1
|
Tian Z, Yu S, Cai R, Zhang Y, Liu Q, Zhu Y. SH3GL2 and MMP17 as lung adenocarcinoma biomarkers: a machine-learning based approach. Biochem Biophys Rep 2024; 38:101693. [PMID: 38571554 PMCID: PMC10987888 DOI: 10.1016/j.bbrep.2024.101693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
Objective Using bioinformatics machine learning methods, our research aims to identify the potential key genes associated with Lung adenocarcinoma (LUAD). Methods We obtained two gene expression profiling microarrays (GSE68571 and GSE74706) from the public Gene Expression Omnibus (GEO) database at the National Centre for Biotechnology Information (NCBI). The purpose was to identify Differentially Expressed Genes (DEGs) between the lung adenocarcinoma group and the healthy control group. The limma R package in R was utilized for this analysis. For the differential gene diagnosis of lung adenocarcinoma, we employed the least absolute shrinkage and selection operator (LASSO) regression and SVM-RFE screening crossover. To evaluate the performance, ROC curves were plotted. We performed immuno-infiltration analysis using CIBERSORT. Finally, we validated the key genes through qRT-PCR and Western-blot verification, then downregulated MMP17 gene expression, upregulated SH3GL2 gene expression, and performed CCK8 experiments. Results A total of 32 Differentially Expressed Genes (DEGs) were identified. Two diagnostic marker genes, SH3GL2 and MMP17, were selected by employing LASSO and SVM-RFE machine learning methods. In Lung adenocarcinoma cells, the expression of MMP17 was observed to be elevated compared to normal lung epithelial cells in the control group (P < 0.05). In contrast, a down-regulation of SH3GL2 was found in Lung adenocarcinoma cells (P < 0.05). Finally, we downregulated MMP17 and upregulated SH3GL2 gene expression, then the CCK8 showed that the proliferation of both lung cancer cells was inhibited. Conclusion SH3GL2 and MMP17 are expected to be potential biomarkers for Lung adenocarcinoma.
Collapse
Affiliation(s)
- Zengjian Tian
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Shilong Yu
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Ruizhi Cai
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Yinghui Zhang
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Qilun Liu
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Yongzhao Zhu
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| |
Collapse
|
2
|
Muñoz-Sáez E, Moracho N, Learte AIR, Collignon A, Arroyo AG, Noel A, Sounni NE, Sánchez-Camacho C. Molecular Mechanisms Driven by MT4-MMP in Cancer Progression. Int J Mol Sci 2023; 24:9944. [PMID: 37373092 DOI: 10.3390/ijms24129944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
MT4-MMP (or MMP-17) belongs to the membrane-type matrix metalloproteinases (MT-MMPs), a distinct subset of the MMP family that is anchored to the cell surface, in this case by a glycosylphosphatidylinositol (GPI) motif. Its expression in a variety of cancers is well documented. However, the molecular mechanisms by which MT4-MMP contributes to tumor development need further investigation. In this review, we aim to summarize the contribution of MT4-MMP in tumorigenesis, focusing on the molecular mechanisms triggered by the enzyme in tumor cell migration, invasiveness, and proliferation, in the tumor vasculature and microenvironment, as well as during metastasis. In particular, we highlight the putative substrates processed and signaling cascades activated by MT4-MMP that may underlie these malignancy processes and compare this with what is known about its role during embryonic development. Finally, MT4-MMP is a relevant biomarker of malignancy that can be used for monitoring cancer progression in patients as well as a potential target for future therapeutic drug development.
