1
|
Li J, Zhao L, Wu Z, Huang S, Wang J, Chang Y, Liu L, Jin H, Lu J, Huang C, Xie Q, Huang H, Su Z. SelK promotes glioblastoma cell proliferation by inhibiting β-TrCP1 mediated ubiquitin-dependent degradation of CDK4. J Exp Clin Cancer Res 2024; 43:231. [PMID: 39155374 PMCID: PMC11331741 DOI: 10.1186/s13046-024-03157-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Glioblastoma (GB) is recognized as one of the most aggressive brain tumors, with a median survival of 14.6 months. However, there are still some patients whose survival time was greater than 3 years, and the biological reasons behind this clinical phenomenon arouse our research interests. By conducting proteomic analysis on tumor tissues obtained from GB patients who survived over 3 years compared to those who survived less than 1 year, we identified a significant upregulation of SelK in patients with shorter survival times. Therefore, we hypothesized that SelK may be an important indicator related to the occurrence and progression of GBM. METHODS Proteomics and immunohistochemistry from GB patients were analyzed to investigate the correlation between SelK and clinical prognosis. Cellular phenotypes were evaluated by cell cycle analysis, cell viability assays, and xenograft models. Immunoblots and co-immunoprecipitation were conducted to verify SelK-mediated ubiquitin-dependent degradation of CDK4. RESULTS SelK was found to be significantly upregulated in GB samples from short-term survivors (≤ 1 year) compared to those from long-term survivors (≥ 3 years), and its expression levels were negatively correlated with clinical prognosis. Knocking down of SelK expression reduced GB cell viability, induced G0/G1 phase arrest, and impaired the growth of transplanted glioma cells in nude mice. Down-regulation of SelK-induced ER stress leads to a reduction in the expression of SKP2 and an up-regulation of β-TrCP1 expression. Up-regulation of β-TrCP1, thereby accelerating the ubiquitin-dependent degradation of CDK4 and ultimately inhibiting the malignant proliferation of the GB cells. CONCLUSION This study discovered a significant increase in SelK expression in GB patients with poor prognosis, revealing a negative correlation between SelK expression and patient outcomes. Further mechanistic investigations revealed that SelK enhances the proliferation of GB cells by targeting the endoplasmic reticulum stress/SKP2/β-TrCP1/CDK4 axis.
Collapse
Affiliation(s)
- Jizhen Li
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No.109, Xueyuan West Road, Lucheng District, Wenzhou, 325027, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan, Wenzhou, 325035, Zhejiang, China
- Department of Pathology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang, China
| | - Lingling Zhao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan, Wenzhou, 325035, Zhejiang, China
| | - Zerui Wu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Shirui Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan, Wenzhou, 325035, Zhejiang, China
| | - Junyu Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan, Wenzhou, 325035, Zhejiang, China
| | - Yuanyuan Chang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan, Wenzhou, 325035, Zhejiang, China
| | - Li Liu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan, Wenzhou, 325035, Zhejiang, China
| | - Jianglong Lu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - Chuanshu Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan, Wenzhou, 325035, Zhejiang, China
| | - Qipeng Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No.109, Xueyuan West Road, Lucheng District, Wenzhou, 325027, Zhejiang, China.
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Chashan, Wenzhou, 325035, Zhejiang, China.
| | - Zhipeng Su
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
2
|
Kim DJ, Yi YW, Seong YS. Beta-Transducin Repeats-Containing Proteins as an Anticancer Target. Cancers (Basel) 2023; 15:4248. [PMID: 37686524 PMCID: PMC10487276 DOI: 10.3390/cancers15174248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Beta-transducin repeat-containing proteins (β-TrCPs) are E3-ubiquitin-ligase-recognizing substrates and regulate proteasomal degradation. The degradation of β-TrCPs' substrates is tightly controlled by various external and internal signaling and confers diverse cellular processes, including cell cycle progression, apoptosis, and DNA damage response. In addition, β-TrCPs function to regulate transcriptional activity and stabilize a set of substrates by distinct mechanisms. Despite the association of β-TrCPs with tumorigenesis and tumor progression, studies on the mechanisms of the regulation of β-TrCPs' activity have been limited. In this review, we studied publications on the regulation of β-TrCPs themselves and analyzed the knowledge gaps to understand and modulate β-TrCPs' activity in the future.
