1
|
Ding L, Oh S, Shrestha J, Lam A, Wang Y, Radfar P, Warkiani ME. Scaling up stem cell production: harnessing the potential of microfluidic devices. Biotechnol Adv 2023; 69:108271. [PMID: 37844769 DOI: 10.1016/j.biotechadv.2023.108271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Stem cells are specialised cells characterised by their unique ability to both self-renew and transform into a wide array of specialised cell types. The widespread interest in stem cells for regenerative medicine and cultivated meat has led to a significant demand for these cells in both research and practical applications. Despite the growing need for stem cell manufacturing, the industry faces significant obstacles, including high costs for equipment and maintenance, complicated operation, and low product quality and yield. Microfluidic technology presents a promising solution to the abovementioned challenges. As an innovative approach for manipulating liquids and cells within microchannels, microfluidics offers a plethora of advantages at an industrial scale. These benefits encompass low setup costs, ease of operation and multiplexing, minimal energy consumption, and the added advantage of being labour-free. This review presents a thorough examination of the prominent microfluidic technologies employed in stem cell research and explores their promising applications in the burgeoning stem cell industry. It thoroughly examines how microfluidics can enhance cell harvesting from tissue samples, facilitate mixing and cryopreservation, streamline microcarrier production, and efficiently conduct cell separation, purification, washing, and final cell formulation post-culture.
Collapse
Affiliation(s)
- Lin Ding
- Smart MCs Pty Ltd, Ultimo, Sydney, 2007, Australia.
| | - Steve Oh
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore
| | - Jesus Shrestha
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Alan Lam
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore
| | - Yaqing Wang
- School of Biomedical Engineering, University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Payar Radfar
- Smart MCs Pty Ltd, Ultimo, Sydney, 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia..
| |
Collapse
|
2
|
Küçük N, Raza S, Matsumura K, Uçan U, Serin İ, Ceylan A, Aksoy M. Effect of different carboxylated poly l-lysine and dimethyl sulfoxide combinations on post thaw rabbit sperm functionality and fertility. Cryobiology 2021; 102:127-132. [PMID: 34242651 DOI: 10.1016/j.cryobiol.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/04/2021] [Accepted: 07/04/2021] [Indexed: 11/16/2022]
Abstract
Antifreeze proteins are biologically active substances which protect living organisms against freezing injuries. The effect of a synthetic antifreeze protein carboxylated poly l-lysine (CPLL) in the extender was evaluated in the presence of a conventional cryoprotective agent, dimethyl sulfoxide (Me2SO), for freezing rabbit sperm cells. The experiment was conducted according to 2 × 3 factorial design including two Me2SO (5 or 8%) and three CPLL (0, 0.5 or 1%) concentrations. CPLL supplementation improved post-thaw live and live-acrosome intact sperm rates (P<0.01) without a prominent influence on the motility (P>0.05) and live-membrane intact (P>0.05) sperm rates. The most striking effect of CPLL supplementation was seen on the DNA integrity where it reduced DNA fragmentation of sperm cells significantly by interacting Me2SO (P < 0.01) during freezing and thawing. However, it could not replace Me2SO in the extender and did not improve pregnancy rate. In conclusion, CPLL supplementation to the extender in the presence of Me2SO improved sperm quality parameters and post-thaw DNA integrity.
Collapse
Affiliation(s)
- Niyazi Küçük
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, University of Aydin Adnan Menderes, 09016 Aydın, Turkey
| | - Sanan Raza
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, University of Aydin Adnan Menderes, 09016 Aydın, Turkey; Department of Animal Reproduction, University of Veterinary & Animal Sciences, 35200 Jhang Campus, Pakistan
| | - Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science & Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Uğur Uçan
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, University of Aydin Adnan Menderes, 09016 Aydın, Turkey
| | - İlker Serin
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, University of Aydin Adnan Menderes, 09016 Aydın, Turkey
| | - Ahmet Ceylan
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, University of Aydin Adnan Menderes, 09016 Aydın, Turkey
| | - Melih Aksoy
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, University of Aydin Adnan Menderes, 09016 Aydın, Turkey.