Collapse
Affiliation(s)
- Emma Muñoz-Sáez
- Department of Health Science, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Natalia Moracho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Ana I R Learte
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Alice Collignon
- Laboratory of Biology of Tumor and Developmental Biology, GIGA Cancer, Liège University, B-4000 Liège, Belgium
- Cancer Metabolism and Tumor Microenvironment Group, GIGA Cancer, Liège University, B-4000 Liège, Belgium
| | - Alicia G Arroyo
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain
| | - Agnés Noel
- Laboratory of Biology of Tumor and Developmental Biology, GIGA Cancer, Liège University, B-4000 Liège, Belgium
| | - Nor Eddine Sounni
- Laboratory of Biology of Tumor and Developmental Biology, GIGA Cancer, Liège University, B-4000 Liège, Belgium
- Cancer Metabolism and Tumor Microenvironment Group, GIGA Cancer, Liège University, B-4000 Liège, Belgium
| | - Cristina Sánchez-Camacho
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
3
|
Shirazkeytabar K, Razavi SA, Abooshahab R, Salehipour P, Akbarzadeh M, Soroush A, Hedayati M, Nasiri S. Elevated Plasma Levels of MT4-MMP and MT6-MMP; A New Observation in Patients with Thyroid Nodules. ARCHIVES OF IRANIAN MEDICINE 2023; 26:338-345. [PMID: 38310435 PMCID: PMC10685831 DOI: 10.34172/aim.2023.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2024]
Abstract
BACKGROUND Based on the critical role of MT4-MMP and MT6-MMP in carcinogenesis, we focused on MT4-MMP and MT6-MMP circulating levels in patients with thyroid nodules. METHODS Plasma samples were collected from three groups, including papillary thyroid cancer (PTC; n=30), multinodular goiter (MNG; n=30), and healthy subjects (n=22). Enzyme-linked immunosorbent assay (ELISA) was used to obtain the concentration of MT4-MMP and MT6-MMP in the three groups. RESULTS Analysis of data demonstrated increased levels of MT4-MMP (PTC: 4.90±1.35, MNG: 4.89±1.37, and healthy: 3.13±1.42) and MT6-MMP (PTC: 8.29±2.50, MNG: 7.34±2.09, and healthy:5.01±2.13) in thyroid nodules by comparison with healthy subjects (P<0.05). There were no significant differences in the levels of the two MT-MMPs between PTC and MNG (P>0.05). Increased plasma levels of MT4-MMP (odds ratio=2.48; 95% CI: 1.46-4.19; P=0.001) or MT6-MMP (odds ratio=1.81; 95% CI: 1.29-2.53; P=0.001) were associated with increased risk of PTC tumorigenesis. Interestingly, a strong positive association was observed between MT4-MMP and MT6-MMP in the three groups (PTC: r=0.766**, P=0.000; MNG: r=0.856**, P=0.000; healthy r=0.947**, P=0.000). Areas under the ROC curve for MT4-MMP and MT6-MMP were 0.82 and 0.96, respectively. At the cutoff value>4.7 (ng/mL), MT4-MMP and MT6-MMP showed a sensitivity of 63.3% and 90.0%, respectively, with 100% specificity. CONCLUSION Our work has led us to imply that the higher levels of MT4-MMP and MT6-MMP are closely linked with both PTC and MNG tumorigenesis. They may probably promote the development of thyroid lesions; however, more research is needed to further clarify the current findings.