Collapse
Affiliation(s)
- Dong Joon Kim
- Department of Microbiology, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea;
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou 450008, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
| | - Yong Weon Yi
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| | - Yeon-Sun Seong
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
3
|
Paul D, Kales SC, Cornwell JA, Afifi MM, Rai G, Zakharov A, Simeonov A, Cappell SD. Revealing β-TrCP activity dynamics in live cells with a genetically encoded biosensor. Nat Commun 2022; 13:6364. [PMID: 36289220 PMCID: PMC9606124 DOI: 10.1038/s41467-022-33762-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/30/2022] [Indexed: 12/25/2022] Open
Abstract
The F-box protein beta-transducin repeat containing protein (β-TrCP) acts as a substrate adapter for the SCF E3 ubiquitin ligase complex, plays a crucial role in cell physiology, and is often deregulated in many types of cancers. Here, we develop a fluorescent biosensor to quantitatively measure β-TrCP activity in live, single cells in real-time. We find β-TrCP remains constitutively active throughout the cell cycle and functions to maintain discreet steady-state levels of its substrates. We find no correlation between expression levels of β-TrCP and β-TrCP activity, indicating post-transcriptional regulation. A high throughput screen of small-molecules using our reporter identifies receptor-tyrosine kinase signaling as a key axis for regulating β-TrCP activity by inhibiting binding between β-TrCP and the core SCF complex. Our study introduces a method to monitor β-TrCP activity in live cells and identifies a key signaling network that regulates β-TrCP activity throughout the cell cycle.
Collapse
Affiliation(s)
- Debasish Paul
- grid.48336.3a0000 0004 1936 8075Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Stephen C. Kales
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850 USA
| | - James A. Cornwell
- grid.48336.3a0000 0004 1936 8075Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Marwa M. Afifi
- grid.48336.3a0000 0004 1936 8075Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| | - Ganesha Rai
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850 USA
| | - Alexey Zakharov
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850 USA
| | - Anton Simeonov
- grid.94365.3d0000 0001 2297 5165National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850 USA
| | - Steven D. Cappell
- grid.48336.3a0000 0004 1936 8075Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 USA
| |
Collapse
|
4
|
Recent insight into the role of RING-finger E3 ligases in glioma. Biochem Soc Trans 2021; 49:519-529. [PMID: 33544148 DOI: 10.1042/bst20201060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022]
Abstract
The ubiquitin proteasome system (UPS) serves as the major posttranslational modification system for the maintenance of protein homeostasis. The ubiquitin ligases (E3s) are responsible for the recognition and recruitment of specific substrate proteins for polyubiquitination. Really interesting new gene (RING) finger E3s account for the majority of E3s. The human genome encodes more than 600 RING E3s, which are divided into three subclasses: single polypeptide E3s, cullin-RING ligases (CRLs) and other multisubunit E3s. The abnormal regulation of RING E3s has been reported to disrupt normal biological processes and induce the occurrence of many human malignancies. Glioma is the most common type of malignant primary brain tumor. In the last few decades, patient prognosis has improved as novel targeted therapeutic agents have developed. In this review, we will summarize the current knowledge about the dysregulation of RING E3s and the altered stability of their substrates in glioma. We will further introduce and discuss the current status and future perspectives of the application of small inhibitors and proteolysis-targeting chimeric molecules (PROTACs) interfering with RING E3s as potential anticancer agents for glioma.
