DNA methylation profiling to predict overall survival risk in gastric cancer: development and validation of a nomogram to optimize clinical management. J Cancer 2020; 11:4352-4365. [PMID: 32489454 PMCID: PMC7255367 DOI: 10.7150/jca.44436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/27/2020] [Indexed: 01/07/2023] Open
Abstract
DNA methylation has been reported to serve an important role in the carcinogenesis and development of gastric cancer. Our aim was to systematically develop an individualized prediction model of the survival risk combing clinical and methylation factors in gastric cancer. A univariate Cox proportional risk regression analysis was used to identify the prognosis-associated methylation sites based on the differentially expressed methylation sites between early and advanced gastric cancer group, then we applied least absolute shrinkage and selection operator (LASSO) Cox regression model to screen candidate methylation sites. Subsequently, multivariate Cox proportional risk regression analysis was conducted to identify predictive signature according to the candidate sites. Relative operating characteristic curve (ROC) analysis manifested that an 11-methylation signature exhibited great predictive efficiency for 1-, 3-, 5-year survival events. Patients in the low-risk group classified according to 11-methylation signature-based risk score yield significantly better survival than that in high-risk group. Moreover, Cox regression analysis combing methylation-based risk score and other clinical factors indicated that 11-methylation signature served as an independent risk factor. The predictive value of risk score was validated in the testing dataset. In addition, a nomogram was constructed and the ROC as well as calibration plots analysis demonstrated the good performance and clinical application of the nomogram. In conclusion, the result suggested the 11-DNA methylation signature may be potentially independent prognostic marker and functioned as a significant tool for guiding the clinical prediction of gastric cancer patients' overall survival.
Collapse
Affiliation(s)
- Xianxiong Ma
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hengyu Chen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- NHC Key Laboratory of Hormones and Development, Tianjin Institute of Endocrinology, Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin 300070, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
4
|
Guo Y, Huang Q, Zheng J, Hsueh CY, Huang J, Yuan X, Chen H, Zhou L. Diagnostic Significance of Downregulated circMORC3 as a Molecular Biomarker of Hypopharyngeal Squamous Cell Carcinoma: A Pilot Study. Cancer Manag Res 2020; 12:43-49. [PMID: 32021421 PMCID: PMC6954084 DOI: 10.2147/cmar.s235888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022] Open
Abstract
Background Circular RNAs (circRNAs) have proven to be of great clinical significance as diagnostic biomarkers in various cancers. Here, we investigate the expression of circMORC3 in hypopharyngeal squamous cell carcinoma (HSCC), exploring whether it could serve as a diagnostic marker of HSCC. Methods CircMORC3 expression levels were detected in HSCC tissues and adjacent normal tissues using quantitative real-time polymerase chain reaction (qRT-PCR). The relationships between circMORC3 expression levels and clinicopathologic factors were explored. CircMORC3 expression levels in plasma from HSCC patients and non-tumor patients were also detected by qRT-PCR. Finally, receiver operating characteristic (ROC) curves were established to evaluate the diagnostic value of circMORC3 as a potential HSCC biomarker in tissues and plasma. Results The expression levels of circMORC3 were significantly lower in HSCC tissues than paired adjacent normal tissues, and the area under the ROC curve was 0.834. The decreased expression of circMORC3 was correlated to T stages and tumor sizes. Similarly, the circMORC3 expression levels in HSCC patient plasma were lower than non-tumor patient plasma, and the area under the ROC curve was 0.767. Conclusion Our results indicate that circMORC3 was downregulated in HSCC tissues and plasma, and it could serve as an early diagnostic HSCC biomarker.
