1
|
Chandrasekaran AP, Kaushal K, Park CH, Kim KS, Ramakrishna S. USP32 confers cancer cell resistance to YM155 via promoting ER-associated degradation of solute carrier protein SLC35F2. Theranostics 2021; 11:9752-9771. [PMID: 34815782 PMCID: PMC8581437 DOI: 10.7150/thno.63806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The most commonly preferred chemotherapeutic agents to treat cancers are small-molecule drugs. However, the differential sensitivity of various cancer cells to small molecules and untargeted delivery narrow the range of potential therapeutic applications. The mechanisms responsible for drug resistance in a variety of cancer cells are also largely unknown. Several deubiquitinating enzymes (DUBs) are the main determinants of drug resistance in cancer cells. Methods: We used CRISPR-Cas9 to perform genome-scale knockout of the entire set of genes encoding ubiquitin-specific proteases (USPs) and systematically screened for DUBs resistant to the clinically evaluated anticancer compound YM155. A series of in vitro and in vivo experiments were conducted to reveal the relationship between USP32 and SLC35F2 on YM155-mediated DNA damage in cancer cells. Results: CRISPR-based dual-screening method identified USP32 as a novel DUB that governs resistance for uptake of YM155 by destabilizing protein levels of SLC35F2, a solute-carrier protein essential for the uptake of YM155. The expression of USP32 and SLC35F2 was negatively correlated across a panel of tested cancer cell lines. YM155-resistant cancer cells in particular exhibited elevated expression of USP32 and low expression of SLC35F2. Conclusion: Collectively, our DUB-screening strategy revealed a resistance mechanism governed by USP32 associated with YM155 resistance in breast cancers, one that presents an attractive molecular target for anti-cancer therapies. Targeted genome knockout verified that USP32 is the main determinant of SLC35F2 protein stability in vitro and in vivo, suggesting a novel way to treat tumors resistant to small-molecule drugs.
Collapse
|
2
|
Ke W, Wang H, Zhao X, Lu Z. Foeniculum vulgare seed extract exerts anti-cancer effects on hepatocellular carcinoma. Food Funct 2021; 12:1482-1497. [PMID: 33502415 DOI: 10.1039/d0fo02243h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. The prognosis of HCC is very poor due to the absence of symptoms and a lack of effective treatments. Studies have shown that various Foeniculum vulgare (fennel) extracts exhibit anti-cancer effects on malignant tumors such as skin cancer and prostate cancer. However, the anti-tumor activity of Foeniculum vulgare and its underlying molecular mechanisms towards HCC are unknown. Here, we provide fundamental evidence to show that the 75% ethanol extract of Foeniculum vulgare seeds (FVE) reduced cell viability, induced apoptosis, and effectively inhibited cell migration in HCC cells in vitro. HCC xenograft studies in nude mice showed that FVE significantly inhibited HCC growth in vivo. Mechanistic analyses showed that FVE reduced survivin protein levels and triggered mitochondrial toxicity, subsequently inducing caspase-3 activation and apoptosis. Survivin inhibition effectively sensitized HCC cells to FVE-induced apoptosis. Moreover, FVE did not induce a decrease in survivin or apoptotic toxicity in normal liver cells. Collectively, in vivo and in vitro results suggest that FVE exerts inhibitory effects in HCC by targeting the oncoprotein survivin, suggesting FVE may be a potential anti-cancer agent that may benefit patients with HCC.
Collapse
Affiliation(s)
- Weiwei Ke
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| | - Hongbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| | - Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| |
Collapse
|
3
|
Yang C, Chen J, Li Y, Huang X, Liu Z, Wang J, Jiang H, Qin W, Lv Y, Wang H, Wang C. Exploring subclass-specific therapeutic agents for hepatocellular carcinoma by informatics-guided drug screen. Brief Bioinform 2020; 22:5960426. [PMID: 33167027 DOI: 10.1093/bib/bbaa295] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 01/02/2023] Open
Abstract
Almost all currently approved systemic therapies for hepatocellular carcinoma (HCC) failed to achieve satisfactory therapeutic effect. Exploring tailored treatment strategies for different individuals provides an approach with the potential to maximize clinical benefit. Previously, multiple studies have reported that hepatoma cell lines belonging to different molecular subtypes respond differently to the same treatment. However, these studies only focused on a small number of typical chemotherapy or targeted drugs across limited cell lines due to time and cost constraints. To compensate for the deficiency of previous experimental researches as well as link molecular classification with therapeutic response, we conducted a comprehensive in silico screening, comprising nearly 2000 compounds, to identify compounds with subclass-specific efficacy. Here, we first identified two transcriptome-based HCC subclasses (AS1 and AS2) and then made comparison of drug response between two subclasses. As a result, we not only found that some agents previously considered to have low efficacy in HCC treatment might have promising therapeutic effects for certain subclass, but also identified novel therapeutic compounds that were not routinely used as anti-tumor drugs in clinic. Discovery of agents with subclass-specific efficacy has potential in changing the status quo of population-based therapies in HCC and providing new insights into precision oncology.