Collapse
|
5
|
Terkelsen T, Russo F, Gromov P, Haakensen VD, Brunak S, Gromova I, Krogh A, Papaleo E. Secreted breast tumor interstitial fluid microRNAs and their target genes are associated with triple-negative breast cancer, tumor grade, and immune infiltration. Breast Cancer Res 2020; 22:73. [PMID: 32605588 PMCID: PMC7329449 DOI: 10.1186/s13058-020-01295-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
Background Studies on tumor-secreted microRNAs point to a functional role of these in cellular communication and reprogramming of the tumor microenvironment. Uptake of tumor-secreted microRNAs by neighboring cells may result in the silencing of mRNA targets and, in turn, modulation of the transcriptome. Studying miRNAs externalized from tumors could improve cancer patient diagnosis and disease monitoring and help to pinpoint which miRNA-gene interactions are central for tumor properties such as invasiveness and metastasis. Methods Using a bioinformatics approach, we analyzed the profiles of secreted tumor and normal interstitial fluid (IF) microRNAs, from women with breast cancer (BC). We carried out differential abundance analysis (DAA), to obtain miRNAs, which were enriched or depleted in IFs, from patients with different clinical traits. Subsequently, miRNA family enrichment analysis was performed to assess whether any families were over-represented in the specific sets. We identified dysregulated genes in tumor tissues from the same cohort of patients and constructed weighted gene co-expression networks, to extract sets of co-expressed genes and co-abundant miRNAs. Lastly, we integrated miRNAs and mRNAs to obtain interaction networks and supported our findings using prediction tools and cancer gene databases. Results Network analysis showed co-expressed genes and miRNA regulators, associated with tumor lymphocyte infiltration. All of the genes were involved in immune system processes, and many had previously been associated with cancer immunity. A subset of these, BTLA, CXCL13, IL7R, LAMP3, and LTB, was linked to the presence of tertiary lymphoid structures and high endothelial venules within tumors. Co-abundant tumor interstitial fluid miRNAs within this network, including miR-146a and miR-494, were annotated as negative regulators of immune-stimulatory responses. One co-expression network encompassed differences between BC subtypes. Genes differentially co-expressed between luminal B and triple-negative breast cancer (TNBC) were connected with sphingolipid metabolism and predicted to be co-regulated by miR-23a. Co-expressed genes and TIF miRNAs associated with tumor grade were BTRC, CHST1, miR-10a/b, miR-107, miR-301a, and miR-454. Conclusion Integration of IF miRNAs and mRNAs unveiled networks associated with patient clinicopathological traits, and underlined molecular mechanisms, specific to BC sub-groups. Our results highlight the benefits of an integrative approach to biomarker discovery, placing secreted miRNAs within a biological context.
Collapse
Affiliation(s)
- Thilde Terkelsen
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Francesco Russo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pavel Gromov
- Breast Cancer Biology Group, Genome Integrity Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Vilde Drageset Haakensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Irina Gromova
- Breast Cancer Biology Group, Genome Integrity Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Anders Krogh
- Unit of Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark. .,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Khan M, Muzumdar D, Shiras A. Attenuation of Tumor Suppressive Function of FBXO16 Ubiquitin Ligase Activates Wnt Signaling In Glioblastoma. Neoplasia 2018; 21:106-116. [PMID: 30530053 PMCID: PMC6288984 DOI: 10.1016/j.neo.2018.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive and lethal types of brain tumor. Despite the advancements in conventional or targeted therapies, median survival of GBM patients is less than 12 months. Amongst various signaling pathways aberrantly activated in glioma, active Wnt/β-catenin signaling pathway is one of the crucial oncogenic players. β-catenin, an important mediator of Wnt signaling pathway, gets phosphorylated by GSK3β complex. Phosphorylated β-catenin is specifically recognized by β-Trcp1, a F-box/WD40-repeat protein and with the help of Skp1 it plays a central role in recruiting phosphorylated β-catenin for degradation. In GBM, expression of β-TrCP1 and its affinity for β catenin is reported to be very low. Hence, we investigated whether any other members of the E3 ubiquitin ligase family could be involved in degradation of nuclear β-catenin. We here report that FBXO16, a component of SCF E3 ubiquitin ligase complex, is an interacting protein partner for β-catenin and mediates its degradation. Next, we show that FBXO16 functions as a tumor suppressor in GBM. Under normal growth conditions, FBXO16 proteasomally degrades β-catenin in a GSK-3β independent manner. Specifically, the C-terminal region of FBXO16 targets the nuclear β-catenin for degradation and inhibits TCF4/LEF1 dependent Wnt signaling pathway. The nuclear fraction of β-catenin undergoes K-48 linked poly-ubiquitination in presence of FBXO16. In summary, we show that due to low expression of FBXO16, the β-catenin is not targeted in glioma cells leading to its nuclear accumulation resulting in active Wnt signaling. Activated Wnt signaling potentiates the glioma cells toward a highly proliferative and malignant state.
