1
|
Bismuth M, Eck M, Ilovitsh T. Nanobubble-mediated cancer cell sonoporation using low-frequency ultrasound. NANOSCALE 2023; 15:17899-17909. [PMID: 37899700 DOI: 10.1039/d3nr03226d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Ultrasound insonation of microbubbles can form transient pores in cell membranes that enable the delivery of non-permeable extracellular molecules to the cells. Reducing the size of microbubble contrast agents to the nanometer range could facilitate cancer sonoporation. This size reduction can enhance the extravasation of nanobubbles into tumors after an intravenous injection, thus providing a noninvasive sonoporation platform. However, drug delivery efficacy depends on the oscillations of the bubbles, the ultrasound parameters and the size of the target compared to the membrane pores. The formation of large pores is advantageous for the delivery of large molecules, however the small size of the nanobubbles limit the bioeffects when operating near the nanobubble resonance frequency at the MHz range. Here, we show that by coupling nanobubbles with 250 kHz low frequency ultrasound, high amplitude oscillations can be achieved, which facilitate low energy sonoporation of cancer cells. This is beneficial both for increasing the uptake of a specific molecule and to improve large molecule delivery. The method was optimized for the delivery of four fluorescent molecules ranging in size from 1.2 to 70 kDa to breast cancer cells, while comparing the results to targeted microbubbles. Depending on the fluorescent molecule size, the optimal ultrasound peak negative pressure was found to range between 300 and 500 kPa. Increasing the pressure to 800 kPa reduced the fraction of fluorescent cells for all molecules sizes. The optimal uptake for the smaller molecule size of 4 kDa resulted in a fraction of 19.9 ± 1.8% of fluorescent cells, whereas delivery of 20 kDa and 70 kDa molecules yielded 14 ± 0.8% and 4.1 ± 1.1%, respectively. These values were similar to targeted microbubble-mediated sonoporation, suggesting that nanobubbles can serve as noninvasive sonoporation agents with a similar potency, and at a reduced bubble size. The nanobubbles effectively reduced cell viability and may thus potentially reduce the tumor burden, which is crucial for the success of cancer treatment. This method provides a non-invasive and low-energy tumor sonoporation theranostic platform, which can be combined with other therapies to maximize the therapeutic benefits of cancer treatment or be harnessed in gene therapy applications.
Collapse
Affiliation(s)
- Mike Bismuth
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Michal Eck
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Tali Ilovitsh
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
2
|
Katz S, Gattegno R, Peko L, Zarik R, Hagani Y, Ilovitsh T. Diameter-dependent assessment of microvascular leakage following ultrasound-mediated blood-brain barrier opening. iScience 2023; 26:106965. [PMID: 37378309 PMCID: PMC10291464 DOI: 10.1016/j.isci.2023.106965] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Blood brain barrier disruption (BBBD) using focused ultrasound (FUS) and microbubbles (MB) is an effective tool for therapeutic delivery to the brain. BBBD depends to a great extent on MB oscillations. Because the brain vasculature is heterogenic in diameter, reduced MB oscillations in smaller blood vessels, together with a lower number of MBs in capillaries, can lead to variations in BBBD. Therefore, evaluating the impact of microvasculature diameter on BBBD is of great importance. We present a method to characterize molecules extravasation following FUS-mediated BBBD, at a single blood vessel resolution. Evans blue (EB) leakage was used as marker for BBBD, whereas blood vessels localization was done using FITC labeled Dextran. Automated image processing pipeline was developed to quantify the extent of extravasation as function of microvasculature diameter, including a wide range of vascular morphological parameters. Variations in MB vibrational response were observed in blood vessel mimicking fibers with varied diameters. Higher peak negative pressures (PNP) were required to initiate stable cavitation in fibers with smaller diameters. In vivo in the treated brains, EB extravasation increased as a function of blood vessel diameter. The percentage of strong BBBD blood vessels increased from 9.75% for 2-3 μm blood vessels to 91.67% for 9-10 μm. Using this method, it is possible to conduct a diameter-dependent analysis that measures vascular leakage resulting from FUS-mediated BBBD at a single blood vessel resolution.
