1
|
Hong Q, Mai P, Wu B, Wang H, Xiao M, You J. Long non-coding RNA TDRG1 aggravates colorectal cancer stemness by binding with miR-873-5p to upregulate PRKAR2. ENVIRONMENTAL TOXICOLOGY 2022; 37:2366-2374. [PMID: 35730470 DOI: 10.1002/tox.23602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/24/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
The effects of long non-coding RNA TDRG1 have been established in several tumors; however, its roles in colorectal cancer (CRC) progression are never been found. Here, we found that TDRG1 level was upregulated in CRC cells compared to that in normal colon epithelial cells. Additionally, TDRG1 level was remarkably upregulated in 3D non-adherent spheres derived from the parental CRC cells. Further in vitro and in vivo revealed that TDRG1 knockdown suppressed the stemness of CRC cells. What's more, combined with bioinformatics analysis, luciferase reporter and RNA pull down experiments showed that TDRG1 could bind to miR-873-5p, downregulated its level and thus increase the expression of PRKAR2. Finally, it was shown that TDRG1 functioned through the miR-873-5p/PRKAR2 axis. This study demonstrated a novel TDRG1/miR-873-5p/PRKAR2 signaling in CRC progression.
Collapse
Affiliation(s)
- Qingqi Hong
- Department of Gastrointestinal oncology Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, P. R. China. The School of Clinical Medicine, Fujian Medical University. The Graduate School of Fujian Medical University, Xiamen, China
| | - Peishan Mai
- Department of Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Bin Wu
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Haibin Wang
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Mingzhe Xiao
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, China
| | - Jun You
- Department of Gastrointestinal oncology Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, P. R. China. The School of Clinical Medicine, Fujian Medical University. The Graduate School of Fujian Medical University, Xiamen, China
| |
Collapse
|
2
|
Li J, Zhou H, Wei B, Che D, Xu Y, Pi L, Fu L, Hong J, Gu X. The rs8506 TT Genotype in lincRNA-NR_024015 Contributes to the Risk of Sepsis in a Southern Chinese Child Population. Front Public Health 2022; 10:927527. [PMID: 35910890 PMCID: PMC9326103 DOI: 10.3389/fpubh.2022.927527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background Sepsis is a highly life-threatening heterogeneous syndrome and a global health burden. Studies have shown that many genetic variants could influence the risk of sepsis. Long non-coding RNA lincRNA-NR_024015 may participate in functional alteration of endothelial cell via vascular endothelial growth factor (VEGF) signaling, whereas its relevance between the lincRNA-NR_024015 polymorphism and sepsis susceptibility is still unclear. Methods 474 sepsis patients and 678 healthy controls were enrolled from a southern Chinese child population in the present study. The polymorphism of rs8506 in lincRNA-NR_024015 was determined using Taqman methodology. Results Overall, a significant association was found between rs8506 polymorphism and the risk of sepsis disease (TT vs. CC/CT: adjusted OR = 1.751, 95%CI = 1.024–2.993, P = 0.0406). In the stratified analysis, the results suggested that the carriers of TT genotypes had a significantly increased sepsis risk among the children aged 12–60 months, females, early-stage sepsis and survivors (TT vs. CC/CT: ORage = 2.413; ORfemale = 2.868; ORsepsis = 2.533; ORsurvivor = 1.822; adjusted for age and gender, P < 0.05, respectively). Conclusion Our study indicated that lincRNA-NR_024015 rs8506 TT genotype might contribute to the risk of sepsis in a southern Chinese child population. Future research is required to elucidate the possible immunoregulatory mechanisms of this association and advance the development of novel biomarkers in sepsis.