Collapse
Affiliation(s)
- Mohsina Khan
- National Centre for Cell Science (NCCS), SP Pune University Campus, Ganeshkhind, Pune, 411007, India
| | - Dattatraya Muzumdar
- Department of Neurosurgery, King Edward Memorial Hospital, Parel, Mumbai 400 012. India
| | - Anjali Shiras
- National Centre for Cell Science (NCCS), SP Pune University Campus, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
7
|
Wu H, Li X, Feng M, Yao L, Deng Z, Zao G, Zhou Y, Chen S, Du Z. Downregulation of RNF138 inhibits cellular proliferation, migration, invasion and EMT in glioma cells via suppression of the Erk signaling pathway. Oncol Rep 2018; 40:3285-3296. [PMID: 30272353 PMCID: PMC6196598 DOI: 10.3892/or.2018.6744] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/21/2018] [Indexed: 12/19/2022] Open
Abstract
Glioma is the most common adult malignant primary brain tumor; however, the effect of chemotherapy is often limited by drug‑resistance and poor prognosis is common. Ring finger protein 138 (RNF138) belongs to the E3 ligase family, and has significantly higher expression level in glioma tissue than in noncancerous brain tissues. Epithelial-mesenchymal-transition (EMT) has a critical role in cancer invasion and metastasis, ultimately leading to increased cell motility and resistance to genotoxic agents. Extracellular‑signal regulated kinase (Erk) pathways promote the growth of glioma cells and enhance tumor invasion, with a role in the progression of EMT. However, the association between RNF138 and human glioma progression remains poorly understood. Relatively little is known about the association between RNF138, Erk, and EMT in glioma progression. In the current study, experiments were performed to explore the potential roles and mechanisms of RNF138 in glioblastoma in vitro and in vivo. Glioma cell line proliferation, migration and invasion were inhibited by knockdown of RNF138 in vitro. By lowering the RNF138 expression, cleaved caspase3 and E‑cadherin were upregulated, while phospho‑Erk1/2, vimentin, MMP2, HIF‑1α and VEGF were downregulated in U87 and U251 cells in vitro. In vivo findings revealed that the growth of U87 cell‑transplanted tumors in nude mice was inhibited in tumors with RNF138 knockdown. These findings suggested that downregulation of RNF138 inhibited glioma cell proliferation, migration, and invasion, and reversed EMT, potentially via Erk signaling pathway. Therefore, RNF138 may be a potential therapeutic target against glioma.
Collapse
Affiliation(s)
- Haibin Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xuetao Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ming Feng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Lin Yao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zhitong Deng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Guozheng Zao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Youxin Zhou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Sansong Chen
- Department of Neurosurgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Ziwei Du
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
8
|
Liang J, Wang WF, Xie S, Zhang XL, Qi WF, Zhou XP, Hu JX, Shi Q, Yu RT. β-transducin repeat-containing E3 ubiquitin protein ligase inhibits migration, invasion and proliferation of glioma cells. Oncol Lett 2017; 14:3131-3135. [PMID: 28928851 DOI: 10.3892/ol.2017.6533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 05/11/2017] [Indexed: 11/06/2022] Open
Abstract
β-transducin repeat-containing E3 ubiquitin protein ligase (β-TrCP) serves as the substrate recognition subunit for the Skp1-Cullin1-F-box protein E3 ubiquitin ligase, which recognizes the double phosphorylated DSG (X)2+nS destruction motif in various substrates that are essential for numerous aspects of tumorigenesis and regulates several important signaling pathways. However, the biological significance of β-TrCP in glioma progression remains largely unknown. A previous study by the authors demonstrated that the levels of β-TrCP protein expression in brain glioma tissues were significantly lower compared with non-tumorous tissues and that higher grades of gliomas exhibited lower levels of β-TrCP expression in comparison with lower glioma grades. In addition, low β-TrCP expression was associated with poor prognosis in patients with glioma. Subsequently, the present study aimed to investigate the effect of β-TrCP on migratory, invasive and proliferative abilities of glioma cells. β-TrCP plasmids were transfected into cultured U251 and U87 glioma cells, and changes in migration, invasion and proliferation were analyzed using wound healing, Transwell and EdU assays. It was identified that the overexpression of β-TrCP inhibited migration, invasion and proliferation in glioma cells. In summary, these results indicate that β-TrCP may serve a protective role against the progression of glioma by suppressing cell migration, invasion and proliferation. The potential mechanism of β-TrCP I glioma cells requires additional investigation.
Collapse
Affiliation(s)
- Jun Liang
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China.,Laboratory of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Wei-Feng Wang
- Laboratory of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China.,Department of Neurosurgery, Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Shao Xie
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China.,Laboratory of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Xian-Li Zhang
- Laboratory of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China.,Department of Neurosurgery, Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Wei-Feng Qi
- Laboratory of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China.,Department of Neurosurgery, Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Xiu-Ping Zhou
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China.,Laboratory of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Jin-Xia Hu
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China.,Laboratory of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Qiong Shi
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China.,Laboratory of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Ru-Tong Yu
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China.,Laboratory of Neurosurgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|