1
|
Moghaddam M, Vivarelli S, Falzone L, Libra M, Bonavida B. Cancer resistance via the downregulation of the tumor suppressors RKIP and PTEN expressions: therapeutic implications. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:170-207. [PMID: 37205308 PMCID: PMC10185445 DOI: 10.37349/etat.2023.00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/12/2022] [Indexed: 05/21/2023] Open
Abstract
The Raf kinase inhibitor protein (RKIP) has been reported to be underexpressed in many cancers and plays a role in the regulation of tumor cells' survival, proliferation, invasion, and metastasis, hence, a tumor suppressor. RKIP also regulates tumor cell resistance to cytotoxic drugs/cells. Likewise, the tumor suppressor, phosphatase and tensin homolog (PTEN), which inhibits the phosphatidylinositol 3 kinase (PI3K)/AKT pathway, is either mutated, underexpressed, or deleted in many cancers and shares with RKIP its anti-tumor properties and its regulation in resistance. The transcriptional and posttranscriptional regulations of RKIP and PTEN expressions and their roles in resistance were reviewed. The underlying mechanism of the interrelationship between the signaling expressions of RKIP and PTEN in cancer is not clear. Several pathways are regulated by RKIP and PTEN and the transcriptional and post-transcriptional regulations of RKIP and PTEN is significantly altered in cancers. In addition, RKIP and PTEN play a key role in the regulation of tumor cells response to chemotherapy and immunotherapy. In addition, molecular and bioinformatic data revealed crosstalk signaling networks that regulate the expressions of both RKIP and PTEN. These crosstalks involved the mitogen-activated protein kinase (MAPK)/PI3K pathways and the dysregulated nuclear factor-kappaB (NF-κB)/Snail/Yin Yang 1 (YY1)/RKIP/PTEN loop in many cancers. Furthermore, further bioinformatic analyses were performed to investigate the correlations (positive or negative) and the prognostic significance of the expressions of RKIP or PTEN in 31 different human cancers. These analyses were not uniform and only revealed that there was a positive correlation between the expression of RKIP and PTEN only in few cancers. These findings demonstrated the existence of signaling cross-talks between RKIP and PTEN and both regulate resistance. Targeting either RKIP or PTEN (alone or in combination with other therapies) may be sufficient to therapeutically inhibit tumor growth and reverse the tumor resistance to cytotoxic therapies.
Collapse
Affiliation(s)
- Matthew Moghaddam
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), East Los Angeles, CA 90095, USA
| | - Silvia Vivarelli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, University of Messina, 98125 Messina, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute IRCCS Fondazione G. Pascale, 80131 Naples, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Centre for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), East Los Angeles, CA 90095, USA
- Correspondence: Benjamin Bonavida, Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), 1602 Molecular Sciences Building, 609 Charles E. Young Drive, East Los Angeles, CA 90095, USA.
| |
Collapse
|
2
|
Poleto Spinola L, F Vieira G, Fernandes Ferreira R, Calastri MCJ, D Tenani G, Aguiar FL, Santana Ferreira Boin IF, B E Da Costa L, Chaim Correia MF, Zanovelo EM, B De Souza DC, Martins Alves Da Silva RC, Ferreira Da Silva R, Coelho Abrantes AM, R R Botelho MF, L R Tralhão JG, R S Souza D. Underexpression of miR-126-3p in Patients with Cholangiocarcinoma. Asian Pac J Cancer Prev 2021; 22:573-579. [PMID: 33639676 PMCID: PMC8190345 DOI: 10.31557/apjcp.2021.22.2.573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
Objectives: To evaluate the expression of miR-126-3p and its potential as a biomarker for cholangiocarcinoma (CCA) and to better understand the prognosis, comorbidities, and lifestyle habits associated with the disease. Methods: Fifty-nine individuals were distributed into either the study group (38 CCA patients) or the control group (21 individuals without liver diseases). Total RNA was extracted, cDNA synthesis was performed, and miR-126-3p expression was assessed using real-time PCR. For statistical analysis, alpha error was set at 5%. Results: MiR-126-3p was found to be underexpressed in the study group relative to the controls (0.42; P=0.001). Additionally, marked underexpression was found in the study group in when associated with smoking (0.28; P=0.0001), alcoholism (0.19; P=0.0001), hypertension (0.29; P=000.1), and diabetes (0.12; P=0.0003) relative to the controls. No association was found between miR-126-3p expression and tumor subtypes (iCCA=0.42; pCCA=0.45; dCCA=0.72; P=0.9155). A total of 67% of dCCA patients were event-free at 16 months of follow up, while both pCCA and iCCA exhibited event-free survival rates of 25%, though there was no significant difference between these subgroups (P=0.273). Conclusion: The underexpression of mir-126-3p is associated with cholangiocarcinoma and can be potentiated by alcoholism, hypertension, diabetes, and smoking, the latter of which is an independent risk factor for this cancer. Furthermore, dCCA patients exhibit higher survival rates relative to patients with pCCA and iCCA.