| |
Collapse
|
3
|
Chidawanyika T, Chakrabarti R, Beauchemin KS, Higgs HN, Supattapone S. SEC24A facilitates colocalization and Ca 2 + flux between the endoplasmic reticulum and mitochondria. J Cell Sci 2021; 134:jcs.249276. [PMID: 33622772 DOI: 10.1242/jcs.249276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 02/12/2021] [Indexed: 01/14/2023] Open
Abstract
A genome-wide screen recently identified SEC24A as a novel mediator of thapsigargin-induced cell death in HAP1 cells. Here, we determined the cellular mechanism and specificity of SEC24A-mediated cytotoxicity. Measurement of Ca2+ levels using organelle-specific fluorescent indicator dyes showed that Ca2+ efflux from endoplasmic reticulum (ER) and influx into mitochondria were significantly impaired in SEC24A-knockout cells. Furthermore, SEC24A-knockout cells also showed ∼44% less colocalization of mitochondria and peripheral tubular ER. Knockout of SEC24A, but not its paralogs SEC24B, SEC24C or SEC24D, rescued HAP1 cells from cell death induced by three different inhibitors of sarcoplasmic/endoplasmic reticulum Ca2+ ATPases (SERCA) but not from cell death induced by a topoisomerase inhibitor. Thapsigargin-treated SEC24A-knockout cells showed a ∼2.5-fold increase in autophagic flux and ∼10-fold reduction in apoptosis compared to wild-type cells. Taken together, our findings indicate that SEC24A plays a previously unrecognized role in regulating association and Ca2+ flux between the ER and mitochondria, thereby impacting processes dependent on mitochondrial Ca2+ levels, including autophagy and apoptosis.
Collapse
Affiliation(s)
- Tamutenda Chidawanyika
- Department of Biochemistry and Cell Biology, Guarini School of Graduate and Advanced Studies, Hanover, NH 03755, USA
| | - Rajarshi Chakrabarti
- Department of Biochemistry and Cell Biology, Guarini School of Graduate and Advanced Studies, Hanover, NH 03755, USA
| | - Kathryn S Beauchemin
- Department of Biochemistry and Cell Biology, Guarini School of Graduate and Advanced Studies, Hanover, NH 03755, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Guarini School of Graduate and Advanced Studies, Hanover, NH 03755, USA
| | - Surachai Supattapone
- Department of Biochemistry and Cell Biology, Guarini School of Graduate and Advanced Studies, Hanover, NH 03755, USA .,Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
4
|
Qin K, Eschenbrenner C, Ginot F, Dedovets D, Coradin T, Deville S, Fernandes FM. Unveiling Cells' Local Environment during Cryopreservation by Correlative In Situ Spatial and Thermal Analyses. J Phys Chem Lett 2020; 11:7730-7738. [PMID: 32841035 DOI: 10.1021/acs.jpclett.0c01729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cryopreservation is the only fully established procedure to extend the lifespan of living cells and tissues, a key to activities spanning from fundamental biology to clinical practice. Despite its prevalence and impact, the central aspects of cryopreservation, such as the cell's physicochemical environment during freezing, remain elusive. Here we address that question by coupling in situ microscopic directional freezing to visualize cells and their surroundings during freezing with the freezing-medium phase diagram. We extract the freezing-medium spatial distribution in cryopreservation, providing a tool to describe the cell vicinity at any point during freezing. We show that two major events define the cells' local environment over time: the interaction with the moving ice front and the interaction with the vitreous moving front, a term we introduce here. Our correlative strategy may be applied to cells relevant to clinical research and practice and may help in the design of new cryoprotective media based on local physicochemical cues.
