1
|
Cristalli C, Scotlandi K. Targeting DNA Methylation Machinery in Pediatric Solid Tumors. Cells 2024; 13:1209. [PMID: 39056791 PMCID: PMC11275080 DOI: 10.3390/cells13141209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
DNA methylation is a key epigenetic regulatory mechanism that plays a critical role in a variety of cellular processes, including the regulation of cell fate during development, maintenance of cell identity, and genome stability. DNA methylation is tightly regulated by enzymatic reactions and its deregulation plays an important role in the development of cancer. Specific DNA methylation alterations have been found in pediatric solid tumors, providing new insights into the development of these tumors. In addition, DNA methylation profiles have greatly contributed to tune the diagnosis of pediatric solid tumors and to define subgroups of patients with different risks of progression, leading to the reduction in unwanted toxicity and the improvement of treatment efficacy. This review highlights the dysregulated DNA methylome in pediatric solid tumors and how this information provides promising targets for epigenetic therapies, particularly inhibitors of DNMT enzymes (DNMTis). Opportunities and limitations are considered, including the ability of DNMTis to induce viral mimicry and immune signaling by tumors. Besides intrinsic action against cancer cells, DNMTis have the potential to sensitize immune-cold tumors to immunotherapies and may represent a remarkable option to improve the treatment of challenging pediatric solid tumors.
Collapse
Affiliation(s)
- Camilla Cristalli
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| |
Collapse
|
2
|
Wolf CL, Pruett C, Lighter D, Jorcyk CL. The clinical relevance of OSM in inflammatory diseases: a comprehensive review. Front Immunol 2023; 14:1239732. [PMID: 37841259 PMCID: PMC10570509 DOI: 10.3389/fimmu.2023.1239732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023] Open
Abstract
Oncostatin M (OSM) is a pleiotropic cytokine involved in a variety of inflammatory responses such as wound healing, liver regeneration, and bone remodeling. As a member of the interleukin-6 (IL-6) family of cytokines, OSM binds the shared receptor gp130, recruits either OSMRβ or LIFRβ, and activates a variety of signaling pathways including the JAK/STAT, MAPK, JNK, and PI3K/AKT pathways. Since its discovery in 1986, OSM has been identified as a significant contributor to a multitude of inflammatory diseases, including arthritis, inflammatory bowel disease, lung and skin disease, cardiovascular disease, and most recently, COVID-19. Additionally, OSM has also been extensively studied in the context of several cancer types including breast, cervical, ovarian, testicular, colon and gastrointestinal, brain,lung, skin, as well as other cancers. While OSM has been recognized as a significant contributor for each of these diseases, and studies have shown OSM inhibition is effective at treating or reducing symptoms, very few therapeutics have succeeded into clinical trials, and none have yet been approved by the FDA for treatment. In this review, we outline the role OSM plays in a variety of inflammatory diseases, including cancer, and outline the previous and current strategies for developing an inhibitor for OSM signaling.
Collapse
Affiliation(s)
- Cody L. Wolf
- Department of Biomolecular Sciences, Boise State University, Boise, ID, United States
| | - Clyde Pruett
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| | - Darren Lighter
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| | - Cheryl L. Jorcyk
- Department of Biomolecular Sciences, Boise State University, Boise, ID, United States
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| |
Collapse
|
3
|
Yu L, Davis IJ, Liu P. Regulation of EWSR1-FLI1 Function by Post-Transcriptional and Post-Translational Modifications. Cancers (Basel) 2023; 15:382. [PMID: 36672331 PMCID: PMC9857208 DOI: 10.3390/cancers15020382] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Ewing sarcoma is the second most common bone tumor in childhood and adolescence. Currently, first-line therapy includes multidrug chemotherapy with surgery and/or radiation. Although most patients initially respond to chemotherapy, recurrent tumors become treatment refractory. Pathologically, Ewing sarcoma consists of small round basophilic cells with prominent nuclei marked by expression of surface protein CD99. Genetically, Ewing sarcoma is driven by a fusion oncoprotein that results from one of a small number of chromosomal translocations composed of a FET gene and a gene encoding an ETS family transcription factor, with ~85% of tumors expressing the EWSR1::FLI1 fusion. EWSR1::FLI1 regulates transcription, splicing, genome instability and other cellular functions. Although a tumor-specific target, EWSR1::FLI1-targeted therapy has yet to be developed, largely due to insufficient understanding of EWSR1::FLI1 upstream and downstream signaling, and the challenges in targeting transcription factors with small molecules. In this review, we summarize the contemporary molecular understanding of Ewing sarcoma, and the post-transcriptional and post-translational regulatory mechanisms that control EWSR1::FLI1 function.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ian J. Davis