Collapse
Affiliation(s)
- Lucas Poleto Spinola
- Department of Molecular Biology, São José do Rio Preto Medical School (FAMERP), São Paulo, Brazil
| | - Gabriel F Vieira
- Department of Molecular Biology, São José do Rio Preto Medical School (FAMERP), São Paulo, Brazil
| | | | - Maria C J Calastri
- Department of Molecular Biology, São José do Rio Preto Medical School (FAMERP), São Paulo, Brazil
| | - Graciele D Tenani
- Department of Molecular Biology, São José do Rio Preto Medical School (FAMERP), São Paulo, Brazil
| | - Franciana L Aguiar
- Department of Molecular Biology, São José do Rio Preto Medical School (FAMERP), São Paulo, Brazil
| | | | - Larissa B E Da Costa
- School of Medical Sciences of the State University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | | | | | | | | | | | | | - Doroteia R S Souza
- Department of Molecular Biology, São José do Rio Preto Medical School (FAMERP), São Paulo, Brazil
| |
Collapse
|
3
|
Wang Y, Bonavida B. A New Linkage between the Tumor Suppressor RKIP and Autophagy: Targeted Therapeutics. Crit Rev Oncog 2019; 23:281-305. [PMID: 30311561 DOI: 10.1615/critrevoncog.2018027211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The complexities of molecular signaling in cancer cells have been hypothesized to mediate cross-network alterations of oncogenic processes such as uncontrolled cell growth, proliferation, acquisition of epithelial-to-mesenchymal transition (EMT) markers, and resistance to cytotoxic therapies. The two biochemically exclusive processes/proteins examined in the present review are the metastasis suppressor Raf-1 kinase inhibitory protein (RKIP) and the cell-intrinsic system of macroautophagy (hereafter referred to as autophagy). RKIP is poorly expressed in human cancer tissues, and low expression levels are correlated with high incidence of tumor growth, metastasis, poor treatment efficacy, and poor prognoses in cancer patients. By comparison, autophagy is a conserved cytoprotective degradation pathway that has been shown to influence the acquisition of resistance to hypoxia and nutrient depletion as well as the regulation of chemo-immuno-resistance and apoptotic evasion. Evidently, a broad library of cancer-relevant studies exists for RKIP and autophagy, although reports of the interactions between pathways involving RKIP and autophagy have been relatively sparse. To circumvent this limitation, the coordinate regulatory and effector mechanisms were examined for both RKIP and autophagy. Here, we propose three putative pathways that demonstrate the inherent pleiotropism and relevance of RKIP and the microtubule-associated protein 1 light chain 3 (MAP1LC3, LC3) on cell growth, proliferation, senescence, and EMT, among the hallmarks of cancer. Our findings suggest that signaling modules involving p53, signal transducer and activator of transcription 3 (STAT3), nuclear factor-κB (NF-κB), and Snail highlight the novel roles for RKIP in the control of autophagy and vice versa. The suggested potential crosstalk mechanisms are new areas of research in which to further study RKIP and autophagy in cancer models. These should lead to novel prognostic motifs and will provide alternative therapeutic strategies for the treatment of unresponsive aggressive cancer types.