Collapse
Affiliation(s)
- Kankan Qin
- Sorbonne Université, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, F-75005 Paris, France
| | - Corentin Eschenbrenner
- Sorbonne Université, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, F-75005 Paris, France
| | - Felix Ginot
- Laboratoire de Synthèse et Fonctionnalisation des Céramiques, UMR 3080 CNRS/Saint-Gobain CREE, Saint-Gobain Research Provence, 84300 Cavaillon, France
| | - Dmytro Dedovets
- Laboratoire de Synthèse et Fonctionnalisation des Céramiques, UMR 3080 CNRS/Saint-Gobain CREE, Saint-Gobain Research Provence, 84300 Cavaillon, France
| | - Thibaud Coradin
- Sorbonne Université, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, F-75005 Paris, France
| | - Sylvain Deville
- Laboratoire de Synthèse et Fonctionnalisation des Céramiques, UMR 3080 CNRS/Saint-Gobain CREE, Saint-Gobain Research Provence, 84300 Cavaillon, France
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622 Villeurbanne, France
| | - Francisco M Fernandes
- Sorbonne Université, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, F-75005 Paris, France
| |
Collapse
|
5
|
Cisplatin Resistance in Testicular Germ Cell Tumors: Current Challenges from Various Perspectives. Cancers (Basel) 2020; 12:cancers12061601. [PMID: 32560427 PMCID: PMC7352163 DOI: 10.3390/cancers12061601] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Testicular germ cell tumors share a marked sensitivity to cisplatin, contributing to their overall good prognosis. However, a subset of patients develop resistance to platinum-based treatments, by still-elusive mechanisms, experiencing poor quality of life due to multiple (often ineffective) interventions and, eventually, dying from disease. Currently, there is a lack of defined treatment opportunities for these patients that tackle the mechanism(s) underlying the emergence of resistance. Herein, we aim to provide a multifaceted overview of cisplatin resistance in testicular germ cell tumors, from the clinical perspective, to the pathobiology (including mechanisms contributing to induction of the resistant phenotype), to experimental models available for studying this occurrence. We provide a systematic summary of pre-target, on-target, post-target, and off-target mechanisms putatively involved in cisplatin resistance, providing data from preclinical studies and from those attempting validation in clinical samples, including those exploring specific alterations as therapeutic targets, some of them included in ongoing clinical trials. We briefly discuss the specificities of resistance related to teratoma (differentiated) phenotype, including the phenomena of growing teratoma syndrome and development of somatic-type malignancy. Cisplatin resistance is most likely multifactorial, and a combination of therapeutic strategies will most likely produce the best clinical benefit.
Collapse
|
6
|
Awan M, Buriak I, Fleck R, Fuller B, Goltsev A, Kerby J, Lowdell M, Mericka P, Petrenko A, Petrenko Y, Rogulska O, Stolzing A, Stacey GN. Dimethyl sulfoxide: a central player since the dawn of cryobiology, is efficacy balanced by toxicity? Regen Med 2020; 15:1463-1491. [PMID: 32342730 DOI: 10.2217/rme-2019-0145] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dimethyl sulfoxide (DMSO) is the cryoprotectant of choice for most animal cell systems since the early history of cryopreservation. It has been used for decades in many thousands of cell transplants. These treatments would not have taken place without suitable sources of DMSO that enabled stable and safe storage of bone marrow and blood cells until needed for transfusion. Nevertheless, its effects on cell biology and apparent toxicity in patients have been an ongoing topic of debate, driving the search for less cytotoxic cryoprotectants. This review seeks to place the toxicity of DMSO in context of its effectiveness. It will also consider means of reducing its toxic effects, the alternatives to its use and their readiness for active use in clinical settings.
Collapse
Affiliation(s)
- Maooz Awan
- Institute for Liver & Digestive Health, UCL Division of Medicine, Royal Free Hospital, UCL, London, NW3 2PF, UK
| | - Iryna Buriak
- Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv
| | - Roland Fleck
- Centre for Ultrastructural Imaging, Kings College London, London, SE1 1UL, UK
| | - Barry Fuller
- Department of Surgical Biotechnology, UCL Division of Surgery, Royal Free Hospital, UCL, London, NW3 2QG, UK
| | - Anatoliy Goltsev
- Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv
| | - Julie Kerby
- Cell & Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Mark Lowdell
- Centre for Cell, Gene & Tissue Therapy, Royal Free London NHS FT & UCL, London, NW3 2PF, UK
| | - Pavel Mericka
- Tissue Bank, University Hospital Hradec Kralové, Czech Republic
| | - Alexander Petrenko
- Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv
| | - Yuri Petrenko
- Department of Biomaterials & Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Olena Rogulska
- Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv
| | - Alexandra Stolzing
- University of Loughborough, Centre for Biological Engineering, Loughborough University, Holywell Park, Loughborough, UK
| | - Glyn N Stacey
- International Stem Cell Banking Initiative, 2 High Street, Barley, Hertfordshire, SG8 8HZ
- Beijing Stem Cell Bank, Institute of Zoology, Chinese Academy of Sciences, 25–2 Beishuan West, Haidan District, 100190 Beijing, China
- Institute of Stem Cells & Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
7
|
Lindsay C, Kostiuk M, Conrad D, O’Connell DA, Harris J, Seikaly H, Biron VL. Antitumour effects of metformin and curcumin in human papillomavirus positive and negative head and neck cancer cells. Mol Carcinog 2019; 58:1946-1959. [DOI: 10.1002/mc.23087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Cameron Lindsay
- Division of Otolaryngology‐Head and Neck Surgery, Department of SurgeryUniversity of Alberta Edmonton Alberta Canada
- Otolaryngology‐Head and Neck Surgery Research Laboratory of AlbertaUniversity of Alberta Edmonton Alberta Canada
| | - Morris Kostiuk
- Otolaryngology‐Head and Neck Surgery Research Laboratory of AlbertaUniversity of Alberta Edmonton Alberta Canada
| | - Dustin Conrad
- Division of Otolaryngology‐Head and Neck Surgery, Department of SurgeryUniversity of Alberta Edmonton Alberta Canada
| | - Daniel A. O’Connell
- Division of Otolaryngology‐Head and Neck Surgery, Department of SurgeryUniversity of Alberta Edmonton Alberta Canada
| | - Jeffrey Harris
- Division of Otolaryngology‐Head and Neck Surgery, Department of SurgeryUniversity of Alberta Edmonton Alberta Canada
| | - Hadi Seikaly
- Division of Otolaryngology‐Head and Neck Surgery, Department of SurgeryUniversity of Alberta Edmonton Alberta Canada
- Otolaryngology‐Head and Neck Surgery Research Laboratory of AlbertaUniversity of Alberta Edmonton Alberta Canada
| | - Vincent L. Biron
- Division of Otolaryngology‐Head and Neck Surgery, Department of SurgeryUniversity of Alberta Edmonton Alberta Canada
- Otolaryngology‐Head and Neck Surgery Research Laboratory of AlbertaUniversity of Alberta Edmonton Alberta Canada
| |
Collapse
|
8
|
Akiyama Y, Shinose M, Watanabe H, Yamada S, Kanda Y. Cryoprotectant-free cryopreservation of mammalian cells by superflash freezing. Proc Natl Acad Sci U S A 2019; 116:7738-7743. [PMID: 30936320 PMCID: PMC6475437 DOI: 10.1073/pnas.1808645116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cryopreservation is widely used to maintain backups of cells as it enables the semipermanent storage of cells. During the freezing process, ice crystals that are generated inside and outside the cells can lethally damage the cells. All conventional cryopreservation methods use at least one cryoprotective agent (CPA) to render water inside and outside the cells vitreous or nanocrystallized (near-vitrification) without forming damaging ice crystals. However, CPAs should ideally be avoided due to their cytotoxicity and potential side effects on the cellular state. Herein, we demonstrate the CPA-free cryopreservation of mammalian cells by ultrarapid cooling using inkjet cell printing, which we named superflash freezing (SFF). The SFF cooling rate, which was estimated by a heat-transfer stimulation, is sufficient to nearly vitrify the cells. The experimental results of Raman spectroscopy measurements, and observations with an ultrahigh-speed video camera support the near-vitrification of the droplets under these conditions. Initially, the practical utility of SFF was demonstrated on mouse fibroblast 3T3 cells, and the results were comparable to conventional CPA-assisted methods. Then, the general viability of this method was confirmed on mouse myoblast C2C12 cells and rat primary mesenchymal stem cells. In their entirety, the thus-obtained results unequivocally demonstrate that CPA-free cell cryopreservation is possible by SFF. Such a CPA-free cryopreservation method should be ideally suited for most cells and circumvent the problems typically associated with the addition of CPAs.