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Sánchez-Molina S, Figuerola-Bou E, Sánchez-Margalet V, de la Cruz-Merino L, Mora J, de Álava Casado E, García-Domínguez DJ, Hontecillas-Prieto L. Ewing Sarcoma Meets Epigenetics, Immunology and Nanomedicine: Moving Forward into Novel Therapeutic Strategies. Cancers (Basel) 2022; 14:5473. [PMID: 36358891 PMCID: PMC9658520 DOI: 10.3390/cancers14215473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ewing Sarcoma (EWS) is an aggressive bone and soft tissue tumor that mainly affects children, adolescents, and young adults. The standard therapy, including chemotherapy, surgery, and radiotherapy, has substantially improved the survival of EWS patients with localized disease. Unfortunately, this multimodal treatment remains elusive in clinics for those patients with recurrent or metastatic disease who have an unfavorable prognosis. Consistently, there is an urgent need to find new strategies for patients that fail to respond to standard therapies. In this regard, in the last decade, treatments targeting epigenetic dependencies in tumor cells and the immune system have emerged into the clinical scenario. Additionally, recent advances in nanomedicine provide novel delivery drug systems, which may address challenges such as side effects and toxicity. Therefore, therapeutic strategies stemming from epigenetics, immunology, and nanomedicine yield promising alternatives for treating these patients. In this review, we highlight the most relevant EWS preclinical and clinical studies in epigenetics, immunotherapy, and nanotherapy conducted in the last five years.
Collapse
Affiliation(s)
- Sara Sánchez-Molina
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Elisabet Figuerola-Bou
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Víctor Sánchez-Margalet
- Clinical Laboratory, Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Luis de la Cruz-Merino
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Enrique de Álava Casado
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville/CIBERONC, 41013 Seville, Spain
- Pathology Unit, Hospital Universitario Virgen del Rocío/CSIC/University of Seville/CIBERONC, 41013 Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Daniel José García-Domínguez
- Clinical Laboratory, Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Clinical Laboratory, Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| |
Collapse
|
5
|
Cristalli C, Manara MC, Valente S, Pellegrini E, Bavelloni A, De Feo A, Blalock W, Di Bello E, Piñeyro D, Merkel A, Esteller M, Tirado OM, Mai A, Scotlandi K. Novel Targeting of DNA Methyltransferase Activity Inhibits Ewing Sarcoma Cell Proliferation and Enhances Tumor Cell Sensitivity to DNA Damaging Drugs by Activating the DNA Damage Response. Front Endocrinol (Lausanne) 2022; 13:876602. [PMID: 35712255 PMCID: PMC9197596 DOI: 10.3389/fendo.2022.876602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/19/2022] [Indexed: 12/02/2022] Open
Abstract
DNA methylation is an important component of the epigenetic machinery that regulates the malignancy of Ewing sarcoma (EWS), the second most common primary bone tumor in children and adolescents. Coordination of DNA methylation and DNA replication is critical for maintaining epigenetic programming and the DNMT1 enzyme has been demonstrated to have an important role in both maintaining the epigenome and controlling cell cycle. Here, we showed that the novel nonnucleoside DNMT inhibitor (DNMTi) MC3343 induces a specific depletion of DNMT1 and affects EWS tumor proliferation through a mechanism that is independent on DNA methylation. Depletion of DNMT1 causes perturbation of the cell cycle, with an accumulation of cells in the G1 phase, and DNA damage, as revealed by the induction of γH2AX foci. These effects elicited activation of p53-dependent signaling and apoptosis in p53wt cells, while in p53 mutated cells, persistent micronuclei and increased DNA instability was observed. Treatment with MC3343 potentiates the efficacy of DNA damaging agents such as doxorubicin and PARP-inhibitors (PARPi). This effect correlates with increased DNA damage and synergistic tumor cytotoxicity, supporting the use of the DNMTi MC3343 as an adjuvant agent in treating EWS.
