1
|
Lv Q, Wang J, Yang H, Chen X, Zhang Y, Ji G, Hu L, Zhang Y. Didymin ameliorates ulcerative colitis-associated secondary liver damage by facilitating Notch1 degradation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155561. [PMID: 39217654 DOI: 10.1016/j.phymed.2024.155561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/29/2024] [Accepted: 03/21/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Didymin is a dietary flavonoid originally discovered by our group as a potent anti-ulcerative colitis (UC) agent. However, whether didymin plays a protective role in UC-associated inflammatory liver injury is still unclear. PURPOSE This study aimed to evaluate the therapeutic potential of didymin on UC-associated inflammatory liver injury and explore the underlying mechanism. STUDY DESIGN AND METHODS Colitis model was established in C57BL/6 mice by exposure to DSS, and didymin was administrated intragastrically for consecutive 10 days. The inflammatory liver injury was assessed by levels of alanine aminotransferase (ALT) and aspartate transaminase (AST) in serum and histopathological damage in the liver. In vitro Kupffer cells and RAW264.7 cells challenged with lipopolysaccharides (LPS) were used to explore the modulatory activity of didymin on pro-inflammatory cytokines secretion and Notch1 signaling pathway activation. RESULTS Didymin significantly mitigated liver coefficiency, ALT and AST levels in serum, and the hepatic histopathological damage caused by DSS-induced acute and chronic colitis. The mRNA expressions of pro-inflammatory factors including Tnf, Il1, and Il6 in liver tissues, Kupffer cells, and RAW264.7 cells stimulated by the influx of LPS was significantly deprived after didymin treatment. Mechanistically, didymin obstructed the protein expression, nuclear translocation of notch intracellular domain 1 (Notch1-ICD) and mRNA expression of hairy and enhancer of split 1 (Hes1). Further, the inhibitory mechanism of the Notch1-Hes1 pathway was dependent on c-Cbl-mediated Notch1-ICD lysosomal degradation. CONCLUSION Our study verified for the first time that didymin could prevent UC-associated diseases, such as inflammatory liver injury, and the mechanism was related to facilitating Notch1 lysosomal degradation rather than proteasome degradation via promoting protein expression of c-Cbl in macrophages. Our findings that the inhibition of Notch1 signaling transduction helps to alleviate UC-associated liver injury provides possible therapeutics for the treatment of colitis and also furnishes a research paradigm for the study of flavonoids with similar structures.
Collapse
Affiliation(s)
- Qi Lv
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Juan Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Hongqiong Yang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xueli Chen
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yishu Zhang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Guangye Ji
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Yinan Zhang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
2
|
Yang JW, Zou Y, Chen J, Cui C, Song J, Yang MM, Gao J, Hu HQ, Xia LQ, Wang LM, Lv XY, Chen L, Hou XG. Didymin alleviates metabolic dysfunction-associated fatty liver disease (MAFLD) via the stimulation of Sirt1-mediated lipophagy and mitochondrial biogenesis. J Transl Med 2023; 21:921. [PMID: 38115075 PMCID: PMC10731721 DOI: 10.1186/s12967-023-04790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) is one of the most prevalent metabolic syndromes worldwide. However, no approved pharmacological treatments are available for MAFLD. Chenpi, one kind of dried peel of citrus fruits, has traditionally been utilized as a medicinal herb for liver diseases. Didymin is a newly identified oral bioactive dietary flavonoid glycoside derived from Chenpi. In this study, we investigated the therapeutic potential of Didymin as an anti-MAFLD drug and elucidated its underlying mechanisms. METHODS High-fat diet (HFD)-induced MAFLD mice and alpha mouse liver 12 (AML12) cells were utilized to evaluate the effects and mechanisms of Didymin in the treatment of MAFLD. Liver weight, serum biochemical parameters, and liver morphology were examined to demonstrate the therapeutic efficacy of Didymin in MAFLD treatment. RNA-seq analysis was performed to identify potential pathways that could be affected by Didymin. The impact of Didymin on Sirt1 was corroborated through western blot, molecular docking analysis, microscale thermophoresis (MST), and deacetylase activity assay. Then, a Sirt1 inhibitor (EX-527) was utilized to confirm that Didymin alleviates MAFLD via Sirt1. Western blot and additional assays were used to investigate the underlying mechanisms. RESULTS Our results suggested that Didymin may possess therapeutic potential against MAFLD in vitro and in vivo. By promoting Sirt1 expression as well as directly binding to and activating Sirt1, Didymin triggers downstream pathways that enhance mitochondrial biogenesis and function while reducing apoptosis and enhancing lipophagy. CONCLUSIONS These suggest that Didymin could be a promising medication for MAFLD treatment. Furthermore, its therapeutic effects are mediated by Sirt1.