Collapse
Affiliation(s)
- Yoshitake Akiyama
- Department of Mechanical Engineering and Robotics, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan;
| | - Masato Shinose
- Department of Mechanical Engineering and Robotics, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| | - Hiroki Watanabe
- Department of Mechanical Engineering and Robotics, Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda, Nagano 386-8567, Japan
| | - Shigeru Yamada
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| |
Collapse
|
9
|
Lindsay CD, Kostiuk MA, Harris J, O'Connell DA, Seikaly H, Biron VL. Efficacy of EZH2 inhibitory drugs in human papillomavirus-positive and human papillomavirus-negative oropharyngeal squamous cell carcinomas. Clin Epigenetics 2017; 9:95. [PMID: 28878842 PMCID: PMC5586065 DOI: 10.1186/s13148-017-0390-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/15/2017] [Indexed: 01/23/2023] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent cancer worldwide with rates of HPV-positive oropharyngeal squamous cell carcinoma (OPSCC) dramatically increasing. The overexpression of enhancer of zeste homolog 2 (EZH2), a histone methyltransferase responsible for the trimethylation at lysine 27 of histone 3 (H3K27me3), is associated with a poor clinical prognosis and aggressive HPV-positive phenotypes. Methods We utilized three EZH2 pathway inhibitors, GSK-343, DZNeP, and EPZ-5687, and tested their efficacy in two HPV-positive and two HPV-negative OPSCC cell lines. Results Treatment with GSK-343 decreased H3K27me3 in all cell lines and treatment with DZNeP decreased H3K27me3 in only HPV-negative cell lines as determined by Western blot. Cells treated with EPZ-5687 displayed no appreciable change in H3K27me3. Epigenetic effect on gene expression was measured via ddPCR utilizing 11 target probes. Cells treated with DZNeP showed the most dramatic expressional changes, with decreased EGFR in HPV-positive cell lines and an overall increase in proliferation markers in HPV-negative cell lines. GSK-343-treated cells displayed moderate expressional changes, with CCND1 increased in HPV-positive cell lines and decreased TP53 in HPV-negative SCC-1. EPZ-5687-treated cell lines displayed few expressional changes overall. Only DZNeP-treated cells displayed anti-proliferative characteristics shown in wound-healing assays. Conclusions Our findings suggest that EZH2 inhibitors are a viable therapeutic option for the role of epigenetic effect, potentially sensitizing tumors to current chemotherapies or limiting cell differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s13148-017-0390-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Morris A Kostiuk
- Alberta Head and Neck Centre for Oncology and Reconstruction, Edmonton, AB Canada
| | - Jeff Harris
- Department of Surgery, University of Alberta, Edmonton, AB Canada.,Alberta Head and Neck Centre for Oncology and Reconstruction, Edmonton, AB Canada
| | - Daniel A O'Connell
- Department of Surgery, University of Alberta, Edmonton, AB Canada.,Alberta Head and Neck Centre for Oncology and Reconstruction, Edmonton, AB Canada
| | - Hadi Seikaly
- Department of Surgery, University of Alberta, Edmonton, AB Canada.,Alberta Head and Neck Centre for Oncology and Reconstruction, Edmonton, AB Canada
| | - Vincent L Biron
- Department of Surgery, University of Alberta, Edmonton, AB Canada.,Alberta Head and Neck Centre for Oncology and Reconstruction, Edmonton, AB Canada.,Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
10
|
Li X, Wang YK, Song ZQ, Du ZQ, Yang CX. Dimethyl Sulfoxide Perturbs Cell Cycle Progression and Spindle Organization in Porcine Meiotic Oocytes. PLoS One 2016; 11:e0158074. [PMID: 27348312 PMCID: PMC4922549 DOI: 10.1371/journal.pone.0158074] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/09/2016] [Indexed: 12/01/2022] Open
Abstract
Meiotic maturation of mammalian oocytes is a precisely orchestrated and complex process. Dimethyl sulfoxide (DMSO), a widely used solvent, drug, and cryoprotectant, is capable of disturbing asymmetric cytokinesis of oocyte meiosis in mice. However, in pigs, DMSO’s effect on oocyte meiosis still remains unknown. We aimed to evaluate if DMSO treatment will affect porcine oocyte meiosis and the underlying molecular changes as well. Interestingly, we did not observe the formation of the large first polar body and symmetric division for porcine oocytes treated with DMSO, contrary to findings reported in mice. 3% DMSO treatment could inhibit cumulus expansion, increase nuclear abnormality, disturb spindle organization, decrease reactive oxygen species level, and elevate mitochondrial membrane potential of porcine oocytes. There was no effect on germinal vesicle breakdown rate regardless of DMSO concentration. 3% DMSO treatment did not affect expression of genes involved in spindle organization (Bub1 and Mad2) and apoptosis (NF-κB, Pten, Bcl2, Caspase3 and Caspase9), however, it significantly decreased expression levels of pluripotency genes (Oct4, Sox2 and Lin28) in mature oocytes. Therefore, we demonstrated that disturbed cumulus expansion, chromosome alignment, spindle organization and pluripotency gene expression could be responsible for DMSO-induced porcine oocyte meiotic arrest and the lower capacity of subsequent embryo development. Our results provide new insights on DMSO’s effect on porcine oocyte meiosis and raise safety concerns over DMSO’s usage on female reproduction in both farm animals and humans.
Collapse
Affiliation(s)
- Xuan Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yan-Kui Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Zhi-Qiang Song
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Zhi-Qiang Du
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- * E-mail: (CXY); (ZQD)
| | - Cai-Xia Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- * E-mail: (CXY); (ZQD)
| |
Collapse
|