1
|
Alaiz Noya M, Berti F, Dietrich S. Comprehensive expression analysis for the core cell cycle regulators in the chicken embryo reveals novel tissue-specific synexpression groups and similarities and differences with expression in mouse, frog and zebrafish. J Anat 2022; 241:42-66. [PMID: 35146756 PMCID: PMC9178385 DOI: 10.1111/joa.13629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/07/2021] [Accepted: 01/05/2022] [Indexed: 11/29/2022] Open
Abstract
The core cell cycle machinery is conserved from yeast to humans, and hence it is assumed that all vertebrates share the same set of players. Yet during vertebrate evolution, the genome was duplicated twice, followed by a further genome duplication in teleost fish. Thereafter, distinct genes were retained in different vertebrate lineages; some individual gene duplications also occurred. To which extent these diversifying tendencies were compensated by retaining the same expression patterns across homologous genes is not known. This study for the first time undertook a comprehensive expression analysis for the core cell cycle regulators in the chicken, focusing in on early neurula and pharyngula stages of development, with the latter representing the vertebrate phylotypic stage. We also compared our data with published data for the mouse, Xenopus and zebrafish, the other established vertebrate models. Our work shows that, while many genes are expressed widely, some are upregulated or specifically expressed in defined tissues of the chicken embryo, forming novel synexpression groups with markers for distinct developmental pathways. Moreover, we found that in the neural tube and in the somite, mRNAs of some of the genes investigated accumulate in a specific subcellular localisation, pointing at a novel link between the site of mRNA translation, cell cycle control and interkinetic nuclear movements. Finally, we show that expression patterns of orthologous genes may differ in the four vertebrate models. Thus, for any study investigating cell proliferation, cell differentiation, tissue regeneration, stem cell behaviour and cancer/cancer therapy, it has to be carefully examined which of the observed effects are due to the specific model organism used, and which can be generalised.
Collapse
Affiliation(s)
- Marta Alaiz Noya
- Institute for Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.,Instituto de Neurociencias de Alicante, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Alicante, Spain
| | - Federica Berti
- Institute for Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.,Life Sciences Solutions, Thermo Fisher Scientific, Monza, Italy
| | - Susanne Dietrich
- Institute for Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
2
|
Li B, Jiang HY, Wang ZH, Ma YC, Bao YN, Jin Y. Effect of fenofibrate on proliferation of SMMC-7721 cells via regulating cell cycle. Hum Exp Toxicol 2021; 40:1208-1221. [PMID: 33538198 DOI: 10.1177/0960327121991901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Liver cancer is a malignant cancer with great harmfulness. Fenofibrate is a peroxisome proliferation activated receptor (PPARα) agonist widely used in the treatment of dyslipidemia. Previous studies have shown that fenofibrate may promote cell proliferation, but the underlying mechanism has not been fully characterized. The aim of this study was to investigate the role of PPARα agonist fenofibrate in cell proliferation of SMMC-7721 cells compared with that of THLE-2 cells. SMMC-7721 and THLE-2 cells were treated with different concentrations of fenofibrate. Cell proliferation was analyzed by MTT, using flow cytometry for cell cycle analysis, and CyclinD1, Cyclin-dependent kinases2 (CDK2) and Proliferating Cell Nuclear Antigen (PCNA) were analyzed by Western blotting. RT-qPCR method was used to assess CDK2, CyclinD1 and PCNA mRNA levels. The results showed that 10-9-10-4 mol/L fenofibrate could induce cell growth and 10-4, 10-5, 10-6 mol/L fenofibrate could reduce the number of G0/G1 phase cells and increased in the number of cells in S and G2/M phase of cell cycle in SMMC-7721 cells. Furthermore, fenofibrate could significantly increase the expression of cell cycle related protein (CyclinD1, CDK2)and cell proliferation related proteins (PCNA). The use of PPARα inhibitor MT886 inhibited cell cycle progression and promote tumor cell apoptosis. But fenofibrate had no obvious effect on THLE-2 cells. These results revealed the effect of fenofibrate on the cell cycle of liver cancer cells, and provided a reasonable explanation for studying how fenofibrate promotes cell proliferation.
