1
|
Chen K, Li S, Chen M, Jin Z, Sun X, Zhou S, Yang H. Endostar acts as a pneumonitis protectant in patients with locally advanced non-small cell lung cancer receiving concurrent chemoradiotherapy. BMC Cancer 2024; 24:257. [PMID: 38395838 PMCID: PMC10893751 DOI: 10.1186/s12885-024-12001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND CCRT is presently the standard treatment for LA-NSCLC. RP is one of the main obstacles to the completion of thoracic radiation therapy, resulting in limited survival benefits in NSCLC patients. This research aims to explore the role of Endostar in the occurrence of grade≥2 RP and clinical curative effect in LA-NSCLC patients. METHODS This study retrospectively analyzed 122 patients with stage III NSCLC who received CCRT from December 2008 to December 2017, or Endostar intravenous drip concurrently with chemoradiotherapy (Endostar + CCRT group). Standard toxicity of the pneumonitis endpoint was also collected by CTCAE V5.0. We further summarized other available studies on the role of Endostar in the prognosis of NSCLC patients and the incidence of RP. RESULTS There were 76 cases in the CCRT group and 46 cases in the CCRT+ Endostar group. In the CCRT+ Endostar group, the occurrence of grade ≥2 RP in patients with V20Gy ≥25% was significantly higher than that in patients with V20Gy < 25% (p = 0.001). In the cohorts with V20Gy < 25%, 0 cases of 29 patients treated with Endostar developed grade ≥2 RP was lower than in the CCRT group (p = 0.026). The re-analysis of data from other available studies indicated that Endostar plus CCRT could be more efficient and safely in the occurrence of grade≥2 RP with LA-NSCLC. CONCLUSIONS When receiving CCRT for LA-NSCLC patients, simultaneous combination of Endostar is recommended to enhance clinical benefit and reduce pulmonary toxicity.
Collapse
Affiliation(s)
- Kuifei Chen
- Taizhou hospital of Zhejiang Province, Shaoxing University, Zhejiang Province, Taizhou, 317000, China
- Department of Radiation Oncology, Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang Province, Taizhou, 317000, China
| | - Shuling Li
- Taizhou hospital of Zhejiang Province, Shaoxing University, Zhejiang Province, Taizhou, 317000, China
- Department of Radiation Oncology, Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang Province, Taizhou, 317000, China
| | - Meng Chen
- Department of Radiation Oncology, Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang Province, Taizhou, 317000, China
| | - Zhicheng Jin
- Department of Radiation Oncology, Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang Province, Taizhou, 317000, China
| | - Xuefeng Sun
- Department of Radiation Oncology, Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang Province, Taizhou, 317000, China
| | - Suna Zhou
- Department of Radiation Oncology, Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang Province, Taizhou, 317000, China.
| | - Haihua Yang
- Taizhou hospital of Zhejiang Province, Shaoxing University, Zhejiang Province, Taizhou, 317000, China.
- Department of Radiation Oncology, Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Taizhou Hospital Affiliated to Wenzhou Medical University, Zhejiang Province, Taizhou, 317000, China.
| |
Collapse
|
2
|
Ying H, Zhou C, Hang Q, Fang M. The Preventive Effect of Endostar on Radiation-induced Pulmonary Fibrosis. Curr Mol Med 2024; 24:610-619. [PMID: 37038709 DOI: 10.2174/1566524023666230406134640] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 12/14/2022] [Accepted: 01/09/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Radiation-induced pulmonary fibrosis (RIPF) is a long-term complication of thoracic radiotherapy without effective treatment available. OBJECTIVE This study aimed to establish a RIPF mouse model and explore the therapeutic effects and mechanisms of recombinant human endostatin (Endostar). METHODS C57BL/6 mice received a 16-Gy dose of X-rays to the whole thorax with or without the administration of Endostar for 24 weeks. RESULTS Radiation-induced body weight loss was partially attenuated by Endostar (P<0.05). Endostar significantly reduced alveolar inflammation (P<0.05) and pulmonary fibrosis (P<0.001), as indicated by a decrease in the expression levels of collagen I and collagen IV in lung tissue (both P<0.001). Angiogenesis (as shown by CD31 immunohistochemistry) was also decreased (P<0.01). In irradiated mice, Endostar inhibited the transforming growth factor-β1 (TGF-β1)/drosophila mothers against the decapentaplegic 3 (Smad3)/extracellular regulated protein kinases (ERK) signaling pathway (all P<0.05). In vitro, Endostar treatment decreased the radiation-induced expression of TGF-β1, vascular endothelial growth factor (VEGF), p-Smad3, and p-ERK in alveolar epithelial cells and vascular endothelial cells (all P<0.05). CONCLUSION Endostar could alleviate RIPF through decreased antiangiogenic activity and inhibition of the TGF-β1/Smad3/ERK pathway.