Collapse
Affiliation(s)
- Khadijeh Shirazkeytabar
- Department of Surgery, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - S. Adeleh Razavi
- Department of Surgery, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Research and Development (R&D), Saeed Pathobiology & Genetics Laboratory, Tehran, Iran
| | - Raziyeh Abooshahab
- Department of Surgery, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Curtin Medical School, Curtin University, Bentley 6102, Australia
| | - Pouya Salehipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Akbarzadeh
- Department of Surgery, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Soroush
- Department of Surgery, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Department of Surgery, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirzad Nasiri
- Department of Surgery, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Tu J, Wang J, Tang B, Zhang Z, Han M, Li M, Yu J, Shen L, Zhang M, Ye J. Expression and clinical significance of TYRP1, ABCB5, and MMP17 in sinonasal mucosal melanoma. Cancer Biomark 2022; 35:331-342. [DOI: 10.3233/cbm-220093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND: Sinonasal mucosal melanoma (SNMM) is a lethal malignancy with poor prognosis. Treatment outcomes of SNMM are poor. Novel prognostic or progression markers are needed to help adjust therapy. METHODS: RNA-seq was used to analyze the mRNA expression of tumor tissues and normal nasal mucosa from primary SNMM patients (n= 3). Real-time fluorescent quantitative PCR (qRT-PCR) was used to validate the results of RNA-seq (n= 3), while protein expression was analyzed by immunohistochemistry (IHC, n= 31) and western blot (n= 3). Retrospective studies were designed to determine the clinical parameters and the total survival rate, and correlation between the protein expression levels of the most significant key genes and prognosis was analyzed. RESULTS: In total, 668 genes were upregulated and 869 genes were downregulated in SNMM (fold change ⩾ 2, adjusted p value < 0.01). Both mRNA and protein expression levels of the key genes in SNMM tumor tissues were higher than those in the normal control nasal mucosal tissues. The expression rates of TYRP1, ABCB5, and MMP17 in 31 primary SNMM cases were 90.32%, 80.65%, and 64.52%, respectively. In addition, age, typical symptoms, and AJCC stage were related to overall survival rate of patients with SNMM (p< 0.05). Furthermore, the expression of ABCB5 was age-related (p= 0.002). Compared with individuals with negative ABCB5 expression, those with positive expression exhibited significantly poor overall survival (p= 0.02). CONCLUSION: The expression levels of TYRP1, ABCB5, and MMP17 were significantly upregulated in SNMM tissues, and the expression of ABCB5 was related to poor prognosis in SNMM. Thus, ABCB5 may serve as a progression marker and can predict unfavorable prognosis in patients with SNMM.
Collapse
Affiliation(s)
- Junhao Tu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jun Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Binxiang Tang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhiqiang Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Mei Han
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Mengyue Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jieqing Yu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Otorhinolaryngology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Li Shen
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Meiping Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Ye
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Otorhinolaryngology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Liang Y, Guan C, Li K, Zheng G, Wang T, Zhang S, Liao G. MMP25 Regulates Immune Infiltration Level and Survival Outcome in Head and Neck Cancer Patients. Front Oncol 2020; 10:1088. [PMID: 32850314 PMCID: PMC7405909 DOI: 10.3389/fonc.2020.01088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 06/01/2020] [Indexed: 02/04/2023] Open
Abstract
Background: MMP25 is a critical gene of matrix metalloproteinases (MMPs). However, the molecular mechanism of MMP25 in head and neck cancer pathogenesis remains unclear. Methods: MMP25 expression was analyzed using The Cancer Genome Atlas (TCGA) database, and its influence on clinical prognosis was performed using Kaplan–Meier and Cox regression analyses. The correlation between MMP25 and immune infiltration was investigated by CIBERSORT, TIMER, and ESTIMATE. In addition, the relationship between MMP25 expression and molecular mechanisms was analyzed by gene set enrichment analysis (GSEA), gene ontology (GO), and weighted gene co-expression network analysis (WGCNA). Results: MMP25 expression level correlated with prognosis and immune infiltrating levels, especially activated CD4+ memory T cells, in head and neck cancer. Moreover, MMP25 expression potentially mediated genes, such as IRF8, IKZF1, and DOCK2, and tumor-associated pathways, including p53 signaling, PI3K/AKT/mTOR signaling, and JAK/STAT signaling pathway. Conclusions: These findings suggested that MMP25 plays a critical role in the prognosis and immune infiltration level of head and neck cancer. In addition, MMP25 expression significantly correlated with the regulation of various oncogenes and tumor-related pathways.
Collapse
Affiliation(s)
- Yujie Liang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chenyu Guan
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Kan Li
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Guangsen Zheng
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Tao Wang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Sien Zhang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Guiqing Liao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Vidal M. Exosomes and GPI-anchored proteins: Judicious pairs for investigating biomarkers from body fluids. Adv Drug Deliv Rev 2020; 161-162:110-123. [PMID: 32828789 DOI: 10.1016/j.addr.2020.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/27/2020] [Accepted: 08/14/2020] [Indexed: 12/16/2022]
Abstract
Exosomes are 50-100 nm membranous vesicles actively released by cells which can be indicative of a diseased cell status. They contain various kinds of molecule - proteins, mRNA, miRNA, lipids - that are actively being studied as potential biomarkers. Hereafter I put forward several arguments in favor of the potential use of glycosylphosphatidylinositol-anchored proteins (GPI-APs) as biomarkers especially of cancerous diseases. I will briefly update readers on the exosome field and review various features of GPI-APs, before further discussing the advantages of this class of proteins as potential exosomal biomarkers. I will finish with a few examples of exosomal GPI-APs that have already been demonstrated to be good prognostic markers, as well as innovative approaches developed to quantify these exosomal biomarkers.