Collapse
Affiliation(s)
- Camilla Cristalli
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- *Correspondence: Camilla Cristalli, ; Katia Scotlandi,
| | - Maria Cristina Manara
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| | - Evelin Pellegrini
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alberto Bavelloni
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandra De Feo
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - William Blalock
- Istituto di Genetica Molecolare-Luigi Luca Cavalli Sforza, UOS Bologna, Consiglio Nazionale delle Ricerche (IGM-CNR), Bologna, Italy
| | - Elisabetta Di Bello
- Department of Drug Chemistry and Technologies, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| | - David Piñeyro
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Angelika Merkel
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
- Centro de Investigación Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| | - Oscar M. Tirado
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Centro de Investigación Biomedica en Red Cancer (CIBERONC), Barcelona, Spain
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- *Correspondence: Camilla Cristalli, ; Katia Scotlandi,
| |
Collapse
|
6
|
He F, Feng G, Ma N, Midorikawa K, Oikawa S, Kobayashi H, Zhang Z, Huang G, Takeuchi K, Murata M. GDF10 inhibits cell proliferation and epithelial-mesenchymal transition in nasopharyngeal carcinoma by the transforming growth factor-β/Smad and NF-κB pathways. Carcinogenesis 2021; 43:94-103. [PMID: 34922336 DOI: 10.1093/carcin/bgab122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 11/18/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Growth differentiation factor-10 (GDF10) belongs to a member of the transforming growth factor-β (TGF-β) superfamily. Dysfunction of the TGF-β pathway can lead to carcinoma progression. Previous studies have shown that GDF10 acts as a tumor suppressor gene in some cancers. However, the molecular mechanisms of the association between GDF10 and cell functions in nasopharyngeal carcinoma (NPC) remain unclear. In this study, the expression and methylation levels of GDF10 were studied in human subjects and cell lines. Furthermore, overexpression of GDF10 was used to explore its biological function and potential mechanism in NPC cell lines. GDF10 was downregulated in NPC owing to its aberrant promoter methylation. After treatment with 5-aza-2'-deoxycytidine, the expression of GDF10 in NPC cells was reversed. We also confirmed that the overexpression of GDF10 significantly inhibited cell proliferation and tumor growth both in vitro and in vivo, respectively. Additionally, GDF10 overexpression in NPC cells attenuated migration and invasion and inhibited epithelial-to-mesenchymal transition with a decrease in nuclear Smad2 and NF-κB protein accumulation. GDF10 was silenced owing to its promoter hypermethylation, and it might originally act as a functional tumor suppressor via TGF-β/Smad and NF-κB signaling pathways in NPC.
Collapse
Affiliation(s)
- Feng He
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan.,Department of Otolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Guofei Feng
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan.,Department of Otolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Ning Ma
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Japan.,Institute of Traditional Chinese Medicine, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Kaoru Midorikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guangwu Huang
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Nanning, China
| | - Kazuhiko Takeuchi
- Department of Otolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
7
|
Li G, Zhou X, Tian L, Meng G, Li B, Yu H, Li Y, Huo Z, Du L, Ma X, Xu B. Identification of aberrantly methylated-differentially expressed genes and potential agents for Ewing sarcoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1557. [PMID: 34790763 PMCID: PMC8576650 DOI: 10.21037/atm-21-4972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/13/2021] [Indexed: 11/06/2022]
Abstract
Background Human DNA methylation is a common epigenetic regulatory mechanism, and it plays a critical role in various diseases. However, the potential role of DNA methylation in Ewing sarcoma (ES) is not clear. This study aimed to explore the regulatory roles of DNA methylation in ES. Methods The microarray data of gene expression and methylation were downloaded from the Gene Expression Omnibus (GEO) database, and analyzed via GEO2R. Venn analysis was then applied to identify aberrantly methylated-differentially expressed genes (DEGs). Subsequently, function and pathway enrichment analysis was conducted, a protein-protein interaction (PPI) network was constructed, and hub genes were determined. Besides, a connectivity map (CMap) analysis was performed to screen bioactive compounds for ES treatment. Results A total of 135 hypomethylated high expression genes and 523 hypermethylated low expression genes were identified. The hypomethylated high expression genes were enriched in signal transduction and the apoptosis process. Meanwhile, hypermethylated low expression genes were related to DNA replication and transcription regulation. The PPI network analysis indicated C3, TF, and TCEB1 might serve as diagnostic and therapeutic targets of ES. Furthermore, CMap analysis revealed 6 chemicals as potential options for ES treatment. Conclusions The introduction of DNA methylation characteristics over DEGs is helpful to understand the pathogenesis of ES. The identified hub aberrantly methylated DEGs and chemicals might provide some novel insights on ES treatment.