Collapse
Affiliation(s)
- Chen Yang
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Junfei Chen
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, China. She is focusing on multi-omics analysis of hepatocellular carcinoma.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yan Li
- Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Xiaowen Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhicheng Liu
- student at Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Hua Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Lv
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Cun Wang
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Chandrasekaran AP, Poondla N, Ko NR, Oh SJ, Ramakrishna S. YM155 sensitizes HeLa cells to TRAIL-mediated apoptosis via cFLIP and survivin downregulation. Oncol Lett 2020; 20:72. [PMID: 32863905 PMCID: PMC7436932 DOI: 10.3892/ol.2020.11933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/16/2020] [Indexed: 12/27/2022] Open
Abstract
Tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-mediated apoptosis is a safe method for the treatment of various types of cancer. However, TRAIL therapy is less effective in certain types of cancer, including cervical cancer. To address this problem, a combinatorial approach was employed to sensitize cervical cancer at low dosages. YM155, a survivin inhibitor, was used at low dosages along with TRAIL to induce apoptosis in HeLa cells. The effects of the individual treatment with TRAIL and YM155 on apoptosis were assessed by propidium iodide assay. In addition, to validate the DNA damage exhibited by the combination treatment, the phosphorylation status of γH2A histone family member X was investigated by immunofluorescence and western blot analysis. TRAIL or YM155 alone had no significant effect on DNA damage and apoptosis. However, the TRAIL/YM155 combination triggered a synergistic pro-apoptotic stimulus in HeLa cells. The mRNA and protein levels of CASP8- and FADD-like apoptosis regulator (cFLIP), death receptor 5 (DR5) and survivin were monitored using RT-PCR and western blot analysis, respectively. This combinatorial approach downregulated both mRNA and protein expression levels of cFLIP and survivin. Further experimental results suggested that the combination treatment significantly reduced cell viability, invasion and migration of HeLa cells. Overall, the present findings indicated that the low dosage of YM155 sensitized HeLa cells to TRAIL-induced apoptosis via a mechanism involving downregulation of cFLIP and survivin. The results indicated the importance of combination drug treatment and reveal an effective therapeutic alternative for TRAIL therapy in human cervical cancer.
Collapse
Affiliation(s)
- Arun Pandian Chandrasekaran
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Naresh Poondla
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Na Re Ko
- Biomedical Research Center, Asan Institute for Life Sciences, Seoul 05505, Republic of Korea.,Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Seung Jun Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, Seoul 04763, Republic of Korea.,College of Medicine, Department of Genetics, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
5
|
Liu J, Cui Y, Yu S, Huang Y, Liu P, Song L, Sun J, Zhang Q, He J. Survivin expression and localization in different organs of yaks (Bos grunniens). Gen Comp Endocrinol 2018; 268:80-87. [PMID: 30077795 DOI: 10.1016/j.ygcen.2018.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 07/17/2018] [Accepted: 07/24/2018] [Indexed: 12/26/2022]
Abstract
Yaks (Bos grunniens) have special physiological structures that help them adapt to high-altitude environments. Survivin is actively studied in cancer tissues, but less in normal tissues. Therefore, the aim of the present study was to analysis the relationship between survivin expression and apoptosis rate in yaks. A partial gene sequence of survivin was cloned and characterized using bioinformatics. The expression of survivin was investigated using real-time quantitative PCR (RT-qPCR) and western blot (WB) analysis and localized using immunohistochemistry (IHC). The results revealed that in normal physiological organs, survivin is mainly expressed in cytoplasm and its expression was up-regulated with age. Its expression in heart and liver was higher than in other organs, such as spleen, lung, brain, kidney, and testis. It is noteworthy that the expression of survivin in spleen is differed from that in other organs. Therefore, we selected immune organs (lymph node, thymus and spleen) to investigate the relationship between survivin expression and apoptosis. Caspase-3 was used as a reference. Within the same age group, the expression of survivin was the highest in the spleen, but that of caspase-3 was the highest in the lymph node (P < 0.01). Furthermore, the IHC analysis revealed that survivin and caspase-3 are expressed in the same location (mainly in the cytoplasm, Hassall's corpuscles, the medulla of the lymph node, the red pulp and marginal zone of the spleen. More importantly, survivin expression was down-regulated with age in immune organs, and the opposite trend was observed for caspase-3 expression (P < 0.01). The results proved that the expression of survivin and caspase-3 is down- and up-regulated with age, respectively, suggesting that survivin and caspase-3 might coordinating and participating in slowing down the rate of apoptosis rate in immune organs of healthy yak.