Collapse
Affiliation(s)
- Jing-Wen Yang
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ying Zou
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jun Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Chen Cui
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan, China
| | - Jia Song
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Meng-Meng Yang
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jing Gao
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Hui-Qing Hu
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Long-Qing Xia
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Li-Ming Wang
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xiao-Yu Lv
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China
| | - Xin-Guo Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China.
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, China.
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China.
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Jinan, China.
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
3
|
Tsai ML, Hsu SH, Wang LT, Liao WT, Lin YC, Kuo CH, Hsu YL, Feng MC, Kuo FC, Hung CH. Di(2-ethylhexyl) phthalate mediates IL-33 production via aryl hydrocarbon receptor and is associated with childhood allergy development. Front Immunol 2023; 14:1193647. [PMID: 37545493 PMCID: PMC10401841 DOI: 10.3389/fimmu.2023.1193647] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Background Few studies assess cord blood biomarkers to predict prenatal exposure to di(2-ethylhexyl) phthalate (DEHP) on the development of allergic diseases later in childhood. IL-33 has been indicated to play an important role in allergic diseases. We evaluated the association of prenatal DEHP exposure and IL-33 in cord blood on the development of allergic diseases. We also investigated the mechanism of DEHP in human lung epithelial cells and asthma animal models. Methods 66 pregnant women were recruited, and their children followed when they were aged 3 years. Maternal urinary DEHP metabolites were determined using liquid chromatography-electrospray-ionization-tandem mass spectrometry. The effect of DEHP on IL-33 production was investigated in human lung epithelial cells and club cell-specific aryl hydrocarbon receptor (AhR) deficiency mice. ELISA and RT-PCR, respectively, measured the IL-33 cytokine concentration and mRNA expression. Results The concentrations of maternal urinary DEHP metabolites and serum IL-33 in cord blood with childhood allergy were significantly higher than those in the non-childhood allergy group. DEHP and MEHP could induce IL-33 production and reverse by AhR antagonist and flavonoids in vitro. Enhanced ovalbumin-induced IL-4 and IL-33 production in bronchoalveolar lavage fluid (BALF) by DEHP exposure and suppressed in club cell-specific AhR null mice. Kaempferol has significantly reversed the DEHP effect in the asthma animal model. Conclusions Cord blood IL-33 level was correlated to childhood allergy and associated with maternal DEHP exposure. IL-33 might be a potential target to assess the development of DEHP-related childhood allergic disease. Flavonoids might be the natural antidotes for DEHP.
Collapse
Affiliation(s)
- Mei-Lan Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, Faculty of Pediatrics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Ting Wang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Wei-Ting Liao
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ching Lin
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Doctoral Degree Program of Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Laboratory Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chang-Hung Kuo
- Ta-Kuo Clinic, Kaohsiung, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Chu Feng
- Department of Superintendent, High Commissioner, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
- Department of Nursing, Fooyin University, Kaohsiung, Taiwan
| | - Fu-Chen Kuo
- Department of Gynecology and Obstetrics, E-Da Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Hsing Hung
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, Faculty of Pediatrics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| |
Collapse
|
4
|
ALaqeel NK. Antioxidants from different citrus peels provide protection against cancer. BRAZ J BIOL 2023; 84:e271619. [PMID: 37436265 DOI: 10.1590/1519-6984.271619] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/04/2023] [Indexed: 07/13/2023] Open
Abstract
Cancer is one of the leading causes of death. Despite significant advancements in the discovery of medications for the treatment of cancer, these drugs are hindered by applicability and efficacy issues and frequently exhibit major side effects that can further impair patients 'quality of life. Therefore, the development of therapeutically sound anti-cancer medicines derived from natural products has gained prominence in the field of functional foods. Some of these compounds have shown efficacy in the prevention and treatment of cancer as well as low toxicity. Additionally, many recent studies have explored the recycling of agro-industrial waste to create bioactive chemicals. Citrus peels are produced in vast quantities in the food processing sector; due to their abundance of flavonoids, they may be inexpensive sources of protection against several cancers. Citrus is a common type of fruit that contains a variety of nutrients. In particular, the antioxidant chemicals found in citrus peel have been identified as potential cancer-fighting agents. Antioxidant substances such as flavonoids prevent the development of cancer by inhibiting the metastatic cascade, decreasing the mobility of cancer cells in the circulatory system, promoting apoptosis, and suppressing angiogenesis. To explore the most effective uses of citrus peel-derived antioxidants, this review presents background information, an overview of the role of citrus antioxidants in cancer therapy, and a discussion of the key underlying molecular mechanisms.