Collapse
|
7
|
Sharma P, Parveen S, Shah LV, Mukherjee M, Kalaidzidis Y, Kozielski AJ, Rosato R, Chang JC, Datta S. SNX27-retromer assembly recycles MT1-MMP to invadopodia and promotes breast cancer metastasis. J Cell Biol 2020; 219:132732. [PMID: 31820782 PMCID: PMC7039210 DOI: 10.1083/jcb.201812098] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 07/26/2019] [Accepted: 10/21/2019] [Indexed: 12/25/2022] Open
Abstract
Recycling of MT-MMPs to actin-rich membrane-protrusive structures promotes breast cancer invasion. This study shows that SNX27–retromer, an endosomal sorting and recycling machinery, interacts with MT1-MMP and regulates its transport to the cell surface, thus promoting matrix invasive activity of the breast cancer cells. A variety of metastatic cancer cells use actin-rich membrane protrusions, known as invadopodia, for efficient ECM degradation, which involves trafficking of proteases from intracellular compartments to these structures. Here, we demonstrate that in the metastatic breast cancer cell line MDA-MB-231, retromer regulates the matrix invasion activity by recycling matrix metalloprotease, MT1-MMP. We further found that MT2-MMP, another abundantly expressed metalloprotease, is also invadopodia associated. MT1- and MT2-MMP showed a high degree of colocalization but were located on the distinct endosomal domains. Retromer and its associated sorting nexin, SNX27, phenocopied each other in matrix degradation via selectively recycling MT1-MMP but not MT2-MMP. ITC-based studies revealed that both SNX27 and retromer could directly interact with MT1-MMP. Analysis from a publicly available database showed SNX27 to be overexpressed or frequently altered in the patients having invasive breast cancer. In xenograft-based studies, SNX27-depleted cell lines showed prolonged survival of SCID mice, suggesting a possible implication for overexpression of the sorting nexin in tumor samples.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal, India
| | - Sameena Parveen
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal, India
| | - Lekha V Shah
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal, India
| | - Madhumita Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal, India
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | | | | | | | - Sunando Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Bhopal, India
| |
Collapse
|
8
|
Zeng L, Qian J, Zhu F, Wu F, Zhao H, Zhu H. The prognostic values of matrix metalloproteinases in ovarian cancer. J Int Med Res 2019; 48:300060519825983. [PMID: 31099295 PMCID: PMC7140190 DOI: 10.1177/0300060519825983] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Objective To investigate the prognostic significance of 23 matrix metalloproteinase
(MMP) genes in patients diagnosed with ovarian
carcinoma. Methods The prognostic significance of 23 MMP genes in patients
diagnosed with ovarian carcinoma was investigated using the Kaplan–Meier
plotter (KM plotter), which uses the gene expression data and overall
survival information of patients with ovarian cancer that were downloaded
from the Gene Expression Omnibus, Cancer Biomedical Informatics Grid and The
Cancer Genome Atlas cancer datasets. The correlation between mRNA levels of
individual MMPs (MMP2, MMP9, MMP10, MMP12, MMP13 and MMP25) and
clinicopathological features (histological subtype, pathological grade and
clinical stage) were investigated. The MMP protein level profiles in normal
ovarian tissues and ovarian cancer tissues were examined using the Human
Protein Atlas database. Results The results showed that high mRNA levels of MMP2 and MMP13 were associated
with a worse overall survival in patients with ovarian cancer, whereas high
mRNA levels of MMP9, MMP10, MMP12 and MMP25 were associated with a better
overall survival. The protein levels of MMP2, MMP9, MMP10 and MMP25 in
ovarian cancer tissues were elevated compared with normal ovarian
tissues. Conclusions This study demonstrated that MMPs can be a reliable prognostic biomarker for
ovarian cancer.