Collapse
Affiliation(s)
- Jinqing Li
- Department of Clinical Biological Resource Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huazhong Zhou
- Department of Clinical Biological Resource Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bing Wei
- Department of Blood Transfusion, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Di Che
- Department of Clinical Biological Resource Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yufen Xu
- Department of Clinical Biological Resource Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lei Pi
- Department of Clinical Biological Resource Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lanyan Fu
- Department of Clinical Biological Resource Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jie Hong
- Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Jie Hong
| | - Xiaoqiong Gu
- Department of Clinical Biological Resource Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Xiaoqiong Gu
| |
Collapse
|
3
|
Saliani M, Mirzaiebadizi A, Mosaddeghzadeh N, Ahmadian MR. RHO GTPase-Related Long Noncoding RNAs in Human Cancers. Cancers (Basel) 2021; 13:5386. [PMID: 34771549 PMCID: PMC8582479 DOI: 10.3390/cancers13215386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/27/2022] Open
Abstract
RHO GTPases are critical signal transducers that regulate cell adhesion, polarity, and migration through multiple signaling pathways. While all these cellular processes are crucial for the maintenance of normal cell homeostasis, disturbances in RHO GTPase-associated signaling pathways contribute to different human diseases, including many malignancies. Several members of the RHO GTPase family are frequently upregulated in human tumors. Abnormal gene regulation confirms the pivotal role of lncRNAs as critical gene regulators, and thus, they could potentially act as oncogenes or tumor suppressors. lncRNAs most likely act as sponges for miRNAs, which are known to be dysregulated in various cancers. In this regard, the significant role of miRNAs targeting RHO GTPases supports the view that the aberrant expression of lncRNAs may reciprocally change the intensity of RHO GTPase-associated signaling pathways. In this review article, we summarize recent advances in lncRNA research, with a specific focus on their sponge effects on RHO GTPase-targeting miRNAs to crucially mediate gene expression in different cancer cell types and tissues. We will focus in particular on five members of the RHO GTPase family, including RHOA, RHOB, RHOC, RAC1, and CDC42, to illustrate the role of lncRNAs in cancer progression. A deeper understanding of the widespread dysregulation of lncRNAs is of fundamental importance for confirmation of their contribution to RHO GTPase-dependent carcinogenesis.
Collapse
Affiliation(s)
- Mahsa Saliani
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Amin Mirzaiebadizi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Niloufar Mosaddeghzadeh
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
4
|
Non-Coding RNAs and Splicing Activity in Testicular Germ Cell Tumors. Life (Basel) 2021; 11:life11080736. [PMID: 34440480 PMCID: PMC8399856 DOI: 10.3390/life11080736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 01/22/2023] Open
Abstract
Testicular germ cell tumors (TGCTs) are the most common tumors in adolescent and young men. Recently, genome-wide studies have made it possible to progress in understanding the molecular mechanisms underlying the development of tumors. It is becoming increasingly clear that aberrant regulation of RNA metabolism can drive tumorigenesis and influence chemotherapeutic response. Notably, the expression of non-coding RNAs as well as specific splice variants is deeply deregulated in human cancers. Since these cancer-related RNA species are considered promising diagnostic, prognostic and therapeutic targets, understanding their function in cancer development is becoming a major challenge. Here, we summarize how the different expression of RNA species repertoire, including non-coding RNAs and protein-coding splicing variants, impacts on TGCTs’ onset and progression and sustains therapeutic resistance. Finally, the role of transcription-associated R-loop misregulation in the maintenance of genomic stability in TGCTs is also discussed.
Collapse
|
5
|
Bresesti C, Vezzoli V, Cangiano B, Bonomi M. Long Non-Coding RNAs: Role in Testicular Cancers. Front Oncol 2021; 11:605606. [PMID: 33767982 PMCID: PMC7986848 DOI: 10.3389/fonc.2021.605606] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
In the last few years lncRNAs have gained increasing attention among the scientific community, thanks to the discovery of their implication in many physio-pathological processes. In particular, their contribution to tumor initiation, progression, and response to treatment has attracted the interest of experts in the oncologic field for their potential clinical application. Testicular cancer is one of the tumors in which lncRNAs role is emerging. Said malignancies already have very effective treatments, which although lead to the development of quite serious treatment-related conditions, such as secondary tumors, infertility, and cardiovascular diseases. It is therefore important to study the impact of lncRNAs in the tumorigenesis of testicular cancer in order to learn how to exploit them in a clinical setting and to substitute more toxic treatments. Eventually, the use of lncRNAs as biomarkers, drug targets, or therapeutics for testicular cancer may represent a valid alternative to that of conventional tools, leading to a better management of this malignancy and its related conditions, and possibly even to the treatment of poor prognosis cases.