Collapse
Affiliation(s)
- Jun Liu
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| | - Yan Cui
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China; Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| | - Sijiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| | - Yufeng Huang
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| | - Penggang Liu
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| | - Liangli Song
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| | - Juan Sun
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| | - Qian Zhang
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| | - Junfeng He
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| |
Collapse
|
6
|
Taglieri L, De Iuliis F, Giuffrida A, Giantulli S, Silvestri I, Scarpa S. Resistance to the mTOR inhibitor everolimus is reversed by the downregulation of survivin in breast cancer cells. Oncol Lett 2017; 14:3832-3838. [PMID: 28927154 PMCID: PMC5587981 DOI: 10.3892/ol.2017.6597] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/07/2017] [Indexed: 12/17/2022] Open
Abstract
Everolimus (RAD001) is an inhibitor of mammalian target of rapamycin used in combination with exemestane to treat hormone receptor-positive advanced breast cancer. However, not all patients are equally sensitive to RAD001 and certain patients develop resistance. Therefore, the present study analyzed the mechanisms involved in the resistance of breast cancer cells to RAD001 in order to identify a potential tool to overcome it. The effects of RAD001 on the inhibition of cell viability, on the induction of apoptosis and autophagy and on the regulation of survivin, an anti-apoptotic protein, were evaluated in two breast cancer cell lines: BT474 (luminal B) and MCF7 (luminal A). RAD001 was demonstrated to induce autophagy in the two cell lines at following a short period of treatment (4 h) and to induce apoptosis exclusively in BT474 cells following longer periods of treatment (48 h). RAD001 induced the downregulation of survivin in BT474 cells and its upregulation in MCF7 cells. Consequently, inhibiting survivin with YM155 resulted in the acquired resistance of MCF7 cells to RAD001 being reverted, restoring RAD001-induced apoptosis. These data demonstrated that RAD001 exerted anti-proliferative and pro-apoptotic effects on breast cancer cells, but that these effects were repressed by the simultaneous up-regulation of survivin. Finally, the results demonstrated that inhibiting the expression of survivin resulted in the restoration of the anti-neoplastic activity of RAD001.
Collapse
Affiliation(s)
- Ludovica Taglieri
- Department of Experimental Medicine, Sapienza University, I-00161 Rome, Italy
| | - Francesca De Iuliis
- Department of Experimental Medicine, Sapienza University, I-00161 Rome, Italy
| | - Anna Giuffrida
- Department of Experimental Medicine, Sapienza University, I-00161 Rome, Italy
| | - Sabrina Giantulli
- Department of Molecular Medicine, Sapienza University, I-00161 Rome, Italy
| | - Ida Silvestri
- Department of Molecular Medicine, Sapienza University, I-00161 Rome, Italy
| | - Susanna Scarpa
- Department of Experimental Medicine, Sapienza University, I-00161 Rome, Italy
| |
Collapse
|
7
|
Novel multi-substituted benzyl acridone derivatives as survivin inhibitors for hepatocellular carcinoma treatment. Eur J Med Chem 2017; 129:337-348. [PMID: 28237663 DOI: 10.1016/j.ejmech.2017.02.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/07/2017] [Accepted: 02/10/2017] [Indexed: 11/24/2022]
Abstract
Sorafenib was the only small-molecule drug approved by FDA for treatment of the advanced hepatocellular carcinoma (HCC). Recent study indicated that YM155 was a promising agent for HCC cells with high survivin expression, however, the antitumor activity needs to be further improved. Based on molecular docking and rational design method, a series of multi-substituted benzyl acridone derivatives were designed and synthesized. MTT assay indicated that some of the synthesized compounds displayed better antiproliferative activity against HepG2 cells than YM155. Later study indicated that the representive compound 8u may directly interact with survivin protein and induce HepG2 cells apoptosis, which is different from YM155. In addition, ADME property was predicted in silico, and it performed well. Moreover, in vivo preliminary experiments showed that 8u may be a good lead compound in the treatment of HCC.
Collapse
|