Collapse
Affiliation(s)
- Yang Guo
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Qiang Huang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Juan Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Chi-Yao Hsueh
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Jiameng Huang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Xiaohui Yuan
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Hui Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Liang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Zhang Y, Bertulat B, Tencer AH, Ren X, Wright GM, Black J, Cardoso MC, Kutateladze TG. MORC3 Forms Nuclear Condensates through Phase Separation. iScience 2019; 17:182-189. [PMID: 31284181 PMCID: PMC6614601 DOI: 10.1016/j.isci.2019.06.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/03/2019] [Accepted: 06/19/2019] [Indexed: 12/27/2022] Open
Abstract
Phase separation can produce local structures with specific functionality in the cell, and in the nucleus, this can lead to chromatin reorganization. Microrchidia 3 (MORC3) is a human ATPase that has been implicated in autoimmune disorders and cancer. Here, we show that MORC3 forms phase-separated condensates with liquid-like properties in the cell nucleus. Fluorescence live-cell imaging reveals that the MORC3 condensates are heterogeneous and undergo dynamic morphological changes during the cell cycle. The ATPase activity of MORC3 drives its phase separation in vitro and requires DNA binding and releasing the MORC3 CW domain-dependent autoinhibition through association with histone H3. Our findings suggest a mechanism by which the ATPase function of MORC3 mediates MORC3 nuclear compartmentalization. MORC3 forms nuclear condensates with liquid-like characteristics Morphology of the MORC3 condensates changes during the cell cycle Phase separation depends on the MORC3 ATPase activity and DNA binding CW impedes the ability of MORC3 to form condensates
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pharmacology, University of Colorado School of Medicine, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Bianca Bertulat
- Department of Biology, Technische Universität Darmstadt, Darmstadt, 64287, Germany
| | - Adam H Tencer
- Department of Pharmacology, University of Colorado School of Medicine, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Xiaojun Ren
- Department of Chemistry, University of Colorado, Denver, CO 80217, USA
| | - Gregory M Wright
- Department of Pharmacology, University of Colorado School of Medicine, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Joshua Black
- Department of Pharmacology, University of Colorado School of Medicine, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - M Cristina Cardoso
- Department of Biology, Technische Universität Darmstadt, Darmstadt, 64287, Germany
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, 12801 East 17th Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
6
|
Abstract
Microrchidia 3 (MORC3) is a human protein linked to autoimmune disorders, Down syndrome, and cancer. It is a member of a newly identified family of human ATPases with an uncharacterized mechanism of action. Here, we elucidate the molecular basis for inhibition and activation of MORC3. The crystal structure of the MORC3 region encompassing the ATPase and CW domains in complex with a nonhydrolyzable ATP analog demonstrates that the two domains are directly coupled. The extensive ATPase:CW interface stabilizes the protein fold but inhibits the catalytic activity of MORC3. Enzymatic, NMR, mutational, and biochemical analyses show that in the autoinhibited, off state, the CW domain sterically impedes binding of the ATPase domain to DNA, which in turn is required for the catalytic activity. MORC3 autoinhibition is released by disrupting the intramolecular ATPase:CW coupling through the competitive interaction of CW with histone H3 tail or by mutating the interfacial residues. Binding of CW to H3 leads to a marked rearrangement in the ATPase-CW cassette, which frees the DNA-binding site in active MORC3 (on state). We show that ATP-induced dimerization of the ATPase domain is strictly required for the catalytic activity and that the dimeric form of ATPase-CW might cooperatively bind to dsDNA. Together, our findings uncovered a mechanism underlying the fine-tuned regulation of the catalytic domain of MORC3 by the epigenetic reader, CW.
Collapse
|
7
|
Nickel AC, Wan XY, Saban DV, Weng YL, Zhang S, Keyvani K, Sure U, Zhu Y. Loss of programmed cell death 10 activates tumor cells and leads to temozolomide-resistance in glioblastoma. J Neurooncol 2018; 141:31-41. [PMID: 30392087 DOI: 10.1007/s11060-018-03017-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/25/2018] [Indexed: 11/24/2022]
Abstract
PURPOSE Glioblastoma (GBM) is one of the most aggressive and incurable primary brain tumors. Identification of novel therapeutic targets is an urgent priority. Programmed cell death 10 (PDCD10), a ubiquitously expressed apoptotic protein, has shown a dual function in different types of cancers and in chemo-resistance. Recently, we reported that PDCD10 was downregulated in human GBM. The aim of this study was to explore the function of PDCD10 in GBM cells. METHODS PDCD10 was knocked down in three GBM cell lines (U87, T98g and LN229) by lentiviral-mediated shRNA transduction. U87 and T98g transduced cells were used for phenotype study and LN229 and T98g cells were used for apoptosis study. The role of PDCD10 in apoptosis and chemo-resistance was investigated after treatment with staurosporine and temozolomide. A GBM xenograft mouse model was used to confirm the function of PDCD10 in vivo. A protein array was performed in PDCD10-knockdown and control GBM cells. RESULTS Knockdown of PDCD10 in GBM cells promoted cell proliferation, adhesion, migration, invasion, and inhibited apoptosis and caspase-3 activation. PDCD10-knockdown accelerated tumor growth and increased tumor mass by 2.1-fold and led to a chemo-resistance of mice treated with temozolomide. Immunostaining revealed extensive Ki67-positive cells and less activation of caspase-3 in PDCD10-knockdown tumors. The protein array demonstrated an increased release of multiple growth factors from PDCD10-knockdown GBM cells. CONCLUSIONS Loss of programmed cell death 10 activates tumor cells and leads to temozolomide-resistance in GBM, suggesting PDCD10 as a potential target for GBM therapy.