Collapse
Affiliation(s)
- Sharon Katz
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Roni Gattegno
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Lea Peko
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Romario Zarik
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yulie Hagani
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tali Ilovitsh
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Eck M, Aronovich R, Ilovitsh T. Efficacy optimization of low frequency microbubble-mediated sonoporation as a drug delivery platform to cancer cells. Int J Pharm X 2022; 4:100132. [PMID: 36189459 PMCID: PMC9520274 DOI: 10.1016/j.ijpx.2022.100132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022] Open
Abstract
Ultrasound insonation of microbubbles can be used to form pores in cell membranes and facilitate the local trans-membrane transport of drugs and genes. An important factor in efficient delivery is the size of the delivered target compared to the generated membrane pores. Large molecule delivery remains a challenge, and can affect the resulting therapeutic outcomes. To facilitate large molecule delivery, large pores need to be formed. While ultrasound typically uses megahertz frequencies, it was recently shown that when microbubbles are excited at a frequency of 250 kHz (an order of magnitude below the resonance frequency of these agents), their oscillations are significantly enhanced as compared to the megahertz range. Here, to promote the delivery of large molecules, we suggest using this low frequency and inducing large pore formation through the high-amplitude oscillations of microbubbles. We assessed the impact of low frequency microbubble-mediated sonoporation on breast cancer cell uptake by optimizing the delivery of 4 fluorescent molecules ranging from 1.2 to 70 kDa in size. The optimal ultrasound peak negative pressure was found to be 500 kPa. Increasing the pressure did not enhance the fraction of fluorescent cells, and in fact reduced cell viability. For the smaller molecule sizes, 1.2 kDa and 4 kDa, the groups treated with an ultrasound pressure of 500 kPa and MB resulted in a fraction of 58% and 29% of fluorescent cells respectively, whereas delivery of 20 kDa and 70 kDa molecules yielded 10% and 5%, respectively. These findings suggest that low-frequency (e.g., 250 kHz) insonation of microbubbles results in high amplitude oscillation in vitro that increase the uptake of large molecules. Successful ultrasound-mediated molecule delivery requires the careful selection of insonation parameters to maximize the therapeutic effect by increasing cell uptake.
Collapse
Affiliation(s)
- Michal Eck
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ramona Aronovich
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tali Ilovitsh
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
4
|
Przystupski D, Ussowicz M. Landscape of Cellular Bioeffects Triggered by Ultrasound-Induced Sonoporation. Int J Mol Sci 2022; 23:ijms231911222. [PMID: 36232532 PMCID: PMC9569453 DOI: 10.3390/ijms231911222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Sonoporation is the process of transient pore formation in the cell membrane triggered by ultrasound (US). Numerous studies have provided us with firm evidence that sonoporation may assist cancer treatment through effective drug and gene delivery. However, there is a massive gap in the body of literature on the issue of understanding the complexity of biophysical and biochemical sonoporation-induced cellular effects. This study provides a detailed explanation of the US-triggered bioeffects, in particular, cell compartments and the internal environment of the cell, as well as the further consequences on cell reproduction and growth. Moreover, a detailed biophysical insight into US-provoked pore formation is presented. This study is expected to review the knowledge of cellular effects initiated by US-induced sonoporation and summarize the attempts at clinical implementation.
Collapse
|
5
|
Abstract
The use of DNA-damaging agents such as radiotherapy and chemotherapy has been a mainstay treatment protocol for many cancers, including lung and prostate. Recently, FDA approval of inhibitors of DNA repair, and targeting innate immunity to enhance the efficacy of DNA-damaging agents have gained much attention. Yet, inherent or acquired resistance against DNA-damaging therapies persists as a fundamental drawback. While cancer eradication by causing cancer cell death through induction of apoptosis is the ultimate goal of anti-cancer treatments, autophagy and senescence are two major cellular responses induced by clinically tolerable doses of DNA-damaging therapies. Unlike apoptosis, autophagy and senescence can act as both pro-tumorigenic as well as tumor suppressive mechanisms. DNA damage-induced senescence is associated with a pro-inflammatory secretory phenotype, which contributes to reshaping the tumor- immune microenvironment. Moreover, PTEN (phosphatase and tensin homolog) is a tumor supressor deleted in many tumors, and has been implicated in both senescence and autophagy. This review presents an overview of the literature on the regulation and consequences of DNA damage- induced senescence in cancer cells, with a specific focus on autophagy and PTEN. Both autophagy and senescence occur concurrently in the same cells in response to DNA damaging agents. However, a deterministic relationship between these fundamental processes has been controversial. We present experimental evidence obtained with tumor cells, with a prime focus on two models of cancer, prostate and lung. A better understanding of mechanisms associated with DNA damage-induced cellular senescence is central to fully exploit the potential of DNA-damaging agents against cancer.