Collapse
Affiliation(s)
- Nouf Khalifa ALaqeel
- Imam Abdulrahman Bin Faisal University, College of Science, Department of Biology, Dammam, Saudi Arabia
| |
Collapse
|
5
|
Environmental Contamination and Chronic Exposure to Endocrine-Disrupting Phthalates: An Overlooked and Emerging Determinant for Hormone-Sensitive Cancers. J Indian Inst Sci 2022. [DOI: 10.1007/s41745-022-00319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Liu T, He L, Peng J, Chen M, Zhang L, Chen J, Gan J. Occurrence and dietary exposure risk assessment of phthalate esters in Chinese mitten crabs (Eriocheir sinensis) from Hubei, central China. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Montano L, Maugeri A, Volpe MG, Micali S, Mirone V, Mantovani A, Navarra M, Piscopo M. Mediterranean Diet as a Shield against Male Infertility and Cancer Risk Induced by Environmental Pollutants: A Focus on Flavonoids. Int J Mol Sci 2022; 23:ijms23031568. [PMID: 35163492 PMCID: PMC8836239 DOI: 10.3390/ijms23031568] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
The role of environmental factors in influencing health status is well documented. Heavy metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, dioxins, pesticides, ultrafine particles, produced by human activities put a strain on the body’s entire defense system. Therefore, together with public health measures, evidence-based individual resilience measures are necessary to mitigate cancer risk under environmental stress and to prevent reproductive dysfunction and non-communicable diseases; this is especially relevant for workers occupationally exposed to pollutants and/or populations residing in highly polluted areas. The Mediterranean diet is characterized by a high intake of fruits and vegetables rich in flavonoids, that can promote the elimination of pollutants in tissues and fluids and/or mitigate their effects through different mechanisms. In this review, we collected evidence from pre-clinical and clinical studies showing that the impairment of male fertility and gonadal development, as well as cancers of reproductive system, due to the exposure of organic and inorganic pollutants, may be counteracted by flavonoids.
Collapse
Affiliation(s)
- Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL), 84124 Salerno, Italy;
- PhD Program in Evolutionary Biology and Ecology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
| | - Maria Grazia Volpe
- Institute of Food Sciences, National Research Council, CNR, 83100 Avellino, Italy;
| | - Salvatore Micali
- Urology Department, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Vincenzo Mirone
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80126 Naples, Italy;
| | - Alberto Mantovani
- Department of Food, Safety, Nutrition and Veterinary public health, Italian National Health Institute, 00161 Roma, Italy;
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
- Correspondence:
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy;
| |
Collapse
|
8
|
Abstract
Citrus species are one of the world’s popular fruit crops, cultivated all over the world for their economic and nutritional values. Citrus, like other fruits and vegetables, are an important source of several antioxidant molecules (polyphenols, ascorbic acid, and carotenoids) that can inhibit the harmful effects of free radicals on the human body; due to their functional values and health-promoting properties, Citrus species are considered valuable fruits not only in agri-food industry, but also in pharmaceutical industry. Flavonoids are among the major constituents of polyphenols found in different parts of Citrus fruits (skin, peels, seed, pulp membrane, and juice). Flavonoids have different biological properties (antiviral, antifungal, and antibacterial activities). Several studies have also shown the health-related properties of Citrus flavonoids, especially antioxidant, anticancer, anti-inflammation, anti-aging, and cardiovascular protection activities. In the present review, attempts are made to discuss the current trends of research on flavonoids in different Citrus species.
Collapse
|
9
|
Pinto C, Cidade H, Pinto M, Tiritan ME. Chiral Flavonoids as Antitumor Agents. Pharmaceuticals (Basel) 2021; 14:1267. [PMID: 34959668 PMCID: PMC8704364 DOI: 10.3390/ph14121267] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/25/2022] Open
Abstract
Flavonoids are a group of natural products with a great structural diversity, widely distributed in plant kingdom. They play an important role in plant growth, development and defense against aggressors. Flavonoids show a huge variety of biological activities such as antioxidant, anti-inflammatory, anti-mutagenic, antimicrobial and antitumor, being able to modulate a large diversity of cellular enzymatic activities. Among natural flavonoids, some classes comprise chiral molecules including flavanones, flavan-3-ols, isoflavanones, and rotenoids, which have one or more stereogenic centers. Interestingly, in some cases, individual compounds of enantiomeric pairs have shown different antitumor activity. In nature, these compounds are mainly biosynthesized as pure enantiomers. Nevertheless, they are often isolated as racemates, being necessary to carry out their chiral separation to perform enantioselectivity studies. Synthetic chiral flavonoids with promising antitumor activity have also been obtained using diverse synthetic approaches. In fact, several new chiral bioactive flavonoids have been synthesized by enantioselective synthesis. Particularly, flavopiridol was the first cyclin-dependent kinase (CDK) inhibitor which entered clinical trials. The chiral pool approaches using amino acid as chiral building blocks have also been reported to achieve small libraries of chrysin derivatives with more potent in vitro growth inhibitory effect than chrysin, reinforcing the importance of the introduction of chiral moieties to improve antitumor activity. In this work, a literature review of natural and synthetic chiral flavonoids with antitumor activity is reported for the first time.