Collapse
Affiliation(s)
- Guowang Li
- Graduate School of Tianjin Medical University, Tianjin, China.,Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, China
| | - Xuan Zhou
- Department of Pediatrics, Haikou Hospital of The Maternal and Child Health, Haikou, China
| | - Lijun Tian
- Graduate School of Tianjin Medical University, Tianjin, China.,Department of Orthopedic, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Gedong Meng
- Graduate School of Tianjin Medical University, Tianjin, China.,Department of Spine Surgery, the Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Bo Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hao Yu
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Yongjin Li
- Graduate School of Tianjin Medical University, Tianjin, China.,Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, China
| | - Zhenxin Huo
- Graduate School of Tianjin Medical University, Tianjin, China.,Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, China
| | - Lilong Du
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, China
| | - Xinlong Ma
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, China
| | - Baoshan Xu
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin, China
| |
Collapse
|
8
|
Abstract
Ewing sarcoma (EwS) is a highly aggressive pediatric bone cancer that is defined by a somatic fusion between the EWSR1 gene and an ETS family member, most frequently the FLI1 gene, leading to expression of a chimeric transcription factor EWSR1-FLI1. Otherwise, EwS is one of the most genetically stable cancers. The situation when the major cancer driver is well known looks like a unique opportunity for applying the systems biology approach in order to understand the EwS mechanisms as well as to uncover some general mechanistic principles of carcinogenesis. A number of studies have been performed revealing the direct and indirect effects of EWSR1-FLI1 on multiple aspects of cellular life. Nevertheless, the emerging picture of the oncogene action appears to be highly complex and systemic, with multiple reciprocal influences between the immediate consequences of the driver mutation and intracellular and intercellular molecular mechanisms, including regulation of transcription, epigenome, and tumoral microenvironment. In this chapter, we present an overview of existing molecular profiling resources available for EwS tumors and cell lines and provide an online comprehensive catalogue of publicly available omics and other datasets. We further highlight the systems biology studies of EwS, involving mathematical modeling of networks and integration of molecular data. We conclude that despite the seeming simplicity, a lot has yet to be understood on the systems-wide mechanisms connecting the driver mutation and the major cellular phenotypes of this pediatric cancer. Overall, this chapter can serve as a guide for a systems biology researcher to start working on EwS.
Collapse
|
9
|
Noh BJ, Sung JY, Kim YW, Araujo ES, Kalil RK, Jung WW, Kim HS, Park YK. Clinicopathological implications of GNAS in Ewing sarcoma. Oncol Lett 2016; 11:4077-4082. [PMID: 27313744 DOI: 10.3892/ol.2016.4521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/19/2016] [Indexed: 01/08/2023] Open
Abstract
The objective of the present study was to determine whether guanine nucleotide-binding protein α stimulating (GNAS) gene expression correlates with pathognomonic signs by analyzing the mutations, methylation status and G-protein α subunit (Gsα) expression of GNAS in Ewing sarcoma (ES). Formalin-fixed paraffin-embedded tissue samples from 77 patients with primary ES were obtained in South Korea, Argentina and Brazil, and were studied via methylation chip assay and direct sequencing of the GNAS gene and immunohistochemical analysis of Gsα. The mutation and methylation statuses of the GNAS gene were examined. Immunohistochemical results were measured with respect to proportion and staining intensity. The results revealed that GNAS genes in ES tumor samples were less methylated compared with normal controls. No mutations were detected at exons 8 or 9 of the GNAS locus complex on chromosome 20q13.3, indicating that the pathogenesis of ES was not associated with GNAS mutation. Gsα expression correlated well with the methylation status of the GNAS gene. Notably, high Gsα expression was detected more frequently in samples from living patients than from decedents, although this was not statistically significant (P=0.055). In conclusion, GNAS mutation is not associated with the pathogenesis of ES tumors. This finding may be used to differentiate ES tumors from metastatic bone lesions with morphological similarity to ES tumors. Analysis of the methylation status of the GNAS gene and immunohistochemical Gsα expression suggests that hypermethylated GNAS (low Gsα expression) in ES may be associated with unfavorable progression with a non-significant trend.
