Liu J, Xue W, Xiang H, Zheng J, Zhao Y, Jiao L, Jiao Z. Cathelicidin PR-39 peptide inhibits hypoxia/reperfusion-induced kidney cell apoptosis by suppression of the endoplasmic reticulum-stress pathway.
Acta Biochim Biophys Sin (Shanghai) 2016;
48:714-22. [PMID:
27353320 DOI:
10.1093/abbs/gmw061]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/23/2016] [Indexed: 12/18/2022] Open
Abstract
Ischemia/reperfusion injury (IRI) is a major cause of acute kidney damage, which often occurs in deceased donor kidney transplants. Cathelicidin PR-39 peptide possesses anti-inflammatory and wound repair effects through tissue angiogenesis and anti-apoptosis. This study assessed the role of PR-39 in anti-apoptosis in vitro using a lentiviral vector with a kidney specific promoter (KSP) to drive PR-39 expression. Our data revealed that PR-39 peptide was specifically over-expressed in kidney-derived HK-2 cells, but was scarcely detected in non-kidney tissue-derived cells. PR-39 over-expression had a protective role in the hypoxia/re-oxygenation (H/R) treated cells. The anti-apoptotic activity of PR-39 peptide was mediated by the inhibition of caspase-2, caspase-12 and caspase-3 activity in the endoplasmic reticulum (ER) stress-induced apoptotic pathway. It was also revealed that the anti-apoptotic effect of PR-39 peptide was mediated by an apoptosis-related protein, cellular inhibitor apoptosis protein-2 (c-IAP-2). Taken together, the current data demonstrate that PR-39 expression driven by KSP could prevent kidney damage (apoptosis) from IRI via the ER stress-induced apoptotic pathway.
Collapse