1
|
Wu LY, Su BC, Yu HH, Cheng CC, Tsai CC, Hsu PL, Lee CW. Antihypertensive agent losartan promotes tongue squamous cell carcinoma cell proliferation via EGFR/ERK1/2/cyclin D1 signaling axis. J Oral Biosci 2024; 66:74-80. [PMID: 39245205 DOI: 10.1016/j.job.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVE To study the effects of losartan, an angiotensin II receptor blocker, in the SCC4 and SCC25 human tongue squamous cell carcinoma cell lines. METHODS Cell proliferation was measured by MTS/PMS activity and trypan blue exclusion assays. The levels of the cell proliferation marker, cyclin D1, were analyzed by western blotting. Apoptosis was assessed by caspase-3 activation and Annexin V-FITC/propidium iodide double staining. Activation of epidermal growth factor receptor (EGFR) and ERK1/2 was validated by western blotting. RESULTS Moderate concentrations of losartan enhanced the proliferation of SCC4 and SCC25 cells. However, high losartan concentrations induced apoptosis in SCC4 cells. Losartan activated the EGFR/ERK1/2/cyclin D1 signaling axis, which in turn promoted cell proliferation. Afatinib (EGFR inhibitor) and U0126 (ERK1/2 inhibitor) abolished losartan-induced cell proliferation. In contrast, UC2288 (p21 inhibitor) enhanced it. CONCLUSIONS Losartan exhibited dual effects on tongue squamous cell carcinoma cells. Moderate losartan concentrations facilitated cell proliferation, whereas high concentrations induced cytotoxicity in tongue carcinoma cells.
Collapse
Affiliation(s)
- Luo-Yun Wu
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Bor-Chyuan Su
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Hsien Yu
- Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Division of General Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Cheng Cheng
- Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chia-Chi Tsai
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Pei-Ling Hsu
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Chu-Wan Lee
- Department of Nursing, National Tainan Junior College of Nursing, 78, Section 2, Minzu Road, West Central District, Tainan, 70007, Taiwan.
| |
Collapse
|
2
|
Wei K, Zhu W, Kou Y, Zheng X, Zheng Y. Advances in Small Molecular Agents against Oral Cancer. Molecules 2024; 29:1594. [PMID: 38611874 PMCID: PMC11013889 DOI: 10.3390/molecules29071594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Oral cancer is a common malignancy with a high mortality rate. Although surgery is the best treatment option for patients with cancer, this approach is ineffective for advanced metastases. Molecular agents are irreplaceable in preventing and treating distant metastases. This review aims to summarise the molecular agents used for the treatment of oral cancer in the last decade and describe their sources and curative effects. These agents are classified into phenols, isothiocyanates, anthraquinones, statins, flavonoids, terpenoids, and steroids. The mechanisms of action of these agents include regulating the expression of cell signalling pathways and related proteases to affect the proliferation, autophagy, migration, apoptosis, and other biological aspects of oral cancer cells. This paper may serve as a reference for subsequent studies on the treatment of oral cancer.
Collapse
Affiliation(s)
- Kai Wei
- Medical School, Pingdingshan University, Pingdingshan 467000, China; (K.W.); (W.Z.); (X.Z.)
| | - Weiru Zhu
- Medical School, Pingdingshan University, Pingdingshan 467000, China; (K.W.); (W.Z.); (X.Z.)
| | - Yanan Kou
- Affiliated Stomatology Hospital, Pingdingshan University, Pingdingshan 467000, China
| | - Xinhua Zheng
- Medical School, Pingdingshan University, Pingdingshan 467000, China; (K.W.); (W.Z.); (X.Z.)
| | - Yunyun Zheng
- Medical School, Pingdingshan University, Pingdingshan 467000, China; (K.W.); (W.Z.); (X.Z.)