Collapse
Affiliation(s)
- Byeong-Joo Noh
- Department of Pathology, School of Medicine, Kyung Hee University Hospital, Seoul 02447, Republic of Korea
| | - Ji-Youn Sung
- Department of Pathology, School of Medicine, Kyung Hee University Hospital, Seoul 02447, Republic of Korea
| | - Youn Wha Kim
- Department of Pathology, School of Medicine, Kyung Hee University Hospital, Seoul 02447, Republic of Korea
| | - Eduardo Santini Araujo
- Laboratory of Orthopedic Pathology, Central Army Hospital, Buenos Aires C1426BOR, Argentina
| | - Ricardo Karam Kalil
- Molecular Pathology Division, SARAH Network of Rehabilitation Hospitals, Brasilia 70335-901, Brazil
| | - Woon-Won Jung
- Department of Biomedical Laboratory Science, College of Health Science, Korea University, Seoul 02708, Republic of Korea
| | - Hyun-Sook Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Cheongju University, Chungcheongbuk 28503 Republic of Korea
| | - Yong-Koo Park
- Department of Pathology, School of Medicine, Kyung Hee University Hospital, Seoul 02447, Republic of Korea
| |
Collapse
|
10
|
Kim SK, Park YK. Ewing sarcoma: a chronicle of molecular pathogenesis. Hum Pathol 2016; 55:91-100. [PMID: 27246176 DOI: 10.1016/j.humpath.2016.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/25/2016] [Accepted: 05/12/2016] [Indexed: 01/08/2023]
Abstract
Sarcomas have traditionally been classified according to their chromosomal alterations regardless of whether they accompany simple or complex genetic changes. Ewing sarcoma, a classic small round cell bone tumor, is a well-known mesenchymal malignancy that results from simple sarcoma-specific genetic alterations. The genetic alterations are translocations between genes of the TET/FET family (TLS/FUS, EWSR1, and TAF15) and genes of the E26 transformation-specific (ETS) family. In this review, we intend to summarize a chronicle of molecular findings of Ewing sarcoma including recent advances and explain resultant molecular pathogenesis.
Collapse
Affiliation(s)
- Sang Kyum Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Yong-Koo Park
- Department of Pathology, Kyung Hee University College of Medicine, Seoul, Korea.
| |
Collapse
|
11
|
Ryland KE, Hawkins AG, Weisenberger DJ, Punj V, Borinstein SC, Laird PW, Martens JR, Lawlor ER. Promoter Methylation Analysis Reveals That KCNA5 Ion Channel Silencing Supports Ewing Sarcoma Cell Proliferation. Mol Cancer Res 2015; 14:26-34. [PMID: 26573141 DOI: 10.1158/1541-7786.mcr-15-0343] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/04/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED Polycomb proteins are essential regulators of gene expression in stem cells and development. They function to reversibly repress gene transcription via posttranslational modification of histones and chromatin compaction. In many human cancers, genes that are repressed by polycomb in stem cells are subject to more stable silencing via DNA methylation of promoter CpG islands. Ewing sarcoma is an aggressive bone and soft-tissue tumor that is characterized by overexpression of polycomb proteins. This study investigates the DNA methylation status of polycomb target gene promoters in Ewing sarcoma tumors and cell lines and observes that the promoters of differentiation genes are frequent targets of CpG-island DNA methylation. In addition, the promoters of ion channel genes are highly differentially methylated in Ewing sarcoma compared with nonmalignant adult tissues. Ion channels regulate a variety of biologic processes, including proliferation, and dysfunction of these channels contributes to tumor pathogenesis. In particular, reduced expression of the voltage-gated Kv1.5 channel has been implicated in tumor progression. These data show that DNA methylation of the KCNA5 promoter contributes to stable epigenetic silencing of the Kv1.5 channel. This epigenetic repression is reversed by exposure to the DNA methylation inhibitor decitabine, which inhibits Ewing sarcoma cell proliferation through mechanisms that include restoration of the Kv1.5 channel function. IMPLICATIONS This study demonstrates that promoters of ion channels are aberrantly methylated in Ewing sarcoma and that epigenetic silencing of KCNA5 contributes to tumor cell proliferation, thus providing further evidence of the importance of ion channel dysregulation to tumorigenesis.