Collapse
Affiliation(s)
- Arishya Sharma
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.
| | - Alexandru Almasan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States; Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, United States; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States.
| |
Collapse
|
6
|
Ultrasound combined with microbubbles enhances the renoprotective effects of methylprednisolone in rats with adriamycin-induced nephropathy. Eur J Pharm Sci 2021; 159:105714. [PMID: 33453390 DOI: 10.1016/j.ejps.2021.105714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/24/2020] [Accepted: 01/07/2021] [Indexed: 11/20/2022]
Abstract
The purpose of this study was to investigate the effect of ultrasound combined with microbbules (SonoVueTM) on the potency of methylprednisolone in attenuating the renal injury induced by adriamycin in rats. Animal model was established by two intravenous injections of 4 mg/kg adriamycin with a 2-week interval in rats. One week later, the adriamycin injected rats were randomly divided into 7 groups, receiving various treatments daily for 2 weeks. Two doses of methylprednisolone (20 or 40 mg/kg) were administrated alone or 20 mg/kg methylprednisolone and 100 µL SonoVueTM microbbules (1-5 × 108 bubbles/mL; mean diameter of bubbles: 2.5 µm) was co-administrated by intravenous injections from the tail vein. The ultrasound was applied at a frequency of 0.8 MHz and a spatial average temporal average intensity of 2.79 W/cm2 for 5 min at a 50% duty cycle (1 s on 1 s off) on the back skin of the anatomic position of the kidney in rats of two groups combined with ultrasound. Renal injury were analyzed using immunohistochemical staining, real-time PCR, light and transmission electron microcopies. The kidney function related biochemical indexes were measured by automatic biochemistry analyzer. The results showed that adriamycin induced a typical renal injury and 40 mg/kg methylprednisolone injection significantly ameliorated the abnormality of key parameters such as proteinuria, renal mRNA and protein expression levels of nephrin, collagens III and IV as well as podocyte impairment, glomerulosclerosis and tubulointerstitial injury indexes. However, a sub-dose of methylprednisolone at 20 mg/kg was ineffective when administered intravenously, but its potency at this dosage was enhanced by co-administration with 100 µL SonoVueTM microbubbles plus ultrasound irradiation. In conclusion, ultrasound combined with microbubbles can significantly increase local renal drug delivery leading to enhanced therapeutic effect of low dose methylprednisolone in ameliorating adriamycin-induced nephropathy in rats.