Collapse
Affiliation(s)
- Hangjie Ying
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Cheng Zhou
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Qingqing Hang
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Min Fang
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- The Department of Thoracic Radiotherapy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| |
Collapse
|
3
|
Chen C, Tang Y, Huang H, Jia L, Feng L, Zhao J, Zhang H, He J, Ding L, Xia D. Relieving immunosuppression by Endo@PLT targeting anti-angiogenesis to improve the efficacy of immunotherapies. Chem Commun (Camb) 2022; 58:3202-3205. [PMID: 35174839 DOI: 10.1039/d2cc00205a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Low levels of immune infiltrates in the tumor milieu hinder the effectiveness of immunotherapy against immune-cold tumors. In the current work, a tumor-targeting drug delivery system composed of Endo-loaded platelets (Endo@PLT) was developed to relieve immunosuppression by achieving tumor vascular normalization. Endo@PLT reprogrammed the immunostimulatory phenotype, achieving excellent PD-1 immunotherapy in vivo.
Collapse
Affiliation(s)
- Chao Chen
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China.
| | - Yijie Tang
- Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Hao Huang
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China.
| | - Li Jia
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China.
| | - Lingzi Feng
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China.
| | - Jianya Zhao
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China.
| | - Hao Zhang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jian He
- Department of Radiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China.
| | - Lingchi Ding
- Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, China.
| | - Donglin Xia
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China.
| |
Collapse
|
4
|
Yuan M, Zhai Y, Men Y, Wang J, Deng L, Wang W, Bao Y, Yang X, Sun S, Ma Z, Liu Y, Wang J, Zhu H, Hui Z. Endostar (rh-endostatin) improves efficacy of concurrent chemoradiotherapy for locally advanced non-small cell lung cancer: A systematic review and meta-analysis. Thorac Cancer 2021; 12:3208-3215. [PMID: 34676669 PMCID: PMC8636201 DOI: 10.1111/1759-7714.14188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND We aimed to clarify the benefits of the addition of rh-endostatin into concurrent chemoradiotherapy (CCRT) versus CCRT alone for locally advanced non-small cell lung cancer (NSCLC) by a meta-analysis. METHODS PubMed, Embase, Cochrane Central Register of Controlled Trials, Wanfang and Chinese National Knowledge Infrastructure (CNKI) were systematically screened from inception to November 2020 using the prespecified terms. Prospective trials (evaluating or) comparing the efficacy of endostar combined with CCRT and CCRT for locally advanced NSCLC were included. The primary endpoints were risk ratios (RRs) for objective response rate (ORR) and disease control rate (DCR). The secondary endpoints were RRs for overall survival (OS) and adverse events (AEs). RESULTS Ten studies with 716 patients were included in this meta-analysis. Endostar combined with CCRT significantly improved ORR and DCR compared with CCRT. The RRs of ORR and DCR for endostar combined with CCRT versus CCRT were 1.263 (95% CI: 1.137-1.403, p < 0.001) and 1.274 (95% CI: 1.124-1.444, p < 0.001), respectively. Endostar combined with CCRT significantly improved one-year survival rate compared with CCRT with pooled RR = 1.113 (95% CI: 1.006-1.231, p = 0.038). Endostar combination treatments had similar incidences of main adverse events compared with CCRT (p > 0.05). CONCLUSION Endostar combined with CCRT is associated with significantly higher ORR, DCR and survival rate than CCRT with similar incidences of main adverse events in NSCLC.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yirui Zhai
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Men
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianyang Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Deng
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenqing Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongxing Bao
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Yang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuang Sun
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zeliang Ma
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunsong Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Wang
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhouguang Hui
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Wang N, Gao Q, Tang J, Jiang Y, Yang L, Shi X, Chen Y, Zhang Y, Fu S, Lin S. Anti-tumor effect of local injectable hydrogel-loaded endostatin alone and in combination with radiotherapy for lung cancer. Drug Deliv 2021; 28:183-194. [PMID: 33427520 PMCID: PMC7808389 DOI: 10.1080/10717544.2020.1869864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Endostatin (ES) can effectively inhibit neovascularization in most solid tumors and has the potential to make oxygen delivery more efficient and increase the efficacy of radiotherapy (RT). With a short half-life, ES is mainly administered systemically, which leads to low intake in tumor tissue and often toxic systemic side effects. In this study, we used hyaluronic acid-tyramine as a carrier to synthesize an ES-loaded hydrogel drug (ES/HA-Tyr) that can be injected locally. ES/HA-Tyr has a longer half-life and fewer systemic toxic side effects, and it exerts a better anti-angiogenic effect and anti-tumor effect with RT. In vitro, ES/HA-Tyr showed sustained release in the release assay and a stronger ability to inhibit the proliferation of human umbilical vascular endothelial cells (HUVECs) in the MTT assay; it exhibited a more potent effect against HUVEC invasion and a stronger anti-angiogenic effect on HUVECs in tube formation. In vivo, ES/HA-Tyr increased local drug concentration, decreased blood drug concentration, and caused less systemic toxicity. Further, ES/HA-Tyr effectively reduced tumor microvessel density, increased tumor pericyte coverage, decreased tumor hypoxia, and increased RT response. ES/HA-Tyr + RT also had increased anti-tumor and anti-angiogenic effects in Lewis lung cancer (LLC) xenograft models. In conclusion, ES/HA-Tyr showed sustained release, lower systemic toxicity, and better anti-tumor effects than ES. In addition, ES/HA-Tyr + RT enhanced anti-angiogenic effects, reduced tumor hypoxia, and increased the efficacy of RT in LLC-bearing mice.
Collapse
Affiliation(s)
- Na Wang
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Oncology, Zigong First People's Hospital, Zigong, China
| | - Qin Gao
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Juan Tang
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - YiQing Jiang
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - LiShi Yang
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - XiangXiang Shi
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yue Chen
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yan Zhang
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - ShaoZhi Fu
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Sheng Lin
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
6
|
Fitzgerald JE, Byrd BK, Patil RA, Strawbridge RR, Davis SC, Bellini C, Niedre M. Heterogeneity of circulating tumor cell dissemination and lung metastases in a subcutaneous Lewis lung carcinoma model. BIOMEDICAL OPTICS EXPRESS 2020; 11:3633-3647. [PMID: 33014556 PMCID: PMC7510907 DOI: 10.1364/boe.395289] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/26/2020] [Accepted: 05/31/2020] [Indexed: 05/07/2023]
Abstract
Subcutaneous (s.c.) tumor models are widely used in pre-clinical cancer metastasis research. Despite this, the dynamics and natural progression of circulating tumor cells (CTCs) and CTC clusters (CTCCs) in peripheral blood are poorly understood in these models. In this work, we used a new technique called 'diffuse in vivo flow cytometry' (DiFC) to study CTC and CTCC dissemination in an s.c. Lewis lung carcinoma (LLC) model in mice. Tumors were grown in the rear flank and we performed DiFC up to 31 days after inoculation. At the study endpoint, lungs were excised and bioluminescence imaging (BLI) was performed to determine the extent of lung metastases. We also used fluorescence macro-cryotome imaging to visualize infiltration and growth of the primary tumor. DiFC revealed significant heterogeneity in CTC and CTCC numbers amongst all mice studied, despite using clonally identical LLC cells and tumor placement. Maximum DiFC count rates corresponded to 0.1 to 14 CTCs per mL of peripheral blood. In general, CTC numbers did not necessarily increase monotonically over time and were poorly correlated with tumor volume. However, there was a good correlation between CTC and CTCC numbers in peripheral blood and lung metastases. We attribute the differences in CTC numbers primarily due to growth patterns of the primary tumor. This study is one of the few reports of CTC shedding dynamics in sub-cutaneous metastasis models and underscores the value of in vivo methods for continuous, non-invasive CTC monitoring.
Collapse
Affiliation(s)
- Jessica E. Fitzgerald
- Department of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Brook K. Byrd
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, USA
| | - Roshani A. Patil
- Department of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Rendall R. Strawbridge
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, USA
| | - Scott C. Davis
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, USA
| | - Chiara Bellini
- Department of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Mark Niedre
- Department of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| |
Collapse
|
7
|
Lin LL, Lakomy DS, Ning MS, Simpkins F, Jhingran A. Combining novel agents with radiotherapy for gynecologic malignancies: beyond the era of cisplatin. Int J Gynecol Cancer 2020; 30:409-423. [PMID: 32193219 DOI: 10.1136/ijgc-2020-001227] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
Therapeutic strategies combining radiation therapy with novel agents have become an area of intense research focus in oncology and are actively being investigated for a wide range of solid tumors. The mechanism of action of these systemic agents can be stratified into three general categories: (1) enhancement or alteration of the immune system; (2) disruption of DNA damage response mechanisms; and (3) impediment of cellular signaling pathways involving growth, angiogenesis, and hypoxia. Pre-clinical data suggest that radiation therapy has immunogenic qualities and may optimize response to immuno-oncology therapies by priming the immune system, whereas other novel systemic agents can enhance radiosensitivity through augmentation of genomic instability and alteration of central signaling pathways related to growth and survival. Gynecologic cancers in particular have the potential for synergistic response to combination approaches incorporating radiation therapy and novel systemic therapies. Several clinical trials have been proposed to elucidate the efficacy and safety of such approaches. Here we discuss the mechanisms of novel therapies and the rationale for these combination strategies, reviewing the relevant pre-clinical and clinical data. We explore their optimal use with respect to indications, interactions, and potential synergy in combination with radiation therapy and review ongoing trials and active areas of investigation.