Collapse
Affiliation(s)
- Cláudia Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (C.P.); (H.C.); (M.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (C.P.); (H.C.); (M.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (C.P.); (H.C.); (M.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Maria Elizabeth Tiritan
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (C.P.); (H.C.); (M.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| |
Collapse
|
10
|
Hsieh TH, Hsu CY, Yang PJ, Chiu CC, Liang SS, Ou-Yang F, Kan JY, Hou MF, Wang TN, Tsai EM. DEHP mediates drug resistance by directly targeting AhR in human breast cancer. Biomed Pharmacother 2021; 145:112400. [PMID: 34801851 DOI: 10.1016/j.biopha.2021.112400] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 01/25/2023] Open
Abstract
Resistance to chemotherapy and hormonal therapy is a major clinical problem in breast cancer medicine, especially for cancer metastasis and recurrence. Di(2-ethylhexyl)phthalate (DEHP) affects drug resistance by an unknown mechanism of action. Here we analyzed breast cancer patients (N = 457) and found that Σ4MEHP (the sum of MEHP, MEHHP, MECPP and MEOHP concentrations) in urine was significantly higher (P = 0.018) in the recurrent breast cancer group compared with non-recurrent patients. Σ4MEHP-High was positively and significantly correlated with tumor stage (P = 0.005), lymph node status (P = 0.001), estrogen receptor status (P = 0.010), Her2/Neu status (P = 0.004), recurrence (P = 0.000) and tumor size (P = 0.002), as well as an independent prognostic marker (OR = 1.868; 95% CI = 1.424-2.451; P < 0.000) associated with poor survival rates based on a positive Her2/Neu status (P = 0.035). In addition, we found that DEHP inhibited paclitaxel and doxorubicin effects in breast cancer cell lines MCF-7 and MDA-MB-231 and in zebrafish and mouse tumor initiation models. DEHP induced trefoil factor 3 (TFF3) expression through the vinculin/aryl hydrocarbon receptor (AhR)/ERK signaling pathway and induced CYP2D6, CYP2C8 and CYP3A4 expression through the AhR genomic pathway to increase the epithelial-mesenchymal transition (EMT) and doxorubicin metabolism, respectably. DEHP mediated AhR-related alterations in estrogen receptor expression through the ubiquitination system, which decreased tamoxifen effects in AhR knockout mice. These findings suggest a novel therapeutic avenue by targeting AhR in drug-resistant and recurrent breast cancer.
Collapse
Affiliation(s)
- Tsung-Hua Hsieh
- Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chia-Yi Hsu
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Jing Yang
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Shin Liang
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fu Ou-Yang
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jung-Yu Kan
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Feng Hou
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsu-Nai Wang
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Eing-Mei Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
11
|
Lv Q, Xing Y, Liu Y, Chen Q, Xu J, Hu L, Zhang Y. Didymin switches M1-like toward M2-like macrophage to ameliorate ulcerative colitis via fatty acid oxidation. Pharmacol Res 2021; 169:105613. [PMID: 33915297 DOI: 10.1016/j.phrs.2021.105613] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/28/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022]
Abstract
Inflammatory response by different polarized macrophages has a critical role in a variety of immunological pathophysiology, such as ulcerative colitis (UC). Herein, targeting the paradigm of macrophage phenotypes by small molecular modulators may influence the disease status. In the present study, we firstly demonstrated that didymin, one of the most abundant flavonoid constituents present in the citrus fruits such as oranges and lemons, remarkably attenuated the clinical symptoms of acute and chronic colitis in mice. Mechanistic studies showed that didymin converted pro-inflammatory M1-like to anti-inflammatory M2-like macrophage phenotype, but did not alter the polarization of M2-like macrophages. Metabolic tracing studies revealed that didymin strengthened fatty acid oxidation rather than glycolysis by inducing Hadhb expression. More importantly, in vivo studies verified that promotion of Hadhb expression resulted in the conversion of M1- toward M2-like macrophages and eventually alleviated colitis. Our data highlights the potential of macrophage paradigm in UC inflammation and put forth the stage for considering didymin as a metabolism regulator in reprogramming macrophage polarization, which may serve as a promising therapeutic approach for treatment of inflammation-associated disorders.