Collapse
|
7
|
Qu N, Shi D, Shang M, Duan S, Guo L, Ning S, Li J. Breast Cancer Cell Line Phenotype Affects Sonoporation Efficiency Under Optimal Ultrasound Microbubble Conditions. Med Sci Monit 2018; 24:9054-9062. [PMID: 30546004 PMCID: PMC6302661 DOI: 10.12659/msm.910790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Ultrasound/microbubble (USMB)-mediated sonoporation is a new strategy with minimal procedural invasiveness for targeted and site-specific drug delivery to tumors. The purpose of this study was to explore the effect of different breast cancer cell lines on sonoporation efficiency, and then to identify an optimal combination of USMB parameters to maximize the sonoporation efficiency for each tumor cell line. Material/Methods Three drug-sensitive breast cell lines – MCF-7, MDA-MB-231, and MDA-MB-468 – and 1 multidrug resistance (MDR) cell line – MCF-7/ADR – were chosen. An orthogonal array experimental design approach based on 3 levels of 3 parameters (A: microbubble concentration, 10%, 20%, and 30%, B: sound intensity, 0.5, 1.0, and 1.5 W/cm2, C: irradiation time, 30, 60, and 90 s) was employed to optimize the sonoporation efficiency. Results The optimal USMB parameter combinations for different cell lines were diverse. Under optimal parameter combinations, the maximum sonoporation efficiency differences between different breast tumor cell lines were statistically significant (MDA-MB-231: 46.70±5.79%, MDA-MB-468: 53.44±5.69%, MCF-7: 59.88±5.53%, MCF-7/ADR: 65.39±4.01%, P<0.05), so were between drug-sensitive cell line and MDR cell line (MCF-7: 59.88±5.53%, MCF-7/ADR: 65.39±4.01%, p=0.026). Conclusions Different breast tumor cell lines have their own optimal sonoporation. Drug-resistant MCF-7/ADR cells had higher sonoporation efficiency than drug-sensitive MCF-7 cells. The molecular subtype of tumors should be considered when sonoporation is applied, and optimal parameter combination may have the potential to improve drug-delivery efficiency by increasing the sonoporation efficiency.
Collapse
Affiliation(s)
- Nina Qu
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland).,Department of Ultrasound, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China (mainland)
| | - Dandan Shi
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Mengmeng Shang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Sujuan Duan
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Lu Guo
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Song Ning
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Jie Li
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
8
|
Sun PF, Tian T, Chen LN, Fu RG, Xu SS, Ai H, Wang B, Zhang J, Si RY, Chai Z, Cooper ME, Ren ST. Ultrasound Combined with Microbubbles Enhances the Effects of Methylprednisolone in Lipopolysaccharide-Induced Human Mesangial Cells. J Pharmacol Exp Ther 2018; 365:476-484. [DOI: 10.1124/jpet.117.246223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/09/2018] [Indexed: 01/17/2023] Open
|
9
|
Wang Y, Li Y, Yan K, Shen L, Yang W, Gong J, Ding K. Clinical study of ultrasound and microbubbles for enhancing chemotherapeutic sensitivity of malignant tumors in digestive system. Chin J Cancer Res 2018; 30:553-563. [PMID: 30510367 PMCID: PMC6232363 DOI: 10.21147/j.issn.1000-9604.2018.05.09] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective To explore the safety of ultrasound and microbubbles for enhancing the chemotherapeutic sensitivity of malignant tumors in the digestive system in a clinical trial, as well as its efficacy. Methods From October 2014 to June 2016, twelve patients volunteered to participate in this study. Eleven patients had hepatic metastases from tumors of the digestive system, and one patient had pancreatic carcinoma. According to the mechanical index (MI) in the ultrasound field, patients were classified into four groups with MIs of 0.4, 0.6, 0.8 and 1.0. Within half an hour after chemotherapy, patients underwent ultrasound scanning with ultrasound microbubbles (SonoVue) to enhance the efficacy of chemotherapy. All adverse reactions were recorded and were classified in 4 grades according to the Common Terminology Criteria for Adverse Events version 4.03 (CTCAE V4.03). Tumor responses were evaluated by the Response Evaluation Criteria in Solid Tumors version 1.1 criteria. All the patients were followed up until progression. Results All the adverse reactions recorded were level 1 or level 2. No local pain occurred in any of the patients. Among all the adverse reactions, fever might be related to the treatment with ultrasound combined with microbubbles. Six patients had stable disease (SD), and one patient had a partial response (PR) after the first cycle of treatment. At the end of follow-up, tumor progression was restricted to the original sites, and no new lesions had appeared. Conclusions Our preliminary data showed the potential role of a combined treatment with ultrasound and microbubbles in enhancing the chemotherapeutic sensitivity of malignant tumors of the digestive system. This technique is safe when the MI is no greater than 1.0.
Collapse
Affiliation(s)
- Yanjie Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), 1Department of Ultrasound
| | - Yan Li
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Kun Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), 1Department of Ultrasound
| | - Lin Shen
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Wei Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), 1Department of Ultrasound
| | - Jifang Gong
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ke Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), 1Department of Ultrasound
| |
Collapse
|