Collapse
Affiliation(s)
- Ann-Christin Nickel
- Department of Neurosurgery, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Xue-Yan Wan
- Department of Neurosurgery, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.,Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dino-Vitali Saban
- Department of Neurosurgery, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Yin-Lun Weng
- Department of Neurosurgery, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.,Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shu Zhang
- Department of Neurosurgery, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Yuan Zhu
- Department of Neurosurgery, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| |
Collapse
|
8
|
Andrews FH, Tong Q, Sullivan KD, Cornett EM, Zhang Y, Ali M, Ahn J, Pandey A, Guo AH, Strahl BD, Costello JC, Espinosa JM, Rothbart SB, Kutateladze TG. Multivalent Chromatin Engagement and Inter-domain Crosstalk Regulate MORC3 ATPase. Cell Rep 2018; 16:3195-3207. [PMID: 27653685 DOI: 10.1016/j.celrep.2016.08.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/11/2016] [Accepted: 08/16/2016] [Indexed: 01/26/2023] Open
Abstract
MORC3 is linked to inflammatory myopathies and cancer; however, the precise role of MORC3 in normal cell physiology and disease remains poorly understood. Here, we present detailed genetic, biochemical, and structural analyses of MORC3. We demonstrate that MORC3 is significantly upregulated in Down syndrome and that genetic abnormalities in MORC3 are associated with cancer. The CW domain of MORC3 binds to the methylated histone H3K4 tail, and this interaction is essential for recruitment of MORC3 to chromatin and accumulation in nuclear bodies. We show that MORC3 possesses intrinsic ATPase activity that requires DNA, but it is negatively regulated by the CW domain, which interacts with the ATPase domain. Natively linked CW impedes binding of the ATPase domain to DNA, resulting in a decrease in the DNA-stimulated enzymatic activity. Collectively, our studies provide a molecular framework detailing MORC3 functions and suggest that its modulation may contribute to human disease.
Collapse
Affiliation(s)
- Forest H Andrews
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Qiong Tong
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kelly D Sullivan
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Evan M Cornett
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Yi Zhang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Muzaffar Ali
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - JaeWoo Ahn
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Ahway Pandey
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Angela H Guo
- Department of Biochemistry and Biophysics, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - James C Costello
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Joaquin M Espinosa
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Scott B Rothbart
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
9
|
Hong G, Qiu H, Wang C, Jadhav G, Wang H, Tickner J, He W, Xu J. The Emerging Role of MORC Family Proteins in Cancer Development and Bone Homeostasis. J Cell Physiol 2016; 232:928-934. [PMID: 27791268 DOI: 10.1002/jcp.25665] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 01/13/2023]
Abstract
Microrchidia (MORC or MORC family CW-type zinc finger protein), a highly conserved nuclear protein superfamily, is an interesting new player in signaling-dependent chromatin remodeling and epigenetic regulation. MORC family proteins consist of MORC1, MORC2, MORC3, and MORC4 which display common structural determinants such as CW-type zinc finger and coiled-coil domains. They also exhibit unique structural motifs and tissue-specific expression profiles. MORC1 was first discovered as a key regulator for male meiosis and spermatogenesis. Accumulating biochemical and functional analyses unveil MORC proteins as key regulators for cancer development. More recently, using an ENU mutagenesis mouse model, MORC3 was found to play a role in regulating bone and calcium homeostasis. Here we discuss recent research progress on the emerging role of MORC proteins in cancer development and bone metabolism. Unravelling the cellular and molecular mechanisms by which MORC proteins carry out their functions in a tissue specific manner are important subjects for future investigation. J. Cell. Physiol. 232: 928-934, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Guoju Hong
- The National Key Discipline and the Orthopedic Laboratory, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,School of Pathology Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Heng Qiu
- School of Pathology Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Chao Wang
- School of Pathology Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Gaurav Jadhav
- School of Pathology Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Haibin Wang
- The National Key Discipline and the Orthopedic Laboratory, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Jennifer Tickner
- School of Pathology Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Wei He
- The National Key Discipline and the Orthopedic Laboratory, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Jiake Xu