Collapse
Affiliation(s)
- Chiara Bresesti
- Department of Endocrine and Metabolic Medicine, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Lab of Endocrine and Metabolic Researches, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Italy
| | - Valeria Vezzoli
- Department of Endocrine and Metabolic Medicine, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Lab of Endocrine and Metabolic Researches, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Italy
| | - Biagio Cangiano
- Department of Endocrine and Metabolic Medicine, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Lab of Endocrine and Metabolic Researches, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Marco Bonomi
- Department of Endocrine and Metabolic Medicine, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Lab of Endocrine and Metabolic Researches, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Sun R, Sun X, Liu H, Li P. Knockdown of lncRNA TDRG1 Inhibits Tumorigenesis in Endometrial Carcinoma Through the PI3K/AKT/mTOR Pathway. Onco Targets Ther 2019; 12:10863-10872. [PMID: 31849490 PMCID: PMC6912007 DOI: 10.2147/ott.s228168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/21/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Endometrial carcinoma (EC) is one of the most frequently diagnosed malignancies in females. Dysregulation of lncRNA TDRG1 has been widely documented in several cancers, including EC. However, the mechanism of this lncRNA involving in EC progression remains to be further elucidated. MATERIALS AND METHODS The enrichment levels of TDRG1 in EC tissues and cell lines were examined by RT-qPCR. Flow cytometry, cell counting kit-8 (CCK-8), transwell, and Western blot assays were conducted to assess whether TDRG1 knockdown could affect cell cycle arrest, proliferation, migration, invasion, and apoptosis of EC cells. The phosphorylation levels of mTOR, AKT and PI3K that associated with PI3K/Akt/mTOR pathway were determined by Western blot assay. RESULTS TDRG1 expression was markedly upregulated in EC tissues and cell lines. Knockdown of TDRG1 significantly induced cell cycle arrest and apoptosis, inhibited cell proliferation, restrained the invasion and migration abilities in EC cells. Moreover, TDRG1 silencing decreased the protein levels of p-AKT, p-PI3K, and p-mTOR of EC cells. CONCLUSION Our data underlined the implication of TDRG1 in EC progression, proposing that targeting TDRG1 might be a potential therapeutic avenue in EC.
Collapse
Affiliation(s)
- Ruimei Sun
- Department of Radiotherapy, The Affiliated Hospital of Weifang Medical University, Weifang261041, People’s Republic of China
| | - Xiujiang Sun
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Weifang Medical University, Weifang261041, People’s Republic of China
| | - Hua Liu
- Department of Gynaecology, The Affiliated Hospital of Weifang Medical University, Weifang261041, People’s Republic of China
| | - Peirui Li
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Weifang Medical University, Weifang261041, People’s Republic of China
| |
Collapse
|
7
|
Ma Y, Xu XL, Huang HG, Li YF, Li ZG. LncRNA TDRG1 promotes the aggressiveness of gastric carcinoma through regulating miR-873-5p/HDGF axis. Biomed Pharmacother 2019; 121:109425. [PMID: 31726370 DOI: 10.1016/j.biopha.2019.109425] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/31/2019] [Accepted: 08/31/2019] [Indexed: 02/07/2023] Open
Abstract
Gastric carcinoma (GC) is still one of the most common digestive system neoplasms and the primary reason for malignant cancer-associated death. Long non-coding RNAs (lncRNAs) have been reported to play critical roles in GC progression. In this study, we demonstrated that lncRNA testis development-related gene 1 (TDRG1) is markedly upregulated in clinical GC tissues and GC cells. High level of lncRNA TDRG1 correlates with the metastasis and prognosis of patients with GC. Overexpression of lncRNA TDRG1 promotes GC growth and metastatic-related traits in vitro and in vivo, and silencing TDRG1 causes opposite results. We future find that TDRG1 is inversely associated with miR-873-5p and positively modulates the expression of hepatoma-derived growth factor (HDGF), a functional target gene of miR-873-5p. Finally, lncRNA TDRG1 regulates the progression of GC through regulating miR-873-5p/HDGF pathway. Taken together, our data uncover the crucial function of TDRG1-miR-873-5p-HDGF axis in human gastric cancer.