Collapse
Affiliation(s)
- Katherine E Ryland
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan. Translational Oncology Program, University of Michigan, Ann Arbor, Michigan. Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Allegra G Hawkins
- Translational Oncology Program, University of Michigan, Ann Arbor, Michigan. Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California. Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Vasu Punj
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | - Peter W Laird
- Van Andel Research Institute, Grand Rapids, Michigan
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida
| | - Elizabeth R Lawlor
- Translational Oncology Program, University of Michigan, Ann Arbor, Michigan. Department of Pediatrics, University of Michigan, Ann Arbor, Michigan. Department of Pathology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
12
|
Sand LGL, Szuhai K, Hogendoorn PCW. Sequencing Overview of Ewing Sarcoma: A Journey across Genomic, Epigenomic and Transcriptomic Landscapes. Int J Mol Sci 2015; 16:16176-215. [PMID: 26193259 PMCID: PMC4519945 DOI: 10.3390/ijms160716176] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 12/17/2022] Open
Abstract
Ewing sarcoma is an aggressive neoplasm occurring predominantly in adolescent Caucasians. At the genome level, a pathognomonic EWSR1-ETS translocation is present. The resulting fusion protein acts as a molecular driver in the tumor development and interferes, amongst others, with endogenous transcription and splicing. The Ewing sarcoma cell shows a poorly differentiated, stem-cell like phenotype. Consequently, the cellular origin of Ewing sarcoma is still a hot discussed topic. To further characterize Ewing sarcoma and to further elucidate the role of EWSR1-ETS fusion protein multiple genome, epigenome and transcriptome level studies were performed. In this review, the data from these studies were combined into a comprehensive overview. Presently, classical morphological predictive markers are used in the clinic and the therapy is dominantly based on systemic chemotherapy in combination with surgical interventions. Using sequencing, novel predictive markers and candidates for immuno- and targeted therapy were identified which were summarized in this review.
Collapse
Affiliation(s)
- Laurens G L Sand
- Department of Pathology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands.
| | - Karoly Szuhai
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands.
| | - Pancras C W Hogendoorn
- Department of Pathology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands.
| |
Collapse
|
13
|
Roberts SB, Wootton E, De Ferrari L, Albagha OM, Salter DM. Epigenetics of osteoarticular diseases: recent developments. Rheumatol Int 2015; 35:1293-305. [PMID: 25812537 DOI: 10.1007/s00296-015-3260-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/20/2015] [Indexed: 01/08/2023]
Abstract
A variety of osteoarticular conditions possess an underlying genetic aetiology. Large-scale genome-wide association studies have identified several genetic loci associated with osteoarticular conditions, but were unable to fully account for their estimated heritability. Epigenetic modifications including DNA methylation, histone modification, nucleosome positioning, and microRNA expression may help account for this incomplete heritability. This articles reviews insights from epigenetic studies in osteoarticular diseases, focusing on osteoarthritis, but also examines recent advances in rheumatoid arthritis, osteoporosis, systemic lupus erythematosus (SLE), ankylosing spondylitis, and sarcoma. Genome-wide methylation studies are permitting identification of novel candidate genes and molecular pathways, and the pathogenic mechanisms with altered methylation status are beginning to be elucidated. These findings are gradually translating into improved understanding of disease pathogenesis and clinical applications. Functional studies in osteoarthritis, rheumatoid arthritis, and SLE are now identifying downstream molecular alterations that may confer disease susceptibility. Epigenetic markers are being validated as prognostic and therapeutic disease biomarkers in sarcoma, and clinical trials of hypomethylating agents as treatments for sarcoma are being conducted. In concert with advances in throughput and cost-efficiency of available technologies, future epigenetic research will enable greater characterisation and treatment for both common and rare osteoarticular diseases.
Collapse
Affiliation(s)
- S B Roberts
- Bone Research Group, Centre for Genomics and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK,
| | | | | | | | | |
Collapse
|