Collapse
Affiliation(s)
- Yuhao Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90025-1747
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine, Johnson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90025-1747
| |
Collapse
|
4
|
Datar I, Kalpana G, Choi J, Basuroy T, Trumbly R, Chaitanya Arudra SK, McPhee MD, de la Serna I, Yeung KC. Critical role of miR-10b in B-RafV600E dependent anchorage independent growth and invasion of melanoma cells. PLoS One 2019; 14:e0204387. [PMID: 30995246 PMCID: PMC6469749 DOI: 10.1371/journal.pone.0204387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
Recent high-throughput-sequencing of cancer genomes has identified oncogenic mutations in the B-Raf genetic locus as one of the critical events in melanomagenesis. B-Raf encodes a serine/threonine kinase that regulates the MAPK/ERK kinase (MEK) and extracellular signal-regulated kinase (ERK) protein kinase cascade. In normal cells, the activity of B-Raf is tightly regulated and is required for cell growth and survival. B-Raf gain-of-function mutations in melanoma frequently lead to unrestrained growth, enhanced cell invasion and increased viability of cancer cells. Although it is clear that the invasive phenotypes of B-Raf mutated melanoma cells are stringently dependent on B-Raf-MEK-ERK activation, the downstream effector targets that are required for oncogenic B-Raf-mediated melanomagenesis are not well defined. miRNAs have regulatory functions towards the expression of genes that are important in carcinogenesis. We observed that miR-10b expression correlates with the presence of the oncogenic B-Raf (B-RafV600E) mutation in melanoma cells. While expression of miR-10b enhances anchorage-independent growth of B-Raf wild-type melanoma cells, miR-10b silencing decreases B-RafV600E cancer cell invasion in vitro. Importantly, the expression of miR-10b is required for B-RafV600E-mediated anchorage independent growth and invasion of melanoma cells in vitro. Taken together our results suggest that miR-10b is an important mediator of oncogenic B-RafV600E activity in melanoma.
Collapse
Affiliation(s)
- Ila Datar
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States of America
| | - Gardiyawasam Kalpana
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, United States of America
| | - Jungmin Choi
- Department of Genetics, Yale School of Medicine, New Haven, CT, United States of America
| | - Tupa Basuroy
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, United States of America
| | - Robert Trumbly
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, United States of America
| | | | | | - Ivana de la Serna
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, United States of America
| | - Kam C. Yeung
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, United States of America
- * E-mail:
| |
Collapse
|
5
|
Chujan S, Suriyo T, Ungtrakul T, Pomyen Y, Satayavivad J. Potential candidate treatment agents for targeting of cholangiocarcinoma identified by gene expression profile analysis. Biomed Rep 2018; 9:42-52. [PMID: 29930804 PMCID: PMC6007048 DOI: 10.3892/br.2018.1101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/18/2018] [Indexed: 12/14/2022] Open
Abstract
Cholangiocarcinoma (CCA) remains to be a major health problem in several Asian countries including Thailand. The molecular mechanism of CCA is poorly understood. Early diagnosis is difficult, and at present, no effective therapeutic drug is available. The present study aimed to identify the molecular mechanism of CCA by gene expression profile analysis and to search for current approved drugs which may interact with the upregulated genes in CCA. Gene Expression Omnibus (GEO) was used to analyze the gene expression profiles of CCA patients and normal subjects. Using the Kyoto Encyclopedia of Genes and Genomes (KEGG), gene ontology enrichment analysis was also performed, with the KEGG pathway analysis indicating that pancreatic secretion, protein digestion and absorption, fat digestion and absorption, and glycerolipid metabolism may serve important roles in CCA oncogenesis. The drug signature database (DsigDB) was used to search for US Food and Drug Administration (FDA)-approved drugs potentially capable of reversing the effects of the upregulated gene expression in CCA. A total of 61 antineoplastic and 86 non-antineoplastic drugs were identified. Checkpoint kinase 1 was the most interacting with drug signatures. Many of the targeted protein inhibitors that were identified have been approved by the US-FDA as therapeutic agents for non-antineoplastic diseases, including cimetidine, valproic acid and lovastatin. The current study demonstrated an application for bioinformatics analysis in assessing the potential efficacy of currently approved drugs for novel use. The present results suggest novel indications regarding existing drugs useful for CCA treatment. However, further in vitro and in vivo studies are required to support the current predictions.