Collapse
Affiliation(s)
- B Li
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,Institute for Liver Diseases of 12485Anhui Medical University, Hefei, China
| | - H-Y Jiang
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,Institute for Liver Diseases of 12485Anhui Medical University, Hefei, China
| | - Z-H Wang
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,Institute for Liver Diseases of 12485Anhui Medical University, Hefei, China
| | - Y-C Ma
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,Institute for Liver Diseases of 12485Anhui Medical University, Hefei, China
| | - Y-N Bao
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,Institute for Liver Diseases of 12485Anhui Medical University, Hefei, China
| | - Y Jin
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,The Key Laboratory of Major Autoimmune Diseases, Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, 12485Anhui Medical University, Hefei, China.,Institute for Liver Diseases of 12485Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Tatum NJ, Endicott JA. Chatterboxes: the structural and functional diversity of cyclins. Semin Cell Dev Biol 2020; 107:4-20. [PMID: 32414682 DOI: 10.1016/j.semcdb.2020.04.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Proteins of the cyclin family have divergent sequences and execute diverse roles within the cell while sharing a common fold: the cyclin box domain. Structural studies of cyclins have played a key role in our characterization and understanding of cellular processes that they control, though to date only ten of the 29 CDK-activating cyclins have been structurally characterized by X-ray crystallography or cryo-electron microscopy with or without their cognate kinases. In this review, we survey the available structures of human cyclins, highlighting their molecular features in the context of their cellular roles. We pay particular attention to how cyclin activity is regulated through fine control of degradation motif recognition and ubiquitination. Finally, we discuss the emergent roles of cyclins independent of their roles as cyclin-dependent protein kinase activators, demonstrating the cyclin box domain to be a versatile and generalized scaffolding domain for protein-protein interactions across the cellular machinery.
Collapse
Affiliation(s)
- Natalie J Tatum
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Jane A Endicott
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
| |
Collapse
|
4
|
Kisaka JK, Ratner L, Kyei GB. The Dual-Specificity Kinase DYRK1A Modulates the Levels of Cyclin L2 To Control HIV Replication in Macrophages. J Virol 2020; 94:e01583-19. [PMID: 31852782 PMCID: PMC7158737 DOI: 10.1128/jvi.01583-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/09/2019] [Indexed: 12/16/2022] Open
Abstract
HIV replication in macrophages contributes to the latent viral reservoirs, which are considered the main barrier to HIV eradication. Few cellular factors that facilitate HIV replication in latently infected cells are known. We previously identified cyclin L2 as a critical factor required by HIV-1 and found that depletion of cyclin L2 attenuates HIV-1 replication in macrophages. Here we demonstrate that cyclin L2 promotes HIV-1 replication through interactions with the dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A). Cyclin L2 and DYRK1A were colocalized in the nucleus and were found together in immunoprecipitation experiments. Knockdown or inhibition of DYRK1A increased HIV-1 replication in macrophages, while depletion of cyclin L2 decreased HIV-1 replication. Furthermore, depletion of DYRK1A increased expression levels of cyclin L2. DYRK1A is a proline-directed kinase that phosphorylates cyclin L2 at serine residues. Mutations of cyclin L2 at serine residues preceding proline significantly stabilized cyclin L2 and increased HIV-1 replication in macrophages. Thus, we propose that DYRK1A controls cyclin L2 expression, leading to restriction of HIV replication in macrophages.IMPORTANCE HIV continues to be a major public health problem worldwide, with over 36 million people living with the virus. Although antiretroviral therapy (ART) can control the virus, it does not provide cure. The virus hides in the genomes of long-lived cells, such as resting CD4+ T cells and differentiated macrophages. To get a cure for HIV, it is important to identify and characterize the cellular factors that control HIV multiplication in these reservoir cells. Previous work showed that cyclin L2 is required for HIV replication in macrophages. However, how cyclin L2 is regulated in macrophages is unknown. Here we show that the protein DYRK1A interacts with and phosphorylates cyclin L2. Phosphorylation makes cyclin L2 amenable to cellular degradation, leading to restriction of HIV replication in macrophages.
Collapse
Affiliation(s)
- Javan K Kisaka
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Lee Ratner
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - George B Kyei
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Virology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
5
|
Li L, Cao Y, Zhou H, Li Y, He B, Zhou X, Nie Z, Liang L, Liu Y, Ye L. Knockdown of CCNO decreases the tumorigenicity of gastric cancer by inducing apoptosis. Onco Targets Ther 2018; 11:7471-7481. [PMID: 30464498 PMCID: PMC6208796 DOI: 10.2147/ott.s176252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purpose Recently, Cyclin O (CCNO) has been reported to be a novel protein of the cyclin family. However, the clinical significance and functional roles of CCNO in human cancer, including gastric cancer (GC), remain largely unexplored. In this study, we investigated the clinical and functional roles of CCNO in GC. Methods We analyzed CCNO expression patterns in GC patients. To investigate the role of CCNO in malignancy of GC, we used lentivirus-delivered short hairpin RNA to knockdown CCNO expression in GC cell lines. Then multiparametric high-content screening and MTT incorporation assay were used to assess the cell proliferation capability. Cell apoptosis was detected by flow cytometry and Caspase 3/7 assays. Furthermore, the effect of CCNO on tumorigenicity of GC was also determined in vivo. Finally, microarray analysis was performed to elucidate the molecular mechanisms by which shCCNO inhibited the malignancy of GC cells. Results The analysis from The Cancer Genome Atlas database revealed elevated CCNO mRNA expression in GC tissue than in the adjacent normal tissue. Immunohistochemical studies also showed that stronger cytoplasmic staining of CCNO was detected in GC tissues. Downregulation of CCNO in GC cells efficiently, through infection with the lentivirus-mediated specific short hairpin RNA, could significantly induce cell apoptosis and inhibit the proliferative properties both in vitro and in vivo. Microarray analysis further revealed 652 upregulated genes and 527 downregulated genes in the shCCNO group compared with control, and indicated that CCNO knockdown could inhibit the malignancy of GC cells through inducing genome-wide gene expression changes. Conclusion Our work is the first to reveal that elevated CCNO expression is closely associated with human GC development and that CCNO knockdown could efficiently inhibit the malignant properties of GC cells by inducing cell apoptosis. Therefore, CCNO could be used as a potential biomarker for prognosis or even as a therapeutic target in human GC.