| |
Collapse
|
3
|
Lim YJ, Kim HS, Bae S, So KA, Kim TJ, Lee JH. Pan-EGFR Inhibitor Dacomitinib Resensitizes Paclitaxel and Induces Apoptosis via Elevating Intracellular ROS Levels in Ovarian Cancer SKOV3-TR Cells. Molecules 2024; 29:274. [PMID: 38202856 PMCID: PMC10780346 DOI: 10.3390/molecules29010274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
Paclitaxel is still used as a standard first-line treatment for ovarian cancer. Although paclitaxel is effective for many types of cancer, the emergence of chemoresistant cells represents a major challenge in chemotherapy. Our study aimed to analyze the cellular mechanism of dacomitinib, a pan-epidermal growth factor receptor (EGFR) inhibitor, which resensitized paclitaxel and induced cell cytotoxicity in paclitaxel-resistant ovarian cancer SKOV3-TR cells. We investigated the significant reduction in cell viability cotreated with dacomitinib and paclitaxel by WST-1 assay and flow cytometry analysis. Dacomitinib inhibited EGFR family proteins, including EGFR and HER2, as well as its downstream signaling proteins, including AKT, STAT3, ERK, and p38. In addition, dacomitinib inhibited the phosphorylation of Bad, and combination treatment with paclitaxel effectively suppressed the expression of Mcl-1. A 2'-7'-dichlorodihydrofluorescein diacetate (DCFH-DA) assay revealed a substantial elevation in cellular reactive oxygen species (ROS) levels in SKOV3-TR cells cotreated with dacomitinib and paclitaxel, which subsequently mediated cell cytotoxicity. Additionally, we confirmed that dacomitinib inhibits chemoresistance in paclitaxel-resistant ovarian cancer HeyA8-MDR cells. Collectively, our research indicated that dacomitinib effectively resensitized paclitaxel in SKOV3-TR cells by inhibiting EGFR signaling and elevating intracellular ROS levels.
Collapse
Affiliation(s)
- Ye Jin Lim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea; (Y.J.L.); (H.S.K.); (S.B.)
| | - Hee Su Kim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea; (Y.J.L.); (H.S.K.); (S.B.)
| | - Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea; (Y.J.L.); (H.S.K.); (S.B.)
| | - Kyeong A So
- Department of Obstetrics and Gynecology, Konkuk University School of Medicine, Seoul 05030, Republic of Korea; (K.A.S.); (T.J.K.)
| | - Tae Jin Kim
- Department of Obstetrics and Gynecology, Konkuk University School of Medicine, Seoul 05030, Republic of Korea; (K.A.S.); (T.J.K.)
| | - Jae Ho Lee
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea; (Y.J.L.); (H.S.K.); (S.B.)
| |
Collapse
|
4
|
Al-Zahrani NS, Zamzami MA, Baghdadi MA, El-Gowily AH, Ali EMM. Regulation of Protein-Induced Apoptosis and Autophagy in Human Hepatocytes Treated with Metformin and Paclitaxel In Silico and In Vitro. Biomedicines 2023; 11:2688. [PMID: 37893061 PMCID: PMC10604243 DOI: 10.3390/biomedicines11102688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Metformin and paclitaxel therapy offer promising outcomes in the treatment of liver cancer. Combining paclitaxel with metformin enhances treatment effectiveness and mitigates the adverse effects associated with paclitaxel alone. This study explored the anticancer properties of metformin and paclitaxel in HepG2 liver cancer cells, MCF-7 breast cancer cells, and HCT116 colon cancer cells. The results demonstrated that the combination of these agents exhibited a lower IC50 in the tested cell lines compared to paclitaxel monotherapy. Notably, treating the HepG2 cell line with this combination led to a reduction in the G0/G1 phase and an increase in the S and G2/M phases, ultimately triggering early apoptosis. To further investigate the interaction between the cellular proteins with paclitaxel and metformin, an in silico study was conducted using proteins chosen from a protein data bank (PDB). Among the proteins studied, AMPK-α, EGFRK, and FKBP12-mTOR exhibited the highest binding free energy, with values of -11.01, -10.59, and -15.63 kcal/mol, respectively, indicating strong inhibitory or enhancing effects on these proteins. When HepG2 cells were exposed to both paclitaxel and metformin, there was an upregulation in the gene expression of AMPK-α, a key regulator of the energy balance in cancer growth, as well as apoptotic markers such as p53 and caspase-3, along with autophagic markers including beclin1 and ATG4A. This combination therapy of metformin and paclitaxel exhibited significant potential as a treatment option for HepG2 liver cancer. In summary, the combination of metformin and paclitaxel not only enhances treatment efficacy but also reduces side effects. It induces cell cycle alterations and apoptosis and modulates key cellular proteins involved in cancer growth, making it a promising therapy for HepG2 liver cancer.