Collapse
Affiliation(s)
- Suthipong Chujan
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Tawit Suriyo
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology, Office of Higher Education Commission, Ministry of Education, Bangkok 10400, Thailand
| | - Teerapat Ungtrakul
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Yotsawat Pomyen
- Translational Research Unit, Chulabhorn Research Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Jutamaad Satayavivad
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology, Office of Higher Education Commission, Ministry of Education, Bangkok 10400, Thailand.,Environmental Toxicology Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| |
Collapse
|
6
|
Inverse correlation between the metastasis suppressor RKIP and the metastasis inducer YY1: Contrasting roles in the regulation of chemo/immuno-resistance in cancer. Drug Resist Updat 2017; 30:28-38. [PMID: 28363333 DOI: 10.1016/j.drup.2017.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/28/2016] [Accepted: 01/04/2017] [Indexed: 02/06/2023]
Abstract
Several gene products have been postulated to mediate inherent and/or acquired anticancer drug resistance and tumor metastasis. Among these, the metastasis suppressor and chemo-immuno-sensitizing gene product, Raf Kinase Inhibitor Protein (RKIP), is poorly expressed in many cancers. In contrast, the metastasis inducer and chemo-immuno-resistant factor Yin Yang 1 (YY1) is overexpressed in many cancers. This inverse relationship between RKIP and YY1 expression suggests that these two gene products may be regulated via cross-talks of molecular signaling pathways, culminating in the expression of different phenotypes based on their targets. Analyses of the molecular regulation of the expression patterns of RKIP and YY1 as well as epigenetic, post-transcriptional, and post-translational regulation revealed the existence of several effector mechanisms and crosstalk pathways, of which five pathways of relevance have been identified and analyzed. The five examined cross-talk pathways include the following loops: RKIP/NF-κB/Snail/YY1, p38/MAPK/RKIP/GSK3β/Snail/YY1, RKIP/Smurf2/YY1/Snail, RKIP/MAPK/Myc/Let-7/HMGA2/Snail/YY1, as well as RKIP/GPCR/STAT3/miR-34/YY1. Each loop is comprised of multiple interactions and cascades that provide evidence for YY1's negative regulation of RKIP expression and vice versa. These loops elucidate potential prognostic motifs and targets for therapeutic intervention. Chiefly, these findings suggest that targeted inhibition of YY1 by specific small molecule inhibitors and/or the specific induction of RKIP expression and activity are potential therapeutic strategies to block tumor growth and metastasis in many cancers, as well as to overcome anticancer drug resistance. These strategies present potential alternatives for their synergistic uses in combination with low doses of conventional chemo-immunotherapeutics and hence, increasing survival, reducing toxicity, and improving quality of life.