Collapse
Affiliation(s)
- Lilie L Lin
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David S Lakomy
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Dartmouth College Geisel School of Medicine, Hanover, New Hampshire, USA
| | - Matthew S Ning
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fiona Simpkins
- Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Anuja Jhingran
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
8
|
Shen Y, Chen Q, Li L. Endostar regulates EMT, migration and invasion of lung cancer cells through the HGF-Met pathway. Mol Cell Probes 2019; 45:57-64. [PMID: 31096000 DOI: 10.1016/j.mcp.2019.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/28/2019] [Accepted: 05/11/2019] [Indexed: 12/21/2022]
Abstract
AIM Though Endostar (ES) could inhibit tumor growth by inhibiting tumor angiogenesis, other possible mechanisms have been less reported. This study aims to investigate the role of ES in the treatment of lung cancer from the perspective of macrophage-mediated epithelial mesenchymal transformation (EMT). METHODS THP1 cells were induced to polarized macrophages (MΦ). A549 and H1795 cells were separately treated with MΦ conditioned medium, ES (12.5 μg/ml) and HGF (5 ng/ml) for 24 h at 37 °C. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the expression levels of CCL17, CD163, hepatocyte growth factor (HGF), Epidermal Growth Factor (EGF), transforming growth factor (TGF)-β1 and interleukin (IL)-6. Western blot was carried out to detect the p-MET, MET and EMT-related proteins (E-cadherin, N-cadherin, Snail and vimentin). Fibroblast-like A549 and H1975 cells were observed by a microscope. Cell invasion and migration were observed and analyzed by transwell and scratch assays. RESULTS The expression levels of CCL17 and CD163 were significant higher in MΦ. ES significantly inhibited the expression of HGF in MΦ. Moreover, ES could restore the abnormal expressions of EMT-related proteins and inhibit MΦ-induced and HGF-induced fibroblast-like lung cancer cells. Furthermore, ES suppressed the MΦ-induced and HGF-induced migration and invasion of lung cancer cells. ES was also found to down-regulate HGF-Met signaling in HGF-treated lung cancer cells. CONCLUSION ES suppresses lung cancer progression by down-regulating HGF-Met signaling, revealing the possible mechanism of ES in the process of treating lung cancer patients.
Collapse
Affiliation(s)
- Yuyao Shen
- Department of Respiratory Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, China
| | - Qingwen Chen
- Department of Intensive Care Unit, Chongren People's Hospital, China
| | - Lihong Li
- Department of Geriatric Respiratory, Xi'an No.1 Hospital, China.
| |
Collapse
|
9
|
Wanandi SI, Ningsih SS, Asikin H, Hosea R, Neolaka GMG. Metabolic Interplay between Tumour Cells and Cancer-Associated Fibroblasts (CAFs) under Hypoxia versus Normoxia. Malays J Med Sci 2018; 25:7-16. [PMID: 30899183 PMCID: PMC6422554 DOI: 10.21315/mjms2018.25.3.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/28/2017] [Indexed: 02/04/2023] Open
Abstract
The growth of tumour cells is closely related to cancer-associated fibroblasts (CAFs) present within their microenvironment. CAFs, the most abundant cells in tumour stroma, secrete growth factors that play pivotal roles in tumour cell proliferation, metabolism, angiogenesis and metastasis. Tumour cells adapt to rapid environmental changes from normoxia to hypoxia through metabolic interplay with CAFs. In this mini review, we discuss the role of lactate dehydrogenases (LDHs) and monocarboxylate transporters (MCTs) on the metabolic interplay between tumour cells and CAFs under hypoxia compared to normoxia. The LDHs catalyse the interchange of lactate and pyruvate, whereas MCTs facilitate the influx and efflux of monocarboxylates, especially lactate and pyruvate. To sum up, tumour cells switch their metabolic state between glycolysis and oxidative phosphorylation through metabolic interplay with CAFs, which exhibit the Warburg effect under hypoxia and reverse Warburg effect under normoxia.
Collapse
Affiliation(s)
- Septelia Inawati Wanandi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jalan Salemba Raya No. 6, Jakarta 10430, Indonesia
| | - Sri Suciati Ningsih
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jalan Salemba Raya No. 4, Jakarta 10430, Indonesia
| | - Hijrah Asikin
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jalan Salemba Raya No. 4, Jakarta 10430, Indonesia
| | - Rendy Hosea
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jalan Salemba Raya No. 4, Jakarta 10430, Indonesia
| | - Gladies Mercya Grameinie Neolaka
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jalan Salemba Raya No. 4, Jakarta 10430, Indonesia
| |
Collapse
|