Collapse
Affiliation(s)
- Norah Saeed Al-Zahrani
- Department of Clinical Biochemistry, Collage of Medicine, King Khalid University, Abha 61421, Saudi Arabia;
| | - Mazin Abdulaziz Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed A. Baghdadi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah 21499, Saudi Arabia;
- Research Group “Cancer, Haemostasis and Angiogenesis”, INSERM U938, Saint-Antoine Research Center, University Institute of Cancerology, Faculty of Medicine, Sorbonne University, 75012 Paris, France
| | - Afnan H. El-Gowily
- Division of Biochemistry, Chemistry Department, Faculty of Science Tanta University, Tanta 31527, Egypt;
| | - Ehab M. M. Ali
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Division of Biochemistry, Chemistry Department, Faculty of Science Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
5
|
Ma F, Zhu X, Niu Y, Nai A, Bashir S, Xiong Y, Dong Y, Li Y, Song J, Xu M. FGFR inhibitors combined with nab-paclitaxel - A promising strategy to treat non-small cell lung cancer and overcome resistance. Front Oncol 2023; 13:1088444. [PMID: 36845692 PMCID: PMC9950728 DOI: 10.3389/fonc.2023.1088444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
Lung cancer has high morbidity and mortality rates worldwide, and NSCLC accounts for 85% of all lung cancer cases. Despite the development of targeted therapies and immunotherapy, many NSCLC patients do not effectively respond to treatment, and new treatment strategies are urgently needed. Aberrant activation of the FGFR signaling pathway is closely related to the initiation and progression of tumors. AZD4547, which is a selective inhibitor of FGFR 1-3, can suppress the growth of tumor cells with deregulated FGFR expression in vivo and in vitro. However, further exploration is needed to determine whether AZD4547 can play an antiproliferative role in tumor cells without deregulated FGFR expression. We investigated the antiproliferative effect of AZD4547 on NSCLC cells without deregulated FGFR expression. In vivo and in vitro experiments showed that AZD4547 exerted a weak antiproliferative effect on NSCLC cells without deregulated FGFR expression, but it significantly enhanced the sensitivity of NSCLC cells to nab-paclitaxel. We found that AZD4547 combined with nab-paclitaxel suppressed the phosphorylation of the MAPK signaling pathway, led to cell cycle arrest in the G2/M phase, promoted apoptosis, and inhibited cell proliferation more substantially than nab-paclitaxel alone. These findings provide insight into the rational use of FGFR inhibitors and personalized treatment of NSCLC patients.
Collapse
Affiliation(s)
- Feng Ma
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China,Department of Oncology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Xinhai Zhu
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Yuchun Niu
- Department of Radiation Oncology, The First People’s Hospital of Foshan, Foshan, China
| | - Aitao Nai
- Department of Oncology, The First Affiliated Hospital of Nanhua University, Hengyang, China
| | - Shoaib Bashir
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Yan Xiong
- Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunlong Dong
- Department of Thoracic Surgery, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Yin Li
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China,*Correspondence: Meng Xu, ; Jian Song, ; Yin Li,
| | - Jian Song
- Department of Oncology, Zhongshan Torch Development Zone People’s Hospital, Zhongshan, China,*Correspondence: Meng Xu, ; Jian Song, ; Yin Li,
| | - Meng Xu
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China,*Correspondence: Meng Xu, ; Jian Song, ; Yin Li,
| |
Collapse
|
6
|
Lan YY, Chen YH, Liu C, Tung KL, Wu YT, Lin SC, Wu CH, Chang HY, Chen YC, Huang BM. Role of JNK activation in paclitaxel-induced apoptosis in human head and neck squamous cell carcinoma. Oncol Lett 2021; 22:705. [PMID: 34457060 PMCID: PMC8358625 DOI: 10.3892/ol.2021.12966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
It has been reported that paclitaxel activates cell cycle arrest and increases caspase protein expression to induce apoptosis in head and neck squamous cell carcinoma (HNSCC) cell lines. However, the potential signaling pathway regulating this apoptotic phenomenon remains unclear. The present study used OEC-M1 cells to investigate the underlying molecular mechanism of paclitaxel-induced apoptosis. Following treatment with paclitaxel, cell viability was assessed via the MTT assay. Necrosis, apoptosis, cell cycle and mitochondrial membrane potential (∆Ψm) were analyzed via flow cytometric analyses, respectively. Western blot analysis was performed to detect the expression levels of proteins associated with the MAPK and caspase signaling pathways. The results demonstrated that low-dose paclitaxel (50 nM) induced apoptosis but not necrosis in HNSCC cells. In addition, paclitaxel activated the c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase or p38 mitogen-activated protein kinase. The paclitaxel-activated JNK contributed to paclitaxel-induced apoptosis, activation of caspase-3, -6, -7, -8 and -9, and reduction of ∆Ψm. In addition, caspase-8 and -9 inhibitors, respectively, significantly decreased paclitaxel-induced apoptosis. Notably, Bid was truncated following treatment with paclitaxel. Taken together, the results of the present study suggest that paclitaxel-activated JNK is required for caspase activation and loss of ∆Ψm, which results in apoptosis of HNSCC cells. These results may provide mechanistic basis for designing more effective paclitaxel-combining regimens to treat HNSCC.