- The National Key Discipline and the Orthopedic Laboratory, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,School of Pathology Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
10
|
Lambertz N, El Hindy N, Kreitschmann-Andermahr I, Stein KP, Dammann P, Oezkan N, Mueller O, Sure U, Zhu Y. Downregulation of programmed cell death 10 is associated with tumor cell proliferation, hyperangiogenesis and peritumoral edema in human glioblastoma. BMC Cancer 2015; 15:759. [PMID: 26490252 PMCID: PMC4618952 DOI: 10.1186/s12885-015-1709-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 10/08/2015] [Indexed: 11/22/2022] Open
Abstract
Background Neovascularization and peritumoral edema are hallmarks of glioblastoma (GBM). Programmed cell death 10 (PDCD10) plays a pivotal role in regulating apoptosis, neoangiogenesis and vessel permeability and is implicated in certain tumor signaling pathways. However, little is known about PDCD10 in GBM. We aimed to investigate the expression pattern of PDCD10 and to identify the association of its expression with some molecular and clinical parameters in human GBM. Methods mRNA and protein expression of PDCD10 were examined respectively by real-time RT-PCR and Western blotting in GBM (n = 27), astrocytoma grade II (n = 13) and control (n = 11). The protein level of p-Akt and GFAP was detected by Western blot. Double-imunofluorecent staining was performed to reveal the cellular expression profile of PDCD10. Brain edema and microvascular density (MVD) were respectively analyzed based on pre-operative MRI and after laminin immnostaining. MGMT promoter methylation was detected by methylation specific PCR. Results mRNA and protein levels of PDCD10 were significantly downregulated in GBM, concomitantly accompanied by the activation of Akt. PDCD10 immunoreactivity was absent in proliferating tumor cells, endothelial cells and GFAP-positive cells, but exclusively present in the hypoxic pseudopalisading cells which underwent apoptosis. Moreover, loss of PDCD10 was associated with a higher MVD and a more severe peritumoral edema but not with MGMT promoter methylation in GBM. Conclusion We report for the first time that PDCD10 expression is downregulated in GBM, which is associated with the activation of Akt signaling protein. PDCD10 is potentially implicated in tumor proliferation and apoptosis, hyperangiogenesis and peritumoral edema in GBM.
Collapse
Affiliation(s)
- Nicole Lambertz
- Department of Neurosurgery, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Nicolai El Hindy
- Department of Neurosurgery, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | | | - Klaus Peter Stein
- Department of Neurosurgery, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany. .,Present Address: Department of Neurosurgery, KRH Klinikum Nordstadt, Haltenhoffstr. 41, 30167, Hannover, Germany.
| | - Philipp Dammann
- Department of Neurosurgery, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Neriman Oezkan
- Department of Neurosurgery, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Oliver Mueller
- Department of Neurosurgery, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Ulrich Sure
- Department of Neurosurgery, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Yuan Zhu
- Department of Neurosurgery, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| |
Collapse
|
11
|
Zhu Y, Zhao K, Prinz A, Keyvani K, Lambertz N, Kreitschmann-Andermahr I, Lei T, Sure U. Loss of endothelial programmed cell death 10 activates glioblastoma cells and promotes tumor growth. Neuro Oncol 2015; 18:538-48. [PMID: 26254477 DOI: 10.1093/neuonc/nov155] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/15/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Neo-angiogenesis is a hallmark of glioblastoma (GBM) and is sustained by autocrine and paracrine interactions between neoplastic and nonneoplastic cells. Programmed cell death 10 (PDCD10) is ubiquitously expressed in nearly all tissues and plays crucial roles in regulating angiogenesis and apoptosis. We recently discovered the absence of PDCD10 expression in the tumor vessels of GBM patients. This raised the hypothesis that loss of endothelial PDCD10 affected GBM cell phenotyping and tumor progression. METHODS Endothelial PDCD10 was silenced by siRNA and lentiviral shRNA. The tumor cell phenotype was studied in direct and indirect co-culture of endothelial cells (ECs) with U87 or LN229. Angiogenic protein array was performed in the media of PDCD10-silenced ECs. Tumor angiogenesis and tumor growth were investigated in a human GBM xenograft mouse model. RESULTS Endothelial silence of PDCD10 significantly stimulated tumor cell proliferation, migration, adhesion, and invasion and inhibited apoptosis in co-cultures. Stable knockdown of endothelial PDCD10 increased microvessel density and the formation of a functional vascular network, leading to a 4-fold larger tumor mass in mice. Intriguingly, endothelial deletion of PDCD10 increased (≥2-fold) the release of 20 of 55 tested proangiogenic factors including VEGF, which in turn activated Erk1/2 and Akt in GBM cells. CONCLUSIONS For the first time, we provide evidence that loss of endothelial PDCD10 activates GBM cells and promotes tumor growth, most likely via a paracrine mechanism. PDCD10 shows a tumor-suppressor-like function in the cross talk between ECs and tumor cells and is potentially implicated in GBM progression.