Collapse
Affiliation(s)
- Linchai Zeng
- Department of Gynaecology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jie Qian
- Department of Clinical Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Fangfang Zhu
- Department of Gynaecology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Fang Wu
- Department of Gastroenterology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hongqin Zhao
- Department of Gynaecology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haiyan Zhu
- Department of Gynaecology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
9
|
Cervantes-Garduño A, Zampedri C, Espinosa M, Maldonado V, Melendez-Zajgla J, Ceballos-Cancino G. MT4-MMP Modulates the Expression of miRNAs in Breast Cancer Cells. Arch Med Res 2019; 49:471-478. [PMID: 30792164 DOI: 10.1016/j.arcmed.2019.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 02/01/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND MT4-MMP is a member of the metalloproteinases family, although with a controversial role in the extracellular matrix remodelation. Overexpression of this metalloproteinase has been observed in breast cancer and it has been suggested that it can regulate tumor growth and cancer progression. The mechanisms by which MT4-MMP participates in breast cancer includes tumor blood vessels desestabilization, the activation of an angiogenic switch, and increase of EGFR signaling. However, all the mechanisms by which MT4-MMP participates in breast cancer are still unknowns. AIM OF THE STUDY To study if MT4-MMP could modulate the expression of microRNAs (miRNAs) related to biological processes associated with tumor formation and progression. METHODS MT4-MMP was ectopically overexpressed in MDA-MB-231 cells and the miRNAs expression profile modulated by the metalloproteinase was studied by using miRNAs microarrays. Microarray data were analyzed with different tools to find the molecular and cellular functions related to the differentially expressed miRNAs. The clinical relevance of some miRNAs was analyzed using a public database. RESULTS MT4-MMP overexpression in breast cancer cells induced the modulation of 65 miRNAs, which were related to the alteration of pathways dependent of p53, TGF-β, MAPK, ErbB, and Wnt, as well as processes such as cell cycle, adherens junctions, apoptosis, and focal adhesion. Several of the upregulated miRNAs were associated to a worse prognosis in breast cancer patients. CONCLUSIONS In breast cancer cells, the overexpression of MT4-MMP modulates the expression of miRNAs involved in several biological processes associated with tumor formation and progression and with clinical relevance.
Collapse
Affiliation(s)
- Alejandra Cervantes-Garduño
- Laboratorio de Genómica Funcional, Instituto Nacional de Medicina Genómica, Ciudad de México, México; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| | - Cecilia Zampedri
- Laboratorio de Genómica Funcional, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Magali Espinosa
- Laboratorio de Genómica Funcional, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Vilma Maldonado
- Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Jorge Melendez-Zajgla
- Laboratorio de Genómica Funcional, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Gisela Ceballos-Cancino
- Laboratorio de Genómica Funcional, Instituto Nacional de Medicina Genómica, Ciudad de México, México.
| |
Collapse
|
10
|
MT4-MMP: The GPI-Anchored Membrane-Type Matrix Metalloprotease with Multiple Functions in Diseases. Int J Mol Sci 2019; 20:ijms20020354. [PMID: 30654475 PMCID: PMC6359745 DOI: 10.3390/ijms20020354] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 01/02/2023] Open
Abstract
MT4-MMP (or MMP17) belongs to the Membrane-Type Matrix Metalloproteinase (MT-MMP) family. This family of proteases contributes to extracellular matrix remodeling during several physiological processes, including embryogenesis, organogenesis, tissue regeneration, angiogenesis, wound healing, and inflammation. MT4-MMP (MMP17) presents unique characteristics compared to other members of the family in terms of sequence homology, substrate specificity, and internalization mode, suggesting distinct physiological and pathological functions. While the physiological functions of MT4-MMP are poorly understood, it has been involved in different pathological processes such as arthritis, cardiovascular disease, and cancer progression. The mt4-mmp transcript has been detected in a large diversity of cancers. The contribution of MT4-MMP to tumor development has been further investigated in gastric cancer, colon cancer, head and neck cancer, and more deeply in breast cancer. Given its contribution to different pathologies, particularly cancers, MT4-MMP represents an interesting therapeutic target. In this review, we examine its biological and structural properties, and we propose an overview of its physiological and pathological functions.