Collapse
Affiliation(s)
- Yan Ma
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xiu Lian Xu
- The First Department of General Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Hai Ge Huang
- Department of Gastroenterological Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region, China
| | - Yan Feng Li
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
| | - Zhi Guo Li
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
| |
Collapse
|
8
|
Jiang H, liang M, Jiang Y, Zhang T, Mo K, Su S, Wang A, Zhu Y, Huang G, Zhou R. The lncRNA TDRG1 promotes cell proliferation, migration and invasion by targeting miR-326 to regulate MAPK1 expression in cervical cancer. Cancer Cell Int 2019; 19:152. [PMID: 31164797 PMCID: PMC6544966 DOI: 10.1186/s12935-019-0872-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/27/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Recently, lncRNA-Testis developmental related gene 1 (TDRG1) was proved to be a key modulator in reproductive organ-related cancers. The biological role of TDRG1 in cervical cancer (CC) progression remains largely unknown. METHOD Real-time PCR (qRT-PCR) examined the expression level of TDRG1, microRNA (miR)-326 and MAPK1 mRNA. OS tissues and corresponding relative normal tissues, as well as CC cell lines and normal cell line Ect1/E6E7 were collected to determine the expression of TDRG1 in CC. MTT, colony formation, wound-healing, transwell and flow cytometer assay detected the influence of TDRG1 and miR-326 on CC cells growth, metastasis and apoptosis. Western blot examined proteins level. Bioinformatics, RNA pull-down assay, RNA immunoprecipitation and dual-luciferase reporter assays detected the molecular mechanism of TDRG1 in CC. Xenograft tumour model was established to determine the role of TDRG1 in vivo. RESULTS The expression of TDRG1 was significantly increased in CC tissues and cell lines compared with normal tissue and normal cell line respectively and its expression was associated with clinicopathological characteristics of CC patients. Knockdown of TDRG1 inhibited the cell proliferation, migration and invasion in Hela and SIHA cells. Moreover, TDRG1 directly interacted with miR-326, and the inhibition effect on cell growth and metastasis induced by TDRG1 siRNA can be abrogated by miR-326 silencing by its inhibitor in Hela and SIHA cells. Further, MAPK1 was proved to be a direct target of miR-326, and its expression was negatively regulated by miR-326 while positively modulated by TDRG1. CONCLUSION TDRG1 acts as a competing endogenous lncRNA (ceRNA) to modulate MAPK1 by sponging miR-326 in CC, shedding new light on TDRG1-directed diagnostics and therapeutics in CC.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Abdominal Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700 Guangdong China
- Department of Gynaecology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700 Guangdong China
| | - Min liang
- Department of Abdominal Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700 Guangdong China
| | - Yanqiong Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700 Guangdong China
| | - Ting Zhang
- Department of Gynaecology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700 Guangdong China
| | - Kexin Mo
- Department of Gynaecology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700 Guangdong China
| | - Suwen Su
- Department of Gynaecology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700 Guangdong China
| | - Aiping Wang
- Department of Gynaecology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700 Guangdong China
| | - Yongyi Zhu
- Department of Anesthesia, The Fifth Affiliated Hospital of Guangzhou Medical University, No. 621 Gangwan Road, Guangzhou, 510700 Guangdong China
| | - Guanqun Huang
- Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, No.621 Gangwan Road, Guangzhou, 510700 Guangdong China
| | - Rujian Zhou
- Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, No.621 Gangwan Road, Guangzhou, 510700 Guangdong China
| |
Collapse
|
9
|
Chen S, Wang LL, Sun KX, Xiu YL, Zong ZH, Chen X, Zhao Y. The role of the long non-coding RNA TDRG1 in epithelial ovarian carcinoma tumorigenesis and progression through miR-93/RhoC pathway. Mol Carcinog 2017; 57:225-234. [PMID: 28984384 DOI: 10.1002/mc.22749] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 10/01/2017] [Accepted: 10/04/2017] [Indexed: 12/13/2022]