Collapse
Affiliation(s)
- Yu-Yan Lan
- Department of Physical Therapy, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C
| | - Ying-Hui Chen
- Department of Anesthesia, Chi-Mei Medical Center, Liouying, Tainan 73657, Taiwan, R.O.C
| | - Cheng Liu
- Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C.,Department of Health and Beauty, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C
| | - Kuo-Lung Tung
- Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C
| | - Yen-Ting Wu
- Department of Pathology, Golden Hospital, Pingtung 90049, Taiwan, R.O.C
| | - Sheng-Chieh Lin
- Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C
| | - Chin-Han Wu
- Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C
| | - Hong-Yi Chang
- Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan, R.O.C
| | - Yung-Chia Chen
- Department of Anatomy, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Bu-Miin Huang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, R.O.C.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| |
Collapse
|
7
|
Majumder J, Minko T. Multifunctional Lipid-Based Nanoparticles for Codelivery of Anticancer Drugs and siRNA for Treatment of Non-Small Cell Lung Cancer with Different Level of Resistance and EGFR Mutations. Pharmaceutics 2021; 13:pharmaceutics13071063. [PMID: 34371754 PMCID: PMC8309189 DOI: 10.3390/pharmaceutics13071063] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022] Open
Abstract
Resistance to chemotherapy, enhanced proliferation, invasion, angiogenesis, and metastasis (RPIAM) represent major obstacles that limit the efficacy of cancer treatment especially in advanced stages of cancer. Overcoming or suppressing RPIAM can dramatically improve the treatment outcome. Non-small cell lung cancer (NSCLC) is frequently diagnosed in an advanced stage and often possesses intrinsic resistance to chemotherapy accompanied by the fast development of acquired resistance during the treatment. Oncogenic receptor tyrosine kinases (TKs), specifically epidermal growth factor (EGF) TKs, play an important role in the activation of MAPK/PI3K/Akt/STAT pathways, finally leading to the development of RPIAM. However, the suppression of EGF-TK by different drugs is limited by various defensive mechanisms and mutations. In order to effectively prevent the development of RPIAM in NSCLC, we formulated and tested a multicomponent and multifunctional cancer targeted delivery system containing Nanostructured Lipid Carriers (NLCs) as vehicles, luteinizing hormone release hormone (LHRH) as a cancer targeting moiety, EFG-TK inhibitor gefitinib and/or paclitaxel as anticancer drug(s), siRNA targeted to EGF receptor (EGFR) mRNA as a suppressor of EGF receptors, and an imaging agent (rhodamine) for the visualization of cancer cells. Experimental data obtained show that this complex delivery system possesses significantly enhanced anticancer activity that cannot be achieved by individual components applied separately.