Collapse
|
11
|
Kachroo P, Szymczak S, Heinsen FA, Forster M, Bethune J, Hemmrich-Stanisak G, Baker L, Schrappe M, Stanulla M, Franke A. NGS-based methylation profiling differentiates TCF3-HLF and TCF3-PBX1 positive B-cell acute lymphoblastic leukemia. Epigenomics 2018; 10:133-147. [DOI: 10.2217/epi-2017-0080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To determine whether methylation differences between mostly fatal TCF3-HLF and curable TCF3-PBX1 pediatric acute lymphoblastic leukemia subtypes can be associated with differential gene expression and remission. Materials & methods: Five (extremely rare) TCF3-HLF versus five (very similar) TCF3-PBX1 patients were sampled before and after remission and analyzed using reduced representation bisulfite sequencing and RNA-sequencing. Results: We identified 7000 differentially methylated CpG sites between subtypes, of which 78% had lower methylation levels in TCF3-HLF. Gene expression was negatively correlated with CpG sites in 23 genes. KBTBD11 clearly differed in methylation and expression between subtypes and before and after remission in TCF3-HLF samples. Conclusion: KBTBD11 hypomethylation may be a promising potential target for further experimental validation especially for the TCF3-HLF subtype.
Collapse
Affiliation(s)
- Priyadarshini Kachroo
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel 24105, Germany
- Channing Laboratory, Department of Medicine, Brigham & Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Silke Szymczak
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel 24105, Germany
- Institute of Medical Informatics & Statistics, Christian Albrechts University of Kiel, Kiel 24105, Germany
| | - Femke-Anouska Heinsen
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel 24105, Germany
| | - Michael Forster
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel 24105, Germany
| | - Jörn Bethune
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel 24105, Germany
| | - Georg Hemmrich-Stanisak
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel 24105, Germany
| | - Lewis Baker
- Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA
| | - Martin Schrappe
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel 24105, Germany
| | - Martin Stanulla
- Pediatric Hematology & Oncology, Hannover Medical School, Hannover 30625, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel 24105, Germany
| |
Collapse
|
12
|
Keller RB, Tran TT, Pyott SM, Pepin MG, Savarirayan R, McGillivray G, Nickerson DA, Bamshad MJ, Byers PH. Monoallelic and biallelic CREB3L1 variant causes mild and severe osteogenesis imperfecta, respectively. Genet Med 2017; 20:411-419. [PMID: 28817112 PMCID: PMC5816725 DOI: 10.1038/gim.2017.115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/05/2017] [Indexed: 12/11/2022] Open
Abstract
Purpose Osteogenesis imperfecta (OI) is a heritable skeletal dysplasia. Dominant pathogenic variants in COL1A1 and COL1A2 explain the majority of OI cases. At least fifteen additional genes have been identified, but still do not account for all OI phenotypes that present. We sought the genetic cause of mild and lethal OI phenotypes in an unsolved family. Methods We performed exome sequencing on seven members of the family, both affected and unaffected. Results We identified a variant in Cyclic AMP Responsive Element Binding Protein 3-Like 1 (CREB3L1) in a consanguineous family. The variant caused a prenatal/perinatal lethal OI in homozygotes, similar to that seen in OI type II as a result of mutations in type I collagen genes, and a mild phenotype (fractures, blue sclerae) in multiple heterozygous family members. CREB3L1 encodes Old Astrocyte Specifically-Induced Substance (OASIS), an ER stress transducer. The variant disrupts a DNA-binding site and prevents OASIS from acting on its transcriptional targets including SEC24D, which encodes a component of the coat protein II (COPII) complex. Conclusion This report confirms that CREB3L1 is an OI-related gene and suggests the pathogenic mechanism of CREB3L1-associated OI involves the altered regulation of proteins involved in cellular secretion.
