1
|
Shinya Y, Teranishi Y, Hasegawa H, Miyawaki S, Sugiyama T, Shin M, Kawashima M, Umekawa M, Katano A, Nakatomi H, Saito N. Long-term outcomes of stereotactic radiosurgery for intracranial schwannoma in neurofibromatosis type 2: a genetic analysis perspective. J Neurooncol 2024; 166:185-194. [PMID: 38151698 DOI: 10.1007/s11060-023-04530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
PURPOSE Neurofibromatosis type 2 (NF2) is intractable because of multiple tumors involving the nervous system and is clinically diverse and genotype-dependent. Stereotactic radiosurgery (SRS) for NF2-associated schwannomas remains controversial. We aimed to investigate the association between radiosurgical outcomes and mutation types in NF2-associated schwannomas. METHODS This single-institute retrospective study included consecutive NF2 patients with intracranial schwannomas treated with SRS. The patients' types of germline mutations ("Truncating," "Large deletion," "Splice site," "Missense," and "Mosaic") and Halliday's genetic severity scores were examined, and the associations with progression-free rate (PFR) and overall survival (OS) were analyzed. RESULTS The study enrolled 14 patients with NF2 with 22 associated intracranial schwannomas (median follow-up, 102 months). The PFRs in the entire cohort were 95% at 5 years and 90% at 10-20 years. The PFRs tended to be worse in patients with truncating mutation exons 2-13 than in those with other mutation types (91% at 5 years and 82% at 10-20 years vs. 100% at 10-20 years, P = 0.140). The OSs were 89% for patients aged 40 years and 74% for those aged 60 years in the entire cohort and significantly lower in genetic severity group 3 than in the other groups (100% vs. 50% for those aged 35 years; P = 0.016). CONCLUSION SRS achieved excellent PFR for NF2-associated intracranial schwannomas in the mild (group 2A) and moderate (group 2B) groups. SRS necessitates careful consideration for the severe group (group 3), especially in cases with NF2 truncating mutation exons 2-13.
Collapse
Affiliation(s)
- Yuki Shinya
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Yu Teranishi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hirotaka Hasegawa
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Satoru Miyawaki
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takehiro Sugiyama
- Diabetes and Metabolism Information Center, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
- Department of Health Services Research, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Masahiro Shin
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mariko Kawashima
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Motoyuki Umekawa
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Atsuto Katano
- Department of Radiology, The University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | - Hirofumi Nakatomi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
2
|
Gerganov V, Petrov M, Sakelarova T. Schwannomas of Brain and Spinal Cord. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:331-362. [PMID: 37452944 DOI: 10.1007/978-3-031-23705-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Schwannomas are benign tumors originating from the Schwann cells of cranial or spinal nerves. The most common cranial schwannomas originate from the eight cranial nervevestibular schwannomas (VS). VS account for 6-8% of all intracranial tumors, 25-33% of the tumors localized in the posterior cranial fossa, and 80-94% of the tumors in the cerebellopontine angle (CPA). Schwannomas of other cranial nerves/trigeminal, facial, and schwannomas of the lower cranial nerves/are much less frequent. According to the World Health Organization (WHO), intracranial and intraspinal schwannomas are classified as Grade I. Some VS are found incidentally, but most present with hearing loss (95%), tinnitus (63%), disequilibrium (61%), or headache (32%). The neurological symptoms of VSs are mainly due to compression on the surrounding structures, such as the cranial nerves and vessels, or the brainstem. The gold standard for the imaging diagnosis of VS is MRI scan. The optimal management of VSs remains controversial. There are three main management options-conservative treatment or "watch-and-wait" policy, surgical treatment, and radiotherapy in all its variations. Currently, surgery of VS is not merely a life-saving procedure. The functional outcome of surgery and the quality of life become issues of major importance. The most appropriate surgical approach for each patient should be considered according to some criteria including indications, risk-benefit ratio, and prognosis of each patient. The approaches to the CPA and VS removal are generally divided in posterior and lateral. The retrosigmoid suboccipital approach is a safe and simple approach, and it is favored for VS surgery in most neurosurgical centers. Radiosurgery is becoming more and more available nowadays and is established as one of the main treatment modalities in VS management. Radiosurgery (SRS) is performed with either Gamma knife, Cyber knife, or linear accelerator. Larger tumors are being increasingly frequently managed with combined surgery and radiosurgery. The main goal of VS management is preservation of neurological function - facial nerve function, hearing, etc. The reported recurrence rate after microsurgical tumor removal is 0.5-5%. Postoperative follow-up imaging is essential to diagnose any recurrence.
Collapse
Affiliation(s)
- Venelin Gerganov
- International Neuroscience Institute, Hannover, Germany
- University Multiprofile Hospital for Active Treatment With Emergency Medicine N. I. Pirogov, Sofia, Bulgaria
| | - Mihail Petrov
- University Multiprofile Hospital for Active Treatment With Emergency Medicine N. I. Pirogov, Sofia, Bulgaria.
| | | |
Collapse
|
3
|
Kang Y, Li J. The heterogeneous subclones might be induced by cycling hypoxia which was aggravated along with the luminal A tumor growth. Tissue Cell 2022; 77:101844. [DOI: 10.1016/j.tice.2022.101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
|
4
|
Current Understanding of Neurofibromatosis Type 1, 2, and Schwannomatosis. Int J Mol Sci 2021; 22:ijms22115850. [PMID: 34072574 PMCID: PMC8198724 DOI: 10.3390/ijms22115850] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
Neurofibromatosis (NF) is a neurocutaneous syndrome characterized by the development of tumors of the central or peripheral nervous system including the brain, spinal cord, organs, skin, and bones. There are three types of NF: NF1 accounting for 96% of all cases, NF2 in 3%, and schwannomatosis (SWN) in <1%. The NF1 gene is located on chromosome 17q11.2, which encodes for a tumor suppressor protein, neurofibromin, that functions as a negative regulator of Ras/MAPK and PI3K/mTOR signaling pathways. The NF2 gene is identified on chromosome 22q12, which encodes for merlin, a tumor suppressor protein related to ezrin-radixin-moesin that modulates the activity of PI3K/AKT, Raf/MEK/ERK, and mTOR signaling pathways. In contrast, molecular insights on the different forms of SWN remain unclear. Inactivating mutations in the tumor suppressor genes SMARCB1 and LZTR1 are considered responsible for a majority of cases. Recently, treatment strategies to target specific genetic or molecular events involved in their tumorigenesis are developed. This study discusses molecular pathways and related targeted therapies for NF1, NF2, and SWN and reviews recent clinical trials which involve NF patients.
Collapse
|
5
|
Fujii M, Kobayakawa M, Saito K, Inano A, Morita A, Hasegawa M, Mukasa A, Mitsuhara T, Goto T, Yamaguchi S, Tamiya T, Nakatomi H, Oya S, Takahashi F, Sato T, Bakhit M. Rationale and Design of BeatNF2 Trial: A Clinical Trial to Assess the Efficacy and Safety of Bevacizumab in Patients with Neurofibromatosis Type 2 Related Vestibular Schwannoma. ACTA ACUST UNITED AC 2021; 28:726-739. [PMID: 33572546 PMCID: PMC7985777 DOI: 10.3390/curroncol28010071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Neurofibromatosis type 2 (NF2) is a rare genetic hereditary disease characterized by multiple central nervous system tumors, most frequently bilateral vestibular schwannomas (VSs). No chemotherