1
|
John Hamilton A, Lane S, Werry EL, Suri A, Bailey AW, Mercé C, Kadolsky U, Payne AD, Kassiou M, Treiger Sredni S, Saxena A, Gunosewoyo H. Synthesis and Antitumour Evaluation of Tricyclic Indole-2-Carboxamides against Paediatric Brain Cancer Cells. ChemMedChem 2024; 19:e202400098. [PMID: 38923350 DOI: 10.1002/cmdc.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Antitumour properties of some cannabinoids (CB) have been reported in the literature as early as 1970s, however there is no clear consensus to date on the exact mechanisms leading to cancer cell death. The indole-based WIN 55,212-2 and SDB-001 are both known as potent agonists at both CB1 and CB2 receptors, yet we demonstrate herein that only the former can exert in vitro antitumour effects when tested against a paediatric brain cancer cell line KNS42. In this report, we describe the synthesis of novel 3,4-fused tricyclic indoles and evaluate their functional potencies at both cannabinoid receptors, as well as their abilities to inhibit the growth or proliferation of KNS42 cells. Compared to our previously reported indole-2-carboxamides, these 3,4-fused tricyclic indoles had either completely lost activities, or, showed moderate-to-weak antagonism at both CB1 and CB2 receptors. Compound 23 displayed the most potent antitumour properties among the series. Our results further support the involvement of non-CB pathways for the observed antitumour activities of amidoalkylindole-based cannabinoids, in line with our previous findings. Transcriptomic analysis comparing cells treated or non-treated with compound 23 suggested the observed antitumour effects of 23 are likely to result mainly from disruption of the FOXM1-regulated cell cycle pathways.
Collapse
Affiliation(s)
| | - Samuel Lane
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Eryn L Werry
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney NSW, 2006, Australia
| | - Amreena Suri
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Anders W Bailey
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | | | | | - Alan D Payne
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Simone Treiger Sredni
- Division of Pediatric Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
- Department of Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Alka Saxena
- Genomics WA, QEII Campus, Nedlands, WA, 6009, Australia
| | - Hendra Gunosewoyo
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA, 6102, Australia
| |
Collapse
|
2
|
Thaiwong T, Cirillo JV, Heller J, Kiupel M. Expression of Carboxypeptidase A3 and Tryptase as Markers for Lymph Node Metastasis of Canine Cutaneous Mast Cell Tumors. Front Vet Sci 2022; 9:815658. [PMID: 35237679 PMCID: PMC8882851 DOI: 10.3389/fvets.2022.815658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Detection of metastatic mast cell tumors (MCTs) in lymph nodes is a critical factor for treatment, prognosis, and clinical management. Presence/absence of mast cells in the lymph nodes cannot be used as a sole parameter to determine metastasis due to the inability to differentiate neoplastic from non-neoplastic/inflammatory mast cells. While cytologic and histopathologic classifications for assessment of metastatic MCTs based on the numbers and distribution of mast cells have been developed, inconsistency between the clinical interpretation of these grading schemes and actual metastatic status occurs. The aim of this study is to identify a novel diagnostic tool to accurately predict overt metastatic mast cell tumors in lymph nodes. We investigated the possibility of using RT-qPCR to detect mRNA expression of mast cell-specific genes in lymph nodes with different stages of MCT metastatic classification. We are able to establish a highly sensitive and discriminating RT-qPCR measuring Carboxy peptidase A3 (CPA3) and tryptase mRNA expression and identify the cut-off values with high sensitivity and specificity for overt metastatic MCTs in lymph nodes. An area of future interest would be to expand our analysis of the extent to which cut-off values for these markers in correctly identifying disease status, as well as predicting clinical outcomes and survival times. This would offer valuable information regarding the practical applicability of this technique and may enable us to improve our standards of detection metastasis, including possibility of molecular analysis of cytologic specimens obtained from suspicious nodes subjected to surgical excision.
Collapse
Affiliation(s)
- Tuddow Thaiwong
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, Lansing, MI, United States
- *Correspondence: Tuddow Thaiwong
| | - Juliana V. Cirillo
- Departamento de Patologia, Facultad de Medicina Veterinaria y Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Jane Heller
- School of Animal and Veterinary Services, Faculty of Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Matti Kiupel
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, Lansing, MI, United States
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
3
|
Wang L, Shi C, Yu J, Xu Y. FOXM1-induced TYMS upregulation promotes the progression of hepatocellular carcinoma. Cancer Cell Int 2022; 22:47. [PMID: 35093082 PMCID: PMC8801073 DOI: 10.1186/s12935-021-02372-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2023] Open
Abstract
Abstract
Background
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and one of the major causes of cancer-related death. Thymidylate synthase (TYMS) catalyzes the methylation of deoxy guanosine to deoxy thymidylate, which is a crucial gene for DNA repair and replication. Thus, TYMS was reported to be closely associated with developing a variety of tumors, but it has been poorly studied in HCC.
Materials and methods
We used the cell counting kit-8 (CCK-8), BrdU, and CFSE assay to measure cell proliferation. The flow cytometry assay and the TUNEL assay were used for assessing cell apoptosis. The flow cytometry assay was used to analyze the cell cycle. The Transwell invasion assay and the wound healing assay were conducted to determine the invasive ability of the cells. RT-qPCR and Western blot analyses were performed to evaluate the mRNA and protein expression levels of specific genes, respectively.
Results
TYMS was found to be upregulated in both HCC cells and patient samples. High expression of TYMS was associated with an unfavorable prognosis in HCC patients based on the TCGA-LIHC dataset. Cell proliferation, apoptosis, and invasion assays revealed that TYMS promoted the proliferation and invasion of HCC cells as well as inhibited apoptosis. In addition, TYMS is a downstream target of FOXM1. TYMS knockdown reversed the 5-FU resistance caused by FOXM1 overexpression and re-sensitized HCC cells to 5-FU treatment.
Conclusion
This study suggested that TYMS serves as an oncogene in HCC, and targeting the FOXM1-TYMS axis may help improve the survival of HCC patients as well as provide new insights for treating advanced HCC patients.
Collapse
|
4
|
Pathania S, Khan MI, Kumar A, Gupta AK, Rani K, Ramesh Parashar T, Jayaram J, Ranjan Mishra P, Srivastava A, Mathur S, Hari S, Hariprasad G. Proteomics of Sentinel Lymph Nodes in Early Breast Cancer for Identification of Thymidylate Synthase as a Potential Biomarker to Flag Metastasis: A Preliminary Study. Cancer Manag Res 2020; 12:4841-4854. [PMID: 32606973 PMCID: PMC7320752 DOI: 10.2147/cmar.s255684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/21/2020] [Indexed: 12/30/2022] Open
Abstract
Introduction Breast cancer is the second most common cancer in women across the world. Some of the patients who present in the early stage of disease are affected by metastasis to the axillary group of lymph nodes. The first among this group that is affected is called as sentinel lymph node, and its diagnosis is crucial for the staging of cancer thereby dictating the type of surgical therapy. Therefore, the sentinel lymph node status provides the most relevant information to the surgeon and patient prognosis. The expanded utilization of breast conservation surgery has declined the morbidity associated with mastectomy and axillary lymph node surgery. Recent interest is, therefore, centered on techniques that allow accurate assessment of the sentinel lymph node metastasis. A current procedure such as sentinel lymph node biopsy (SLNB) that is used to assess axillary lymph node metastasis is neither specific nor sensitive, and besides, it is time-consuming. Objective To compare the protein profiles between metastatic and non-metastatic lymph nodes to identify a biomarker that can flag lymph node metastasis. Materials and Methods Women with early breast cancer were screened using mammography imaging and recruited to the study. Surgical resection was done to remove the breast tissue, and sentinel lymph node was identified using fluorescein and methylene blue tracer. Lymph node was sliced, and one set was sent for histopathology, which was considered the gold standard to assess the metastatic status of the lymph node. One set of slices was taken for proteomic experiments. Proteins were labelled with fluorescent cyanine tags and were subjected to difference gel electrophoresis experiment. Differentially expressed spots that had at least a twofold relative ratio and consistent pattern across three sets of biological replicate experiments were marked. Gel spots were trypsin digested and identified on mass spectrometry machine. Validation study was done by Western blot experiment on the same set of samples. Results Thymidylate synthase has a twofold higher expression in the metastatic sentinel lymph nodes as compared to non-metastatic lymph nodes in early breast cancer patients. Conclusion Differential in gel expression proteomics is an ideal platform for the identification of potential protein biomarker candidates that can differentiate metastatic from non-metastatic lymph nodes in early breast cancer. The identification of thymidylate synthase offers a scope to develop an on-table diagnostic kit to assess the status of sentinel lymph nodes during mastectomy procedure to guide surgical management of axillary lymph nodes in early breast cancer. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/cwaN4SoFgZk
Collapse
Affiliation(s)
- Sheetal Pathania
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mohd Imran Khan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Abhishek Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Ashish Kumar Gupta
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Komal Rani
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tanvi Ramesh Parashar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jnaneshwari Jayaram
- Department of Surgery, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Piyush Ranjan Mishra
- Department of Surgery, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Anurag Srivastava
- Department of Surgery, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sandeep Mathur
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Smriti Hari
- Department of Radiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Gururao Hariprasad
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
5
|
Zhang S, Yan L, Cui C, Wang Z, Wu J, Zhao M, Dong B, Guan X, Tian X, Hao C. Identification of TYMS as a promoting factor of retroperitoneal liposarcoma progression: Bioinformatics analysis and biological evidence. Oncol Rep 2020; 44:565-576. [PMID: 32627015 PMCID: PMC7336505 DOI: 10.3892/or.2020.7635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/14/2020] [Indexed: 12/24/2022] Open
Abstract
Retroperitoneal liposarcoma (RLPS) is one of the most common types of retroperitoneal sarcomas, and has a high recurrence rate. There is an urgent need to further explore its pathogenesis and develop more effective treatment strategies. The aim of the present study was to identify potential driver genes of RLPS through bioinformatics analysis and molecular biology to elucidate potential targets that are suitable for further analysis for the treatment of RLPS. Differentially expressed genes (DEGs) between liposarcoma and normal fatty (NF) tissues were identified based on microarray data through bioinformatics analysis, and thymidylate synthase (TYMS) was selected from the DEGs, based on high content screening (HCS). TYMS expression was evaluated in RLPS tumor tissues and cell lines. A total of 21 RLPS tissues and 10 NF frozen tissues were used for reverse transcription-quantitative PCR, and 47 RLPS formalin-fixed specimens were used for immunohistochemical analysis. The effect of TYMS downregulation on cell proliferation, apoptosis, cell cycle progression, and cell migration and invasion were evaluated using lentivirus-mediated short hairpin RNA. The underlying mechanisms of TYMS in RLPS were examined by protein microarray and verified by western blotting. A total of 855 DEGs were identified. TYMS knockdown had the most notable effect on the proliferative capacity of RLPS cells according to the HCS results. TYMS mRNA expression levels were higher in RLPS tissues compared with NF tissues (P<0.001). TYMS expression was higher in high-grade RLPS tissues compared with low-grade RLPS tissues (P=0.003). The patients with positive TYMS expression had a worse overall survival (OS) and disease-free survival (DFS) compared with the patients with negative TYMS expression (OS, P=0.024; DFS, P=0.030). The knockdown of TYMS reduced proliferation, promoted apoptosis, facilitated cell cycle progression from G1 to S phase, and reduced cell migration and invasion of RLPS cells. Protein microarray analysis and western blotting showed that the Janus Kinase/Signal transducers and activators of transcription pathway was downregulated following TYMS knockdown. In conclusion, TYMS expression is upregulated in RLPS tissues, and downregulation of TYMS reduces RLPS progression.
Collapse
Affiliation(s)
- Sha Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato‑Pancreato‑Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Liang Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato‑Pancreato‑Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Can Cui
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Zhen Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato‑Pancreato‑Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Jianhui Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato‑Pancreato‑Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Min Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Bin Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Xiaoya Guan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato‑Pancreato‑Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Xiuyun Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato‑Pancreato‑Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Chunyi Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato‑Pancreato‑Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| |
Collapse
|
6
|
Qi C, Gao H, Li S, Zong H, Hao H, Zhang L. A Case-Control Study on the Correlation Between Thymidylate Synthase Gene Polymorphisms and Raltitrexed Treatment Combined with Transcatheter Arterial Chemoembolization in Hepatocellular Carcinoma Treatment. Genet Test Mol Biomarkers 2020; 24:156-164. [PMID: 32101052 DOI: 10.1089/gtmb.2019.0111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background: To study the effect of single nucleotide polymorphisms (SNPs) in the thymidylate synthase (TYMS) gene for their value in predicting the efficacy of raltitrexed treatment combined with transcatheter arterial chemoembolization (TACE) for the treatment of primary hepatocellular carcinoma (HCC). Methods: We conducted a genotypic analysis of the TYMS SNPs rs2790, rs8423, rs502396, rs699517, and rs1004474 in150 HCC patients who were subjected to raltitrexed treatment combined with TACE (study group) and another 150 HCC patients who were treated with doxorubicin combined with TACE (control group). After 1 year of follow-up and interventional therapy, the relationship between the TYMS SNPs and survival rate, and the prognosis for survival were analyzed. Results: After interventional therapy, the response rate (RR) and disease control rate (DCR) of the study group were 52.67% and 87.33%, respectively; whereas the RR and DCR of the control group were 54.67% and 84.67%, respectively. No significant differences were detected by comparison of the RRs (p = 0.728) and DCRs (p = 0.506) between the two groups. The HCC patients' TYMS SNPs rs2790, rs8423, rs502396, rs699517, and rs1004474 were associated with the efficacy and prognosis of the raltitrexed-combined TACE intervention (p < 0.05) yet showed no correlation to the efficacy and prognosis of doxorubicin-combined TACE interventional therapy (p > 0.05). Conclusions: The SNPs of the TYMS genes (rs2790, rs8423, rs502396, rs699517, and rs1004474) are associated with the efficacy and prognosis of raltitrexed treatment in HCC patients.
Collapse
Affiliation(s)
- Chunhou Qi
- Department of Interventional Medicine, Linyi City Central Hospital, Linyi, China
| | - Hongfei Gao
- Department of Interventional Medicine, Linyi City Central Hospital, Linyi, China
| | - Shankai Li
- Department of Interventional Medicine, Linyi City Central Hospital, Linyi, China
| | - Huanbo Zong
- Department of Interventional Medicine, Linyi City Central Hospital, Linyi, China
| | - Hongjun Hao
- Department of Interventional Medicine, Linyi City Central Hospital, Linyi, China
| | - Lei Zhang
- Department of Interventional Radiology, Shandong Medical Imaging Research Institute, Affiliated to Shandong University, Jinan, China
| |
Collapse
|
7
|
Yao L, Zhou L, Deng Y, Zheng Y, Yang P, Wang M, Dong S, Hao Q, Xu P, Li N, Wu Y, Zhai Z, Lyu L, Dai Z. Association Between Genetic Polymorphisms In TYMS And Glioma Risk In Chinese Patients: A Case-Control Study. Onco Targets Ther 2019; 12:8241-8247. [PMID: 31632074 PMCID: PMC6790345 DOI: 10.2147/ott.s221204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/10/2019] [Indexed: 01/01/2023] Open
Abstract
Background Thymidylate synthase (TYMS) polymorphisms are reported to be related to susceptibility to some cancers. However, no study exists on TYMS polymorphisms and glioma risk. This study aimed to evaluate the relationship between two common TYMS gene variants (rs1059394 C>T, rs2847153 G>A) and glioma susceptibility. Methods This case-control study included 605 patients and 1300 cancer-free individuals. Genotyping was performed using Sequenom Mass-ARRAY. We determined odds ratios (ORs) and their 95% confidence intervals (CIs) to estimate the correlations. Results The analysis revealed that rs1059394 TT and CT+TT genotype had significantly low glioma risk (TT to CC: OR = 0.71, 95% CI = 0.52–0.97, P = 0.03; CT+TT to CC: OR = 0.74, 95% CI = 0.55–0.99, P = 0.04). However, no significant difference was found between rs2847153 and glioma risk in any genetic model (P﹥0.05). In high-grade gliomas, the GA and GA+AA genotypes of rs2847153 made the majority of genotypes, compared with GG genotype (GA to GG: OR = 2.01, 95% CI = 1.39–2.91, P < 0.001; GA+AA to GG: OR = 1.78, 95% CI =1.25–2.54, P < 0.001). Moreover, online expression quantitative trait locus (eQTL) analysis indicated that these two polymorphisms may alter TYMS gene expression in transformed fibroblast cells. Conclusion Our study provides evidence of the effect of TYMS rs1059394 on the susceptibility of glioma. In high-grade gliomas, compared with GG genotype, the GA and GA+AA genotypes of rs2847153 comprise a larger proportion.
Collapse
Affiliation(s)
- Li Yao
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Linghui Zhou
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Yujiao Deng
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Yi Zheng
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Pengtao Yang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Meng Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| | - Shanshan Dong
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Qian Hao
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Peng Xu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Na Li
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Ying Wu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Zhen Zhai
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Lijuan Lyu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Zhijun Dai
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| |
Collapse
|
8
|
Li G, Jiang Y, Lyu X, Cai Y, Zhang M, Wang Z, Li G, Qiao Q. Deconvolution and network analysis of IDH-mutant lower grade glioma predict recurrence and indicate therapeutic targets. Epigenomics 2019; 11:1323-1333. [PMID: 31272213 DOI: 10.2217/epi-2019-0137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: IDH-mutant lower grade glioma (LGG) has been proven to have a good prognosis. However, its high recurrence rate has become a major therapeutic difficulty. Materials & methods: We combined epigenomic deconvolution and a network analysis on The Cancer Genome Atlas IDH-mutant LGG data. Results: Cell type compositions between recurrent and primary gliomas are significantly different, and the key cell type that determines the prognosis and recurrence risk was identified. A scoring model consisting of four gene expression levels predicts the recurrence risk (area under the receiver operating characteristic curve = 0.84). Transcription factor PPAR-α explains the difference between recurrent and primary gliomas. A cell cycle-related module controls prognosis in recurrent tumors. Conclusion: Comprehensive deconvolution and network analysis predict the recurrence risk and reveal therapeutic targets for recurrent IDH-mutant LGG.
Collapse
Affiliation(s)
- Guangqi Li
- Department of Radiation Oncology, the First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Yuanjun Jiang
- Department of Urology, the First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Xintong Lyu
- Department of Radiation Oncology, the First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Yiru Cai
- Department of Radiation Oncology, the First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Miao Zhang
- Department of Radiation Oncology, the First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Zuoyuan Wang
- The First Clinical Medical College of China Medical University, Shenyang 110001, Liaoning, China
| | - Guang Li
- Department of Radiation Oncology, the First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Qiao Qiao
- Department of Radiation Oncology, the First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| |
Collapse
|
9
|
Blocking COX-2 induces apoptosis and inhibits cell proliferation via the Akt/survivin- and Akt/ID3 pathway in low-grade-glioma. J Neurooncol 2017; 132:231-238. [PMID: 28283800 PMCID: PMC6763415 DOI: 10.1007/s11060-017-2380-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/08/2016] [Indexed: 12/23/2022]
Abstract
Approximately half of surgically-treated patients with low-grade-glioma (LGG) suffer recurrence or metastasis. Currently there is no effective drug treatment. While the selective COX-2 inhibitor celecoxib showed anti-neoplastic activity against several malignant tumors, its effects against LGG remain to be elucidated. Ours is the first report that the expression level of COX-2 in brain tissue samples from patients with LGG and in LGG cell lines is higher than in the non-neoplastic region and in normal brain cells. We found that celecoxib attenuated LGG cell proliferation in a dose-dependent manner. It inhibited the generation of prostaglandin E2 and induced apoptosis and cell-cycle arrest. We also show that celecoxib hampered the activation of the Akt/survivin- and the Akt/ID3 pathway in LGGs. These findings suggest that celecoxib may have a promising therapeutic potential and that the early treatment of LGG patients with the drug may be beneficial.
Collapse
|