Collapse
Affiliation(s)
- Qi Lv
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yao Xing
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yijun Liu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Qingzhu Chen
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jingyi Xu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Yinan Zhang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
12
|
Mughees M, Chugh H, Wajid S. Mechanism of phthalate esters in the progression and development of breast cancer. Drug Chem Toxicol 2020; 45:1021-1025. [DOI: 10.1080/01480545.2020.1802480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Mohd Mughees
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Himanshu Chugh
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
13
|
Chen W, Wang Z, Xu W, Tian R, Zeng J. Dibutyl phthalate contamination accelerates the uptake and metabolism of sugars by microbes in black soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114332. [PMID: 32182534 DOI: 10.1016/j.envpol.2020.114332] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/21/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Dibutyl phthalate (DBP) is widely used as plasticizer and has been detected in the environment, posing a threat to animal health. However, the effects of DBP on agricultural microbiomes are not known. In this study, DBP levels in black soil were evaluated, and the impact of DBP contamination on the uptake and metabolism of sugars in microbes was assessed by glucose absorption tests, metaproteomics, metabolomics, enzyme activity assays and computational simulation analysis. The results indicated that DBP contamination accelerated glucose consumption and upregulated the expression of porins and periplasmic monosaccharide ATP-binding cassette (ABC) transporter solute-binding proteins (SBPs). DBP and its metabolic intermediates (carboxymuconate and butanol) may form a stable complex with sugar transporters and enhance the rigidity and stability of these proteins. Sugar metabolism resulting in the generation of ATP and reducing agent (NADPH), as well as the expression of some key enzymes (dehydrogenases) were also upregulated by DBP treatment. Moreover, a diverse bacterial community appears to utilize sugar, suggesting that there are widespread effects of DBP contamination on soil microbial ecosystems. The results of this study provide a theoretical basis for investigating the toxicological effects of DBP on microbes in black soil.
Collapse
Affiliation(s)
- Wenjing Chen
- Center for Ecological Research, Northeast Forestry University, Heilongjiang Province, Harbin, 150040, China; Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, 161006, China; College of Life Sciences, Agriculture and Forestry, Qiqihar University, Heilongjiang Province, Qiqihar, 161006, China.
| | - Zhigang Wang
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, 161006, China; College of Life Sciences, Agriculture and Forestry, Qiqihar University, Heilongjiang Province, Qiqihar, 161006, China.
| | - Weihui Xu
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, 161006, China; College of Life Sciences, Agriculture and Forestry, Qiqihar University, Heilongjiang Province, Qiqihar, 161006, China.
| | - Renmao Tian
- Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, 60501, USA.
| | - Jin Zeng
- Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
14
|
Roszak J, Smok-Pieniążek A, Jeżak K, Domeradzka-Gajda K, Grobelny J, Tomaszewska E, Ranoszek-Soliwoda K, Celichowski G, Stępnik M. Combined effect of silver nanoparticles and aluminium chloride, butylparaben or diethylphthalate on the malignancy of MDA-MB-231 breast cancer cells and tumor-specific immune responses of human macrophages and monocyte-derived dendritic cells. Toxicol In Vitro 2020; 65:104774. [PMID: 31954849 DOI: 10.1016/j.tiv.2020.104774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/14/2020] [Indexed: 12/23/2022]
Abstract
The aim of this study was to assess whether silver nanoparticles (AgNP) or selected cosmetic ingredients may modify functions of various immunocompetent cell populations. To this end, the effect of two AgNP (size of 15 nm or 45 nm), alone and in combination with aluminium chloride, butyl paraben, di-n-butyl phthalate or diethyl phthalate was assessed on: (1) migration and invasion of MDA-MB-231 human breast cancer cells; (2) M1/M2 polarization of phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 macrophages (M0) and (3) activation/maturation of monocyte-derived dendritic cells (DCs). The results of this study showed that neither any of the test chemicals alone nor the mixtures significantly changed the migration or invasion ability of MDA-MB-231 cells following, both 72-h and 21-day exposure. Analysis of the expression of marker genes for both M1 (IL-1B, CXCL9, TNF) and M2 (DCSIGN, MRC1) polarization revealed that the chemicals/mixtures did not activate M1/M2 differentiation of the M0 macrophages. In addition, no significant changes were observed in the expression of CD86, HLA-DR and CD54 surface markers and phagocytic activity of DCs following 48-h exposure to AgNP alone or in combination with test compounds. Our study suggests that AgNP alone or in combination with tested cosmetic ingredients do not alter function of immunocompetent cells studied.
Collapse
Affiliation(s)
- Joanna Roszak
- Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, 8 St Teresy St., 91-348 Łódź, Poland.