Collapse
Affiliation(s)
- Yuan Zhu
- Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany (Y.Z., K.Z., A.P., N.L., I.K.-A., U.S.); Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany (K.K.); Department of Neurosurgery, Tongji Medical College, Wuhan, China (K.Z., T.L.)
| | - Kai Zhao
- Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany (Y.Z., K.Z., A.P., N.L., I.K.-A., U.S.); Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany (K.K.); Department of Neurosurgery, Tongji Medical College, Wuhan, China (K.Z., T.L.)
| | - Anja Prinz
- Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany (Y.Z., K.Z., A.P., N.L., I.K.-A., U.S.); Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany (K.K.); Department of Neurosurgery, Tongji Medical College, Wuhan, China (K.Z., T.L.)
| | - Kathy Keyvani
- Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany (Y.Z., K.Z., A.P., N.L., I.K.-A., U.S.); Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany (K.K.); Department of Neurosurgery, Tongji Medical College, Wuhan, China (K.Z., T.L.)
| | - Nicole Lambertz
- Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany (Y.Z., K.Z., A.P., N.L., I.K.-A., U.S.); Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany (K.K.); Department of Neurosurgery, Tongji Medical College, Wuhan, China (K.Z., T.L.)
| | - Ilonka Kreitschmann-Andermahr
- Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany (Y.Z., K.Z., A.P., N.L., I.K.-A., U.S.); Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany (K.K.); Department of Neurosurgery, Tongji Medical College, Wuhan, China (K.Z., T.L.)
| | - Ting Lei
- Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany (Y.Z., K.Z., A.P., N.L., I.K.-A., U.S.); Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany (K.K.); Department of Neurosurgery, Tongji Medical College, Wuhan, China (K.Z., T.L.)
| | - Ulrich Sure
- Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany (Y.Z., K.Z., A.P., N.L., I.K.-A., U.S.); Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany (K.K.); Department of Neurosurgery, Tongji Medical College, Wuhan, China (K.Z., T.L.)
| |
Collapse
|
12
|
Gene expression of peripheral blood cells reveals pathways downstream of glucocorticoid receptor antagonism and nab-paclitaxel treatment. Pharmacogenet Genomics 2014; 24:451-8. [PMID: 25000515 DOI: 10.1097/fpc.0000000000000077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Whereas paclitaxel treatment is associated with leukopenia, the mechanisms that underlie this effect are not well-characterized. In addition, despite the importance of glucocorticoid signaling in cancer treatment, the genomic effects of glucocorticoid receptor antagonism by mifepristone treatment in primary human cells have never been described. METHODS As part of a randomized phase 1 clinical trial, we used microarrays to profile gene expression in peripheral blood cells sampled from each of four patients at baseline, after placebo/nanoparticle albumin-bound paclitaxel (nab-paclitaxel) treatment (cycle 1), and after mifepristone/nab-paclitaxel treatment (cycle 2). RESULTS We found that 63 genes were differentially expressed following treatment with nab-paclitaxel, including multiple genes in the tubulin pathway. We also found 606 genes that were differentially expressed in response to mifepristone; genes downregulated by mifepristone overlapped significantly with those previously identified as being upregulated by dexamethasone. CONCLUSION These results provide insights into the mechanisms of paclitaxel and glucocorticoid receptor inhibition in peripheral blood cells.
Collapse
|
13
|
Li DQ, Nair SS, Kumar R. The MORC family: new epigenetic regulators of transcription and DNA damage response. Epigenetics 2013; 8:685-93. [PMID: 23804034 DOI: 10.4161/epi.24976] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Microrchidia (MORC) is a highly conserved nuclear protein superfamily with widespread domain architectures that intimately link MORCs with signaling-dependent chromatin remodeling and epigenetic regulation. Accumulating structural and biochemical evidence has shed new light on the mechanistic action and emerging role of MORCs as epigenetic regulators in diverse nuclear processes. In this Point of View, we focus on discussing recent advances in our understanding of the unique domain architectures of MORC family of chromatin remodelers and their potential contribution to epigenetic control of DNA template-dependent processes such as transcription and DNA damage response. Given that the deregulation of MORCs has been linked with human cancer and other diseases, further efforts to uncover the structure and function of MORCs may ultimately lead to the development of new approaches to intersect with the functionality of MORC family of chromatin remodeling proteins to correct associated pathogenesis.
Collapse
Affiliation(s)
- Da-Qiang Li
- Department of Biochemistry and Molecular Medicine; School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | | | | |
Collapse
|