Collapse
|
7
|
Pak JH, Shin J, Song IS, Shim S, Jang SW. Clonorchis sinensis excretory–secretory products regulate migration and invasion in cholangiocarcinoma cells via extracellular signal-regulated kinase 1/2/nuclear factor-κB-dependent matrix metalloproteinase-9 expression. Int J Parasitol 2017; 47:51-59. [DOI: 10.1016/j.ijpara.2016.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 01/09/2023]
|
8
|
The biological complexity of RKIP signaling in human cancers. Exp Mol Med 2015; 47:e185. [PMID: 26403261 PMCID: PMC4650930 DOI: 10.1038/emm.2015.70] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/23/2015] [Accepted: 06/27/2015] [Indexed: 12/17/2022] Open
Abstract
The Raf kinase inhibitory protein (RKIP) has been demonstrated to modulate different intracellular signaling pathways in cancers. Studies have shown that RKIP is frequently downregulated in cancers; therefore, attempts have been made to upregulate the expression of RKIP using natural and synthetic agents for the treatment of human malignancies. Moreover, various regulators such as specific proteins and microRNAs (miRNAs) that are involved in the regulation of RKIP expression have also been identified. RKIP mechanistically modulates the apoptotic regulators of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling. Because of its critical role in human cancers, RKIP has drawn much research attention, and our understanding is expanding rapidly. Here, we summarize some of the biological complexities of RKIP regulation. However, we restrict our discussion to selected tumors by focusing on TRAIL, miRNAs and natural agents. Emerging evidence suggests a role for natural agents in RKIP regulation in cancer cells; therefore, naturally occurring agents may serve as cancer-targeting agents for cancer treatment. Although the literature suggests some advancement in our knowledge of RKIP biology, it is incomplete with regard to its preclinical and clinical efficacy; thus, further research is warranted. Furthermore, the mechanism by which chemotherapeutic drugs and novel compounds modulate RKIP and how nanotechnologically delivered RKIP can be therapeutically exploited remain to be determined.
Collapse
|
9
|
Li S, Zhang Z, Xue J, Guo X, Liang S, Liu A. Effect of Hypoxia on DDR1 Expression in Pituitary Adenomas. Med Sci Monit 2015; 21:2433-8. [PMID: 26286316 PMCID: PMC4547544 DOI: 10.12659/msm.894205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background Pituitary adenoma is a common intracranial tumor in neurosurgery. Some pituitary adenomas have the characteristics of invasive growth make them unable to be removed completely by surgery leading to easy relapse. Discoidin domain receptor l (DDR1) is a new kind of tyrosine kinase receptor on the cell surface. DDR1 can be activated by tumor microenvironment signal in tumorigenesis, increasing MMP-2/9 expression and promoting the invasive ability of tumor cells. Anoxia can promote tumor growth and metastasis. This study investigated the impact of anoxic environment DDR1 expression in pituitary adenoma. Material/Methods A primary hypoxia pituitary adenoma cell model was established and treated with DDR1 inhibitor nilotinib. Real-time PCR and Western blot were used to detect DDR1 mRNA and protein expression. ELISA was used to detect MMP-2/9 changes. MTT method was used to detect pituitary adenoma cell proliferation. We used a transwell chamber to determine pituitary adenoma cell invasion ability. Results DDR1 mRNA and protein were significantly overexpressed under hypoxia (P<0.05). MMP-2 and MMP-9 expression was obviously increased in supernatant (P<0.05). Pituitary adenoma cell proliferation and invasive ability improved markedly under hypoxia (P<0.05). Nilotinib could reduce DDR1 expression, decrease MMP-2 and MMP-9 expression, and inhibit pituitary adenoma cells proliferation and invasion. Conclusions Hypoxia can increase DDR1 expression in pituitary adenoma cells, leading to improved MMP-2 and MMP-9 secretion, and promoting pituitary adenoma cell proliferation and invasion.
Collapse
Affiliation(s)
- Shouchun Li
- Department of Neurosurgery, First Affiliated Hospital of Chinese PLA General Hospital, Bejing, China (mainland)
| | - Zhiwen Zhang
- Department of Neurosurgery, First Affiliated Hospital of Chinese PLA General Hospital, Bejing, China (mainland)
| | - Jinghui Xue
- Department of Neurosurgery, First Affiliated Hospital of Chinese PLA General Hospital, Bejing, China (mainland)
| | - Xiaoming Guo
- Department of Neurosurgery, First Affiliated Hospital of Chinese PLA General Hospital, Bejing, China (mainland)
| | - Shuli Liang
- Department of Neurosurgery, First Affiliated Hospital of Chinese PLA General Hospital, Bejing, China (mainland)
| | - Aijun Liu
- Department of Neurosurgery, First Affiliated Hospital of Chinese PLA General Hospital, Bejing, China (mainland)
| |
Collapse
|