| | - Anna Smok-Pieniążek
- Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, 8 St Teresy St., 91-348 Łódź, Poland
| | - Karolina Jeżak
- Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, 8 St Teresy St., 91-348 Łódź, Poland
| | - Katarzyna Domeradzka-Gajda
- Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, 8 St Teresy St., 91-348 Łódź, Poland
| | - Jarosław Grobelny
- Department of Materials Technology and Chemistry, University of Łódź, 163 Pomorska St, 90-236 Łódź, Poland
| | - Emilia Tomaszewska
- Department of Materials Technology and Chemistry, University of Łódź, 163 Pomorska St, 90-236 Łódź, Poland
| | | | - Grzegorz Celichowski
- Department of Materials Technology and Chemistry, University of Łódź, 163 Pomorska St, 90-236 Łódź, Poland
| | - Maciej Stępnik
- Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, 8 St Teresy St., 91-348 Łódź, Poland
| |
Collapse
|
15
|
Flavanone glycosides inhibit β-site amyloid precursor protein cleaving enzyme 1 and cholinesterase and reduce Aβ aggregation in the amyloidogenic pathway. Chem Biol Interact 2019; 309:108707. [DOI: 10.1016/j.cbi.2019.06.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/24/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022]
|
16
|
Ali MY, Zaib S, Rahman MM, Jannat S, Iqbal J, Park SK, Chang MS. Didymin, a dietary citrus flavonoid exhibits anti-diabetic complications and promotes glucose uptake through the activation of PI3K/Akt signaling pathway in insulin-resistant HepG2 cells. Chem Biol Interact 2019; 305:180-194. [PMID: 30928401 DOI: 10.1016/j.cbi.2019.03.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/12/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
Didymin is a naturally occurring orally active flavonoid glycoside (isosakuranetin 7-O-rutinoside) found in various citrus fruits, which has been previously reported to possess a wide variety of pharmacological activities including anticancer, antioxidant, antinociceptive, neuroprotective, hepatoprotective, inflammatory, and cardiovascular. However, there have not been any reports concerning its anti-diabetic potential until now. Therefore, we evaluated the anti-diabetic potential of didymin via inhibition of α-glucosidase, protein tyrosine phosphatase 1B (PTP1B), rat lens aldose reductase (RLAR), human recombinant AR (HRAR), and advanced glycation end-product (AGE) formation inhibitory assays. Didymin strongly inhibited PTP1B, α-glucosidase, HRAR, RLAR, and AGE in the corresponding assays. Kinetic study revealed that didymin exhibited a mixed type inhibition against α-glucosidase and HRAR, while it competitively inhibited PTP1B and RLAR. Docking simulations of didymin demonstrated negative binding energies and close proximity to residues in the binding pocket of HRAR, RLAR, PTP1B and α-glucosidase, indicating that didymin have high affinity and tight binding capacity towards the active site of these enzymes. Furthermore, we also examined the molecular mechanisms underlying the anti-diabetic effects of didymin in insulin-resistant HepG2 cells which significantly increased glucose uptake and decreased the expression of PTP1B in insulin-resistant HepG2 cells. In addition, didymin activated insulin receptor substrate (IRS)-1 by increasing phosphorylation at tyrosine 895 and enhanced the phosphorylations of phosphoinositide 3-kinase (PI3K), Akt, and glycogen synthasekinase-3(GSK-3). Interestingly, didymin reduced the expression of phosphoenolpyruvate carboxykinase and glucose 6-phosphatase, two key enzymes involved in the gluconeogenesis and leading to a diminished glucose production. The results of the present study clearly demonstrated that didymin will be useful for developing multiple target-oriented therapeutic modalities for treatment of diabetes, and diabetes-associated complications.
Collapse
Affiliation(s)
- Md Yousof Ali
- Department of Chemistry and Biochemistry, Faculty of Arts and Science, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec, Canada; Department of Biology, Faculty of Arts and Science, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec, Canada; Centre for Structural and Functional Genomic, Dept. of Biology, Faculty of Arts and Science, Concordia University, 7141 Sherbrooke St. W., Montreal, QC, Canada; Department of Prescriptionology, College of Korean Medicine, Kyung Hee University, 26, Kyunghee Dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Sumera Zaib
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - M Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Susoma Jannat
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea Molecular Medicine and Nutrition Research Institute, Korea University, Seoul, 02841, Republic of Korea
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Seong Kyu Park
- Department of Prescriptionology, College of Korean Medicine, Kyung Hee University, 26, Kyunghee Dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Mun Seog Chang
- Department of Prescriptionology, College of Korean Medicine, Kyung Hee University, 26, Kyunghee Dae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| |
Collapse
|
17
|
|
18
|
Shukla K, Sonowal H, Saxena A, Ramana KV. Didymin by suppressing NF-κB activation prevents VEGF-induced angiogenesis in vitro and in vivo. Vascul Pharmacol 2019; 115:18-25. [PMID: 30634049 DOI: 10.1016/j.vph.2019.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/05/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022]
Abstract
Although didymin, a dietary flavonoid glycoside from citrus fruits, known to be a potent antioxidant with anti-cancer activities, its role in angiogenesis is not known. In this study, we examined the effect of didymin on VEGF-induced angiogenesis in vitro and in vivo models. Our results suggest that treatment of human umbilical vein endothelial cell (HUVECs) with didymin significantly prevented the VEGF-induced cell proliferation, migration, and invasion. Further, didymin significantly prevented the VEGF-induced endothelial tube formation in culture. Didymin also attenuated the VEGF-induced generation of ROS, activation of NF-κB and the expression of adhesion molecules such as VCAM-1, ICAM-1, and E-selectin in HUVECs. Further, didymin also prevented the VEGF-induced microvessel sprouting in ex vivo mouse aortic rings. Most importantly, didymin significantly prevented the invasion of endothelial cells and formation of blood capillary-like structures in Matrigel plug model of angiogenesis in mice. Thus, our results suggest a novel antiangiogenic efficacy of didymin in addition to its reported anti-cancer properties, which warrant further development of this agent for cancer therapy.