Collapse
Affiliation(s)
- Lan Li
- Department of Emergency, West China Hospital, Sichuan University, Chengdu 610041, China, .,Department of General Practice, Guizhou Provincial People's Hospital, Guiyang 610041, China
| | - Yu Cao
- Department of Emergency, West China Hospital, Sichuan University, Chengdu 610041, China,
| | - Hourong Zhou
- Department of General Practice, Guizhou Provincial People's Hospital, Guiyang 610041, China
| | - Yu Li
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang 610041, China
| | - Bing He
- Department of Emergency, West China Hospital, Sichuan University, Chengdu 610041, China,
| | - Xia Zhou
- Department of Emergency, Guizhou Provincial People's Hospital, Guiyang 610041, China
| | - Zhao Nie
- Department of Medical Records and Statistics, Guizhou Provincial People's Hospital, Guiyang 610041, China
| | - Li Liang
- Medical Department, Guizhou Provincial People's Hospital, Guiyang 610041, China
| | - Ying Liu
- Department of Emergency, the Hospital affiliated to Southwest Medical University, Sichuan 646000, China
| | - Limin Ye
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang 610041, China
| |
Collapse
|
6
|
Affiliation(s)
- Michelle Levine
- Johns Hopkins University, Department of Molecular Biology and Genetics, Baltimore, MD 21205, USA
| | - Andrew Holland
- Johns Hopkins University, Department of Molecular Biology and Genetics, Baltimore, MD 21205, USA.
| |
Collapse
|
7
|
Wang G, Wang X, Huang X, Yang H, Pang S, Xie X, Zeng S, Lin J, Diao Y. Inhibition of integrin β3, a binding partner of kallistatin, leads to reduced viability, invasion and proliferation in NCI-H446 cells. Cancer Cell Int 2016; 16:90. [PMID: 27980455 PMCID: PMC5134261 DOI: 10.1186/s12935-016-0365-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/23/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Kallistatin is a serine proteinase inhibitor and heparin-binding protein. It is considered an endogenous angiogenic inhibitor. In addition, multiple studies demonstrated that kallistatin directly inhibits cancer cell growth. However, the molecular mechanisms underlying these effects remain unclear. METHODS Pull-down, immunoprecipitation, and immunoblotting were used for binding experiments. To elucidate the mechanisms, integrin β3 knockdown (siRNA) or blockage (antibody treatment) on the cell surface of small the cell lung cancer NCI-H446 cell line was used. RESULTS Interestingly, kallistatin was capable of binding integrin β3 on the cell surface of NCI-H446 cells. Meanwhile, integrin β3 knockdown or blockage resulted in loss of antitumor activities induced by kallistatin. Furthermore, kallistatin suppressed tyrosine phosphorylation of integrin β3 and its downstream signaling pathways, including FAK/-Src, AKT and Erk/MAPK. Viability, proliferation and migration of NCI-H446 cells were inhibited by kallistatin, with Bcl-2 and Grb2 downregulation, and Bax, cleaved caspase-9 and caspase 3 upregulation. CONCLUSIONS These findings reveal a novel role for kallistatin in preventing small cell lung cancer growth and mobility, by direct interaction with integrin β3, leading to blockade of the related signaling pathway.
Collapse
Affiliation(s)
- Guoquan Wang
- Institute of Molecular Medicine, Huaqiao University, Quanzhou, 362021 China
| | - Xiao Wang
- Institute of Molecular Medicine, Huaqiao University, Quanzhou, 362021 China
| | - Xiaoping Huang
- Institute of Molecular Medicine, Huaqiao University, Quanzhou, 362021 China.,College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quanzhou, 326000 China.,School of Chemistry and Chemical Engineering of Guangxi Normal University, Guilin, 541004 China
| | - Huiyong Yang
- Institute of Molecular Medicine, Huaqiao University, Quanzhou, 362021 China
| | - Suqiu Pang
- Institute of Molecular Medicine, Huaqiao University, Quanzhou, 362021 China
| | - Xiaolan Xie
- College of Chemical Engineering and Materials Sciences, Quanzhou Normal University, Quanzhou, 326000 China
| | - Shulan Zeng
- School of Chemistry and Chemical Engineering of Guangxi Normal University, Guilin, 541004 China
| | - Junsheng Lin
- Institute of Molecular Medicine, Huaqiao University, Quanzhou, 362021 China
| | - Yong Diao
- Institute of Molecular Medicine, Huaqiao University, Quanzhou, 362021 China
| |
Collapse
|