Abstract
As one of the most frequently diagnosed cancers in women, the development and progression of epithelial ovarian carcinoma (EOC) remains an open area of research. The role of long non-coding RNAs (lncRNAs) in EOC is an emerging field of study. We found that LncRNA TDRG1 (human testis development-related gene 1) was highly expressed in EOC tissues than in normal ovarian tissues, and expression differed significantly with differentiation. LncRNA TDRG1 downregulation suppressed EOC cell proliferation, migration, and invasion, while its overexpression had the opposite effect. Bioinformatic predictions and dual-luciferase reporter assays showed that LncRNA TDRG1 has possible miRNA-93 (miR-93) binding sites. LncRNA TDRG1 downregulation upregulated miR-93 expression, while its overexpression reduced miR-93 expression. In addition, TDRG1 downregulation reduced the expression of Ras homolog gene family member C (RhoC), P70 ribosomal S6 kinase (P70S6 K), Bcl-xL, and matrix metalloproteinase 2 (MMP2) protein, which are regulated by miR-93, while its upregulation induced RhoC, P70S6 K, Bcl-xL, and MMP2 protein expression. In vivo, LncRNA TDRG1 overexpression induced tumor development and RhoC expression. Taken together, our results demonstrated for the first time that LncRNA TDRG1 may be a new and important diagnostic and therapeutic target in EOC.
Collapse
Affiliation(s)
- Shuo Chen
- Department of Gynecology, The First Affiliated Hospital of China, Shenyang, China
| | - Li-Li Wang
- Department of Gynecology, The First Affiliated Hospital of China, Shenyang, China
| | - Kai-Xuan Sun
- Department of Gynecology, The First Affiliated Hospital of China, Shenyang, China
| | - Yin-Ling Xiu
- Department of Gynecology, The First Affiliated Hospital of China, Shenyang, China
| | - Zhi-Hong Zong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, Shenyang, China
| | - Xi Chen
- Department of Gynecology, The First Affiliated Hospital of China, Shenyang, China
| | - Yang Zhao
- Department of Gynecology, The First Affiliated Hospital of China, Shenyang, China
| |
Collapse
|
10
|
Gan Y, Wang Y, Tan Z, Zhou J, Kitazawa R, Jiang X, Tang Y, Yang J. TDRG1 regulates chemosensitivity of seminoma TCam-2 cells to cisplatin via PI3K/Akt/mTOR signaling pathway and mitochondria-mediated apoptotic pathway. Cancer Biol Ther 2016; 17:741-50. [PMID: 27104982 DOI: 10.1080/15384047.2016.1178425] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We previously identified TDRG1 (testis developmental related gene 1), a novel gene with exclusive expression in testis, promoted the proliferation and progression of cultured human seminoma cells through PI3K/Akt/mTOR signaling. As increasing evidence reveal that aberrant activation of this signaling is involved in cisplatin resistance. Then, in this study, we further explored whether TDRG1 regulated the chemosensitivity of seminoma TCam-2 cells to cisplatin. Our researches showed TDRG1 could regulate the viability of TCam-2 cells following cisplatin treatment in vitro through control of both cell apoptosis and cell cycle. Mechanistically, we observed TDRG1 positively regulated the expression levels of the key elements in PI3K/Akt/mTOR pathway including p-PI3K, p-Akt and p-mTOR and also affected the translocation of nuclear p-Akt in TCam-2 cells during cisplatin treatment. Meanwhile, the levels of Bad, cytochrome c, caspase-9 ratio (activated/total), caspase-3 ratio (activated/total) and cleaved-PARP were negatively modulated by TDRG1, which meant the involvement of mitochondria-mediated apoptotic pathway. Furthermore, we found the effect of TDRG1 knockdown or TDRG1 overexpression could be reversed by IGF-1, a PI3K signaling activator, or LY294002, a inhibitor of this pathway, respectively. Similar effects of TDRG1 on cisplatin chemosensitivity and associated molecular mechanism were also confirmed in vivo by employing xenograft assays. In addition, the positive correlation between TDRG1 and p-PI3K, or p-Akt, was found in tumor tissues from seminoma patients. In conclusion, we uncover that TDRG1 regulates chemosensitivity of TCam-2 cells to cisplatin through PI3K/Akt/mTOR signaling and mitochondria-mediated apoptotic pathway both in vitro and in vivo.