Collapse
Affiliation(s)
- Kirtikar Shukla
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston TX-77555, USA
| | - Himangshu Sonowal
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston TX-77555, USA
| | - Ashish Saxena
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston TX-77555, USA
| | - Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston TX-77555, USA.
| |
Collapse
|
19
|
Recent Trends in Potential Therapeutic Applications of the Dietary Flavonoid Didymin. Molecules 2018; 23:molecules23102547. [PMID: 30301216 PMCID: PMC6222367 DOI: 10.3390/molecules23102547] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 09/29/2018] [Accepted: 10/01/2018] [Indexed: 12/11/2022] Open
Abstract
Didymin (isosakuranetin 7-O-rutinoside) is an orally bioactive dietary flavonoid glycoside first found in citrus fruits. Traditionally, this flavonoid has long been used in Asian countries as a dietary antioxidant. Recent studies have provided newer insights into this pleiotropic compound, which could regulate multiple biological activities of many important signaling molecules in health and disease. Emerging data also presented the potential therapeutic application of dietary flavonoid glycoside didymin against cancer, neurological diseases, liver diseases, cardiovascular diseases, and other diseases. In this review, we briefly introduce the source and extraction methods of didymin, and summarize its potential therapeutic application in the treatment of various diseases, with an emphasis on molecular targets and mechanism that contributes to the observed therapeutic effects. The dietary flavonoid didymin can be used to affect health and disease with multiple therapeutic targets, and it is anticipated that this review will stimulate the future development of this potential dietary medicine.
Collapse
|
20
|
Shukla K, Sonowal H, Saxena A, Ramana KV. Didymin prevents hyperglycemia-induced human umbilical endothelial cells dysfunction and death. Biochem Pharmacol 2018; 152:1-10. [PMID: 29548811 DOI: 10.1016/j.bcp.2018.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/09/2018] [Indexed: 01/01/2023]
Abstract
Although didymin, a flavonoid-O-glycosides compound naturally found in the citrus fruits, has been reported to be a potent anticancer agent in the prevention of various cancers, its role in the prevention of cardiovascular complications is unclear. Most importantly, its effect in the prevention of endothelial dysfunction, a pathological process involved in the atherogenesis, is unknown. We have examined the efficacy of didymin in preventing the high glucose (HG; 25 mM)-induced human umbilical vein endothelial cells (HUVECs) dysfunction. Our results indicate that incubation of HUVECs with HG resulted in the loss of cell viability, and pre-incubation of didymin prevented it. Further, didymin prevented the HG-induced generation of reactive oxygen species (ROS) as well as lipid peroxidation product, malondialdehyde. Pretreatment of HUVECs with didymin also prevented the HG-induced decrease in eNOS and increase in iNOS expressions. Further, didymin prevented the HG-induced monocytes cell adhesion to endothelial cells, expressions of ICAM-1 and VCAM-1 and activation of NF-κB. Didymin also prevented the release of various inflammatory cytokines and chemokines in HG-treated HUVECs. In conclusion, our results demonstrate that didymin with its anti-oxidative and anti-inflammatory actions prevents hyperglycemia-induced endothelial dysfunction and death. Thus, it could be developed as a potential natural therapeutic agent for the prevention of cardiovascular complications in diabetes.