Collapse
Affiliation(s)
- Joydeb Majumder
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
- Environmental and Occupational Health Science Institute, Piscataway, NJ 08854, USA
- Correspondence: ; Tel.: +1-848-445-6348
| |
Collapse
|
8
|
Riestra-Ayora J, Sánchez-Rodríguez C, Palao-Suay R, Yanes-Díaz J, Martín-Hita A, Aguilar MR, Sanz-Fernández R. Paclitaxel-loaded polymeric nanoparticles based on α-tocopheryl succinate for the treatment of head and neck squamous cell carcinoma: in vivo murine model. Drug Deliv 2021; 28:1376-1388. [PMID: 34180747 PMCID: PMC8245075 DOI: 10.1080/10717544.2021.1923863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The prognosis of patients with recurrent or metastatic head and neck squamous cell cancer (HNSCC) is generally poor. New treatments are required to supplement the current standard of care. Paclitaxel (PTX), an effective chemotherapeutic for HNSCC, has serious side effects. A polymeric nanocarrier system was developed for the delivery of PTX to improve HNSCC treatment. This study aimed to evaluate the antitumor efficacy of PTX-loaded polymeric nanoparticles based on α-TOS (PTX-NPs) administered by direct intratumoral injection into a Hypopharynx carcinoma squamous cells (FaDu) tumor xenograft mouse model. The nanocarrier system based on block copolymers of polyethylene glycol (PEG) and a methacrylic derivative of α-TOS was synthesized and PTX was loaded into the delivery system. Tumor volume was measured to evaluate the antitumor effect of the PTX-NPs. The relative mechanisms of apoptosis, cell proliferation, growth, angiogenesis, and oxidative and nitrosative stress were detected by Western blotting, fluorescent probes, and immunohistochemical analysis. The antitumor activity results showed that compared to free PTX, PTX-NPs exhibited much higher antitumor efficacy and apoptosis-inducing in a FaDu mouse xenograft model and demonstrated an improved safety profile. Ki-67, EGFR, and angiogenesis markers (Factor VIII, CD31, and CD34) expression were significantly lower in the PTX-NPs group compared with other groups (p < .05). Also, PTX-NPs induced oxidative and nitrosative stress in tumor tissue. Direct administration of PTX-loaded polymeric nanoparticles based on α-Tocopheryl Succinate at the tumor sites, proved to be promising for HNSCC therapy.
Collapse
Affiliation(s)
- Juan Riestra-Ayora
- Department otolaryngology, Hospital Universitario de Getafe, Getafe (Madrid), Carretera de Toledo, km 12.500, Getafe, Madrid, Spain.,Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Carolina Sánchez-Rodríguez
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Raquel Palao-Suay
- Department of Polymeric Nanomaterials and Biomaterials Institute of Polymer Science and Technology CSIC, Networking Biomedical Research Centre in Bioengineering Biomaterials, and Nanomedicine CIBER-BBN, C/Juan de la Cierva, 3, Madrid, Spain
| | - Joaquín Yanes-Díaz
- Department otolaryngology, Hospital Universitario de Getafe, Getafe (Madrid), Carretera de Toledo, km 12.500, Getafe, Madrid, Spain.,Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Ana Martín-Hita
- Department Pathology, Hospital, Universitario de Getafe, Getafe (Madrid), Carretera de Toledo, km 12.500, Getafe, Madrid, Spain
| | - María Rosa Aguilar
- Department of Polymeric Nanomaterials and Biomaterials Institute of Polymer Science and Technology CSIC, Networking Biomedical Research Centre in Bioengineering Biomaterials, and Nanomedicine CIBER-BBN, C/Juan de la Cierva, 3, Madrid, Spain
| | - Ricardo Sanz-Fernández
- Department otolaryngology, Hospital Universitario de Getafe, Getafe (Madrid), Carretera de Toledo, km 12.500, Getafe, Madrid, Spain.,Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| |
Collapse
|
9
|
Talele DR, Patel DH. Recent Advancements in Nanotechnology for Oral Cancer: a Review. CURRENT DRUG THERAPY 2021. [DOI: 10.2174/1574885515999201021165906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Oral cancer is the life threatening disease causing mortality. The majority of
chemotherapeutic anticancer agents are toxic to healthy tissues, have poor bioavailability and affect
the quality of life of the patients.
Objective:
The main challenge in the treatment of oral cancer is the effective and safe delivery of
chemotherapeutic anticancer drugs. This present review deals with the recent advancement in the nanotechnologies
and its probable applications in the oral cancer treatment.
Methods:
This review includes a gist of suitable literature.
Results:
Nanotechnology brings novel methodologies or modifications in current anticancer therapies
to improve individual wellbeing and survival.
Conclusion:
Nanotechnology put forward the potential of increasing the efficacy of the therapy and targeted drug
delivery, which in turn increase drug absorption and bioavailability at the site of tumour. Different nanocarriers include
liposomes, polymeric nanoparticles, inorganic nanoparticles, combinational (polymeric- inorganic) nanoparticles,
magnetic nanoparticles, nanolipids, hydrogels, dendrimers and polymeric micelles. This review confers development of
new drug delivery approaches for effective therapeutic outcomes and abating the toxicity to healthy tissues.
Collapse
Affiliation(s)
- Dipali R. Talele
- Faculty of Pharmacy, Parul Institute of Pharmacy and Research, Parul University, P.O. Limda, Ta: Waghodia, Dist. Vadodara-391760, Gujarat,India
| | - Deepa H. Patel
- Faculty of Pharmacy, Parul Institute of Pharmacy and Research, Parul University, P.O. Limda, Ta: Waghodia, Dist. Vadodara-391760, Gujarat,India
| |
Collapse
|
10
|
Mosaddad SA, Beigi K, Doroodizadeh T, Haghnegahdar M, Golfeshan F, Ranjbar R, Tebyanian H. Therapeutic applications of herbal/synthetic/bio-drug in oral cancer: An update. Eur J Pharmacol 2020; 890:173657. [PMID: 33096111 DOI: 10.1016/j.ejphar.2020.173657] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/01/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
Oral cancer, as one of the most prevalent and invasive cancers that invade local tissue, can cause metastasis, and have high mortality. In 2018, around 355,000 worldwide oral cancers occurred and resulted in 177,000 deaths. Estimates for the year 2020 include about 53,260 new cases added to previous year's cases, and the estimated death toll from this cancer in 2020 is about 10,750 deaths more than previous years. Despite recent advances in cancer diagnosis and treatment, unfortunately, 50% of people with cancer cannot be cured. Of course, it should be remembered that the type of treatment used greatly influences patient recovery. There are not many choices when it comes to treating oral cancer. Research efforts focusing on the discovery and evolution of innovative therapeutic approaches for oral cancer are essential. Such traditional methods of treating this type of cancer like surgery and chemotherapy, have evolved dramatically during the past thirty to forty years, but they continue to cause panic among patients due to their side effects. Therefore, it is necessary to study and use drugs that are less risky for the patient as well as to provide solutions to reduce chemotherapy-induced adverse events that prevent many therapeutic risks. As mentioned above, this study examines low-risk therapies such as herbal remedies, biological drugs, and synthetic drugs in the hope that they will be useful to physicians, researchers, and scientists around the world.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kimia Beigi
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayebeh Doroodizadeh
- Department of Pediatric Dentistry, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maral Haghnegahdar
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farzaneh Golfeshan
- Orthodontic Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Ranjbar
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Li M, Yin L, Wu L, Zhu Y, Wang X. Paclitaxel inhibits proliferation and promotes apoptosis through regulation ROS and endoplasmic reticulum stress in osteosarcoma cell. Mol Cell Toxicol 2020. [DOI: 10.1007/s13273-020-00093-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Lagman J, Sayegh P, Lee CS, Sulon SM, Jacinto AZ, Sok V, Peng N, Alp D, Benovic JL, So CH. G protein-coupled receptor kinase 5 modifies cancer cell resistance to paclitaxel. Mol Cell Biochem 2019; 461:103-118. [DOI: 10.1007/s11010-019-03594-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/22/2019] [Indexed: 12/24/2022]
|
13
|
Kumar V, Varghese S. Ex Vivo Tumor-on-a-Chip Platforms to Study Intercellular Interactions within the Tumor Microenvironment. Adv Healthc Mater 2019; 8:e1801198. [PMID: 30516355 PMCID: PMC6384151 DOI: 10.1002/adhm.201801198] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/25/2018] [Indexed: 01/01/2023]
Abstract
The emergence of immunotherapies and recent FDA approval of several of them makes them a promising therapeutic strategy for cancer. While these advancements underscore the potential of engaging the immune system to target tumors, this approach has so far been efficient only for certain cancers. Extending immunotherapy as a widely acceptable treatment for various cancers requires a deeper understanding of the interactions of tumor cells within the tumor microenvironment (TME). The immune cells are a key component of the TME, which also includes other stromal cells, soluble factors, and extracellular matrix-based cues. While in vivo studies function as a gold standard, tissue-engineered microphysiological tumor models can offer patient-specific insights into cancer-immune interactions. These platforms, which recapitulate cellular and non-cellular components of the TME, enable a systematic understanding of the contribution of each component toward disease progression in isolation and in concert. Microfluidic-based microphysiological platforms recreating these environments, also known as "tumor-on-a-chip," are increasingly being utilized to study the effect of various elements of TME on tumor development. Herein are reviewed advancements in tumor-on-a-chip technology that are developed and used to understand the interaction of tumor cells with other surrounding cells, including immune cells, in the TME.
Collapse
Affiliation(s)
- Vardhman Kumar
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Shyni Varghese
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA,
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine Durham, NC 27703, USA
| |
Collapse
|
14
|
Ren X, Zhao B, Chang H, Xiao M, Wu Y, Liu Y. Paclitaxel suppresses proliferation and induces apoptosis through regulation of ROS and the AKT/MAPK signaling pathway in canine mammary gland tumor cells. Mol Med Rep 2018; 17:8289-8299. [PMID: 29658576 PMCID: PMC5984005 DOI: 10.3892/mmr.2018.8868] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/07/2018] [Indexed: 12/23/2022] Open
Abstract
Paclitaxel is a diterpenoid compound, derived from the pacific yew (Taxus brevifolia) berry, which exhibits antineoplastic effects against various types of cancer. However, the antitumor effects and the molecular mechanisms of paclitaxel on canine CHMm cells remain to be elucidated. The aim of the present study was to investigate the antitumor effects of paclitaxel on CHMm cells and identify relevant signal transduction pathways modulated by paclitaxel using multiple methods including MTT assay, flow cytometry, acridine orange/ethidium bromide staining, transmission electron microscopy, determination of cellular reactive oxygen species (ROS), superoxide dismutase (SOD) and malondiadehyde (MDA) and western blotting, the data indicated that paclitaxel decreased cell viability, induced G2/M-phase cell cycle arrest, suppressed the expression of cyclin B1 and induced apoptosis in a dose-dependent manner. In addition, paclitaxel upregulated the expression of Bax and cytochrome c, but reduced expression of apoptosis regulator Bcl-2, resulting in activation of caspase-3, chromatin condensation, karyopyknosis, intracellular vacuolization, increased production of ROS and MDA, and decreased activity of SOD. However, these effects were inhibited when CHMm cells were treated with N-acetyl-L-cysteine. Furthermore, treatment with paclitaxel inhibited the level of of phospho (p)-RAC-α serine/threonine-protein kinase (AKT) and p-ribosomal protein S6 kinase proteins, and promoted phosphorylation of P38 mitogen-activated protein kinase (MAPK) and p-90 kDa ribosomal protein S6 kinase 1 proteins in CHMm cells. It was observed that paclitaxel in combination with pharmacological inhibitors of the P38 and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) signaling pathways (SB203580 and LY294002, respectively) exerted synergistic inhibitory effects on the proliferation of the CHMm cells. The results of the present study demonstrated that paclitaxel inhibited tumor cell proliferation by increasing intrinsic apoptosis through inhibition of the PI3K/AKT signaling pathway and activation of MAPK signaling pathway in CHMm cells.
Collapse
Affiliation(s)
- Xiaoli Ren
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Bingbing Zhao
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Hongjian Chang
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Min Xiao
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Yuhong Wu
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Yun Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| |
Collapse
|
15
|
Shuang W, Hou L, Zhu Y, Li Q, Hu W. Mcl-1 stabilization confers resistance to taxol in human gastric cancer. Oncotarget 2017; 8:82981-82990. [PMID: 29137317 PMCID: PMC5669943 DOI: 10.18632/oncotarget.20222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
Taxol has been extensively used as an antineoplastic drug to treat human gastric cancer. However, the acquired drug resistance invariably develops and greatly limits the therapeutic efficacy of Taxol. Identification of the underlying resistance mechanisms may inform the development of new therapies of gastric cancers to Taxol treatment. Here we report that upregulation of Mcl-1 (Myeloid cell leukemia-1) confers acquired resistance to Taxol in human gastric cancer. Mcl-1 is shown to be stabilized in Taxol -resistant gastric cancer cells because of the hyper-activation of the PI3K/Akt signaling pathway. The increased Mcl-1 prevents of the permeabilization of the outer mitochondrial membrane, thereby blocking the Taxol-induced apoptosis. Furthermore, inhibition of Mcl-1 or PI3K/Akt pathway significantly reversed the resistant phenotype of Taxol-resistant human gastric cancer cells. Taken together, our findings broaden the view of PI3K/Akt pathway as an important regulator in Taxol acquired resistance, and implicate Mcl-1 as a specific therapeutic target for the treatment of Taxol-resistant human gastric cancer.