Collapse
Affiliation(s)
- Yu Gan
- a Department of Urology , The Third Xiangya Hospital of Central South University , Changsha , PR China
| | - Yong Wang
- a Department of Urology , The Third Xiangya Hospital of Central South University , Changsha , PR China
| | - Zhengyu Tan
- a Department of Urology , The Third Xiangya Hospital of Central South University , Changsha , PR China
| | - Jun Zhou
- a Department of Urology , The Third Xiangya Hospital of Central South University , Changsha , PR China
| | - Riko Kitazawa
- b Department of Diagnostic Pathology , Ehime University Hospital, Shitsukawa , Tōon , Ehime Perfecture , Japan
| | - Xianzhen Jiang
- a Department of Urology , The Third Xiangya Hospital of Central South University , Changsha , PR China
| | - Yuxin Tang
- a Department of Urology , The Third Xiangya Hospital of Central South University , Changsha , PR China
| | - Jianfu Yang
- a Department of Urology , The Third Xiangya Hospital of Central South University , Changsha , PR China
| |
Collapse
|
11
|
Wang Y, Gan Y, Tan Z, Zhou J, Kitazawa R, Jiang X, Tang Y, Yang J. TDRG1 functions in testicular seminoma are dependent on the PI3K/Akt/mTOR signaling pathway. Onco Targets Ther 2016; 9:409-20. [PMID: 26855590 PMCID: PMC4725695 DOI: 10.2147/ott.s97294] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human testis development-related gene 1 (TDRG1) is a recently identified gene that is expressed exclusively in the testes and promotes the development of testicular germ cell tumors. In this study, the role of TDRG1 in the development of testicular seminoma, which is the most common testicular germ cell tumor, was further investigated. Based on polymerase chain reaction, Western blotting, and immunohistochemistry tests, both gene and protein expression levels of TDRG1 were significantly upregulated in testicular seminoma tissues compared with normal testicular tissues. Additionally, the levels of phosphoinositide-3 kinase (PI3K)/p110 and Akt phosphorylation were dramatically upregulated in testicular seminoma tissues. Accordingly, in our cell experiment, seminoma TCam-2 cells were subjected to different treatments: the TDRG1 knockout, TDRG1 overexpression, PI3K inhibition (LY294002 administration), or PI3K activation (insulin-like growth factor-1 administration). Cell proliferation, the proliferation index, apoptosis rate, cell adhesive capacity, and cell invasion capability were assessed. Cells with both TDRG1 knockout and PI3K inhibition exhibited decreased cell proliferation, proliferation indexes, cell adhesion capacity, and cell invasion capability and increased apoptosis rates. Most of these effects were reversed by TDRG1 overexpression or PI3K activation, indicating that both TDRG1- and PI3K-mediated signaling promote proliferation and invasion of testicular seminoma cells. The knockout of TDRG1 significantly decreased the phosphorylation levels of PI3K/p85, PI3K/p110, Akt, and mammalian target of rapamycin (mTOR; Ser2448). Except for PI3K/p110, TDRG1 overexpression had the opposite effects on phosphorylation levels. Phosphorylated mTOR at Ser2481 and Thr2446 was not affected by TDRG1 or PI3K in our tests. Thus, these results indicate that TDRG1 promotes the development and migration of seminoma cells via the regulation of the PI3K/Akt/mTOR signaling pathway; this contributes to an understanding of the precise mechanisms underlying the development and migration of seminomas and lays a theoretical foundation for the development of appropriate therapies.
Collapse
Affiliation(s)
- Yong Wang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Yu Gan
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Zhengyu Tan
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Jun Zhou
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Riko Kitazawa
- Department of Diagnostic Pathology, Ehime University Hospital, Shitsukawa, Tōon, Ehime Perfecture, Japan
| | - Xianzhen Jiang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Yuxin Tang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Jianfu Yang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, People's Republic of China
| |
Collapse
|