Collapse
Affiliation(s)
- Kirtikar Shukla
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Himangshu Sonowal
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ashish Saxena
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
21
|
Singhal SS, Singhal S, Singhal P, Singhal J, Horne D, Awasthi S. Didymin: an orally active citrus flavonoid for targeting neuroblastoma. Oncotarget 2017; 8:29428-29441. [PMID: 28187004 PMCID: PMC5438742 DOI: 10.18632/oncotarget.15204] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 01/27/2017] [Indexed: 12/15/2022] Open
Abstract
Neuroblastoma, a rapidly growing yet treatment responsive cancer, is the third most common cancer of children and the most common solid tumor in infants. Unfortunately, neuroblastoma that has lost p53 function often has a highly treatment-resistant phenotype leading to tragic outcomes. In the context of neuroblastoma, the functions of p53 and MYCN (which is amplified in ~25% of neuroblastomas) are integrally linked because they are mutually transcriptionally regulated, and because they together regulate the catalytic activity of RNA polymerases. Didymin is a citrus-derived natural compound that kills p53 wild-type as well as drug-resistant p53-mutant neuroblastoma cells in culture. In addition, orally administered didymin causes regression of neuroblastoma xenografts in mouse models, without toxicity to non-malignant cells, neural tissues, or neural stem cells. RKIP is a Raf-inhibitory protein that regulates MYCN activation, is transcriptionally upregulated by didymin, and appears to play a key role in the anti-neuroblastoma actions of didymin. In this review, we discuss how didymin overcomes drug-resistance in p53-mutant neuroblastoma through RKIP-mediated inhibition of MYCN and its effects on GRK2, PKCs, Let-7 micro-RNA, and clathrin-dependent endocytosis by Raf-dependent and -independent mechanisms. In addition, we will discuss studies supporting potential clinical impact and translation of didymin as a low cost, safe, and effective oral agent that could change the current treatment paradigm for refractory neuroblastoma.
Collapse
Affiliation(s)
- Sharad S. Singhal
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, USA
| | - Sulabh Singhal
- University of California at San Diego, La Jolla, San Diego, CA, USA
| | | | - Jyotsana Singhal
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA, USA
| | - Sanjay Awasthi
- Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
22
|
Zarean M, Keikha M, Poursafa P, Khalighinejad P, Amin M, Kelishadi R. A systematic review on the adverse health effects of di-2-ethylhexyl phthalate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:24642-24693. [PMID: 27714658 DOI: 10.1007/s11356-016-7648-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 09/07/2016] [Indexed: 05/23/2023]
Abstract
Di (ethylhexyl) phthalate (DEHP) is a global environmental pollutant. This study aims to systematically review the literature on health effects of exposure to DEHP including effects on reproductive health, carcinogenesis, pregnancy outcome, and respiratory system. The literature search was done through Scopus, ISI Web of Science, Google Scholar, PubMed, Medline, and the reference lists of previous review articles to identify relevant articles published to June 2016 in each subject area. The inclusion criteria were as follows: original research, cross-sectional studies, case-control studies, cohort studies, interventional studies, and review articles. Both human and animal studies were included. The search was limited to English language papers. Conference papers, editorials, and letters were not included. The systematic review was conducted and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Overall, 152 of the 407 papers met the inclusion criteria. We provided an up-to-date comprehensive and critical assessment of both human and animal studies undertaken to explore the effects of DEHP. It revealed that in experimental studies, exposure to DEHP mainly targeted the reproductive, neurodevelopment, and respiratory systems. Human studies reported that exposure to this contaminant had carcinogenic effects and influenced neurodevelopment in early life. This systematic review underscored the adverse health effects of DEHP for pregnant women and the pediatric age group. It summarizes different response of humans and experimental animals to DEHP exposure, and some suggested underlying mechanisms.
Collapse
Affiliation(s)
- Maryam Zarean
- Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Environmental Health Department, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojtaba Keikha
- Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parinaz Poursafa
- Environmental Health Department, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
- Students' Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Pooyan Khalighinejad
- Students' Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Kimia Gostar Saba, Isfahan, Iran
| | - Mohammadmehdi Amin
- Environmental Health Department, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
23
|
Cirmi S, Ferlazzo N, Lombardo GE, Maugeri A, Calapai G, Gangemi S, Navarra M. Chemopreventive Agents and Inhibitors of Cancer Hallmarks: May Citrus Offer New Perspectives? Nutrients 2016; 8:E698. [PMID: 27827912 PMCID: PMC5133085 DOI: 10.3390/nu8110698] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 12/12/2022] Open
Abstract
Fruits and vegetables have long been recognized as potentially important in the prevention of cancer risk. Thus, scientific interest in nutrition and cancer has grown over time, as shown by increasing number of experimental studies about the relationship between diet and cancer development. This review attempts to provide an insight into the anti-cancer effects of Citrus fruits, with a focus on their bioactive compounds, elucidating the main cellular and molecular mechanisms through which they may protect against cancer. Scientific literature was selected for this review with the aim of collecting the relevant experimental evidence for the anti-cancer effects of Citrus fruits and their flavonoids. The findings discussed in this review strongly support their potential as anti-cancer agents, and may represent a scientific basis to develop nutraceuticals, food supplements, or complementary and alternative drugs in a context of a multi-target pharmacological strategy in the oncology.
Collapse
Affiliation(s)
- Santa Cirmi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy.
| | - Nadia Ferlazzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy.
| | - Giovanni E Lombardo
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro I-88100, Italy.
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy.
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina I-98125, Italy.
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, University of Messina, Messina I-98125, Italy.
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council (CNR), Pozzuoli I-80078, Italy.
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy.
| |
Collapse
|