Collapse
Affiliation(s)
- Rachel B Keller
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Thao T Tran
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Shawna M Pyott
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Melanie G Pepin
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Ravi Savarirayan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - George McGillivray
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Deborah A Nickerson
- Center for Mendelian Genomics, University of Washington, Seattle, Washington, USA
| | - Michael J Bamshad
- Center for Mendelian Genomics, University of Washington, Seattle, Washington, USA
| | - Peter H Byers
- Department of Pathology, University of Washington, Seattle, Washington, USA.,Department of Medicine (Medical Genetics), University of Washington, Seattle, Washington, USA
| |
Collapse
|
13
|
MT4-MMP and EGFR expression levels are key biomarkers for breast cancer patient response to chemotherapy and erlotinib. Br J Cancer 2017; 116:742-751. [PMID: 28196064 PMCID: PMC5355928 DOI: 10.1038/bjc.2017.23] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/05/2017] [Indexed: 12/14/2022] Open
Abstract
Background: Triple-negative breast cancers (TNBC) are heterogeneous cancers with poor prognosis. We aimed to determine the clinical relevance of membrane type-4 matrix metalloproteinase (MT4-MMP), a membrane type matrix metalloproteinase that interacts with epidermal growth factor receptor (EGFR) overexpressed in >50% of TNBC. Methods: We conducted a retrospective immunohistochemical analysis on human TNBC samples (n=81) and validated our findings in in vitro and in vivo assays. Results: Membrane type-4 matrix metalloproteinase and EGFR are produced in 72.5% of TNBC samples, whereas those proteins are faintly produced by healthy tissues. Unexpectedly, tumour relapse after chemotherapy was reduced in samples highly positive for MT4-MMP. Mechanistically, this is ascribed to a higher sensitivity of MT4-MMP-producing cells to alkylating or intercalating chemotherapeutic agents, as assessed in vitro. In sharp contrast, MT4-MMP expression did not affect tumour cell sensitivity to paclitaxel that interferes with protease trafficking. Importantly, MT4-MMP expression sensitised cancer cells to erlotinib, a tyrosine kinase EGFR inhibitor. In a pre-clinical model, the growth of MT4-MMP overexpressing xenografts, but not of control ones, was reduced by epirubicin or erlotinib. The combination of suboptimal drug doses blocked drastically the growth of MT4-MMP-producing tumours. Conclusions: We demonstrate that MT4-MMP defines a sub-population of TNBC sensitive to a combination of DNA-targeting chemotherapeutic agents and anti-EGFR drugs.
Collapse
|
14
|
Hagiwara-Takita A, Fujimura T, Kakizaki A, Aiba S. RANKL-Expressing Ectopic Extramammary Paget's Disease on the Lower Abdomen. Case Rep Dermatol 2016; 8:130-5. [PMID: 27462221 PMCID: PMC4943311 DOI: 10.1159/000445992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/06/2016] [Indexed: 12/21/2022] Open
Abstract
Ectopic extramammary Paget's disease (EMPD) is a rare variant of EMPD that develops in nonapocrine regions. Since reports about ectopic EMPD are limited, little is known about the biological and immunological background of ectopic EMPD. In this report, we present a case of ectopic EMPD on the lower abdomen that expressed RANKL but lacked the expression of MMP7. As we previously reported, Paget's cells express RANKL and MMP7, release soluble RANKL in the tumor microenvironment, and stimulate tumor-associated macrophages to produce tumor-loading factors in conventional EMPD. In our present case, both CCL5-expressing cells and MMP25-bearing cells were lacking, whereas substantial numbers of CCL5-expressing cells and MMP25-bearing cells were found in conventional EMPD. Our case suggested that the lack of MMP7 on Paget's cells might be one of the possible explanations for the biology of ectopic EMPD.
Collapse
Affiliation(s)
- Akiko Hagiwara-Takita
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Aya Kakizaki
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|