Collapse
Affiliation(s)
- Wu Shuang
- Department of Immunology, Anhui Medical University, Hefei, China
| | - Lili Hou
- Department of Clinical Nutriology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qun Li
- Department of Immunology, Anhui Medical University, Hefei, China
| | - Wanglai Hu
- Department of Immunology, Anhui Medical University, Hefei, China
| |
Collapse
|
16
|
Wang C, Wang R, Zhou K, Wang S, Wang J, Shi H, Dou Y, Yang D, Chang L, Shi X, Liu Y, Xu X, Zhang X, Ke Y, Liu H. JD enhances the anti-tumour effects of low-dose paclitaxel on gastric cancer MKN45 cells both in vitro and in vivo. Cancer Chemother Pharmacol 2016; 78:971-982. [PMID: 27620208 DOI: 10.1007/s00280-016-3149-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Gastric cancer is the third most common cause of cancer mortality worldwide, and paclitaxel (PTX) is one of the most widely used traditional drugs in gastric cancer therapy. However, the response to traditional therapy is limited by acquired chemo-resistance and side effects. Here, we establish a newly designed combination therapy consisting of a compound that is a structural variant of oridonin, i.e. Jesridonin (JD), and low-dose PTX for gastric cancer cells (MKN45) to investigate whether the anti-tumour activity of low-dose PTX could be enhanced when combined with JD. METHODS The interaction of JD and low-dose PTX was detected in MKN45 cells using the median-effect analysis method. The synergistic effect on cell viability and apoptosis was measured by MTT assay, colony formation assay, transient transfection, flow cytometry and Western blotting. The synergistic in vivo effect of JD plus low-dose PTX was evaluated in nude mouse xenograft models using H&E and TUNEL staining and Western blotting. RESULTS JD plus low-dose PTX showed a synergistic effect, as the combination indexes were less than 1. Additionally, a synergistic anti-proliferative and pro-apoptotic effect was detected for the combination of JD and low-dose PTX. The apoptotic mechanism induced by JD plus PTX revealed that the combination therapy synergistically activated the mitochondrial pathway. CONCLUSION Our findings suggest that JD enhances the anti-tumour effect of low-dose PTX on gastric carcinoma cancer cells in both vitro and in vivo, accompanied by activation of the mitochondrial pathway, which may present a more effective therapeutic strategy in gastric cancer treatment.
Collapse
Affiliation(s)
- Cong Wang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Ran Wang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Kairui Zhou
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Saiqi Wang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Junwei Wang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Hongge Shi
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yinhui Dou
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Dongxiao Yang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Liming Chang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Xiaoli Shi
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Ying Liu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Xiaowei Xu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Xiujuan Zhang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yu Ke
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Hongmin Liu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
17
|
Jeong SY, Lee JH, Shin Y, Chung S, Kuh HJ. Co-Culture of Tumor Spheroids and Fibroblasts in a Collagen Matrix-Incorporated Microfluidic Chip Mimics Reciprocal Activation in Solid Tumor Microenvironment. PLoS One 2016; 11:e0159013. [PMID: 27391808 PMCID: PMC4938568 DOI: 10.1371/journal.pone.0159013] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/31/2016] [Indexed: 11/27/2022] Open
Abstract
Multicellular 3D culture and interaction with stromal components are considered essential elements in establishing a ‘more clinically relevant’ tumor model. Matrix-embedded 3D cultures using a microfluidic chip platform can recapitulate the microscale interaction within tumor microenvironments. As a major component of tumor microenvironment, cancer-associated fibroblasts (CAFs) play a role in cancer progression and drug resistance. Here, we present a microfluidic chip-based tumor tissue culture model that integrates 3D tumor spheroids (TSs) with CAF in proximity within a hydrogel scaffold. HT-29 human colorectal carcinoma cells grew into 3D TSs and the growth was stimulated when co-cultured with fibroblasts as shown by 1.5-folds increase of % changes in diameter over 5 days. TS cultured for 6 days showed a reduced expression of Ki-67 along with increased expression of fibronectin when co-cultured with fibroblasts compared to mono-cultured TSs. Fibroblasts were activated under co-culture conditions, as demonstrated by increases in α-SMA expression and migratory activity. When exposed to paclitaxel, a survival advantage was observed in TSs co-cultured with activated fibroblasts. Overall, we demonstrated the reciprocal interaction between TSs and fibroblasts in our 7-channel microfluidic chip. The co-culture of 3D TS-CAF in a collagen matrix-incorporated microfluidic chip may be useful to study the tumor microenvironment and for evaluation of drug screening and evaluation.
Collapse
Affiliation(s)
- Su-Yeong Jeong
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji-Hyun Lee
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoojin Shin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Seok Chung
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | - Hyo-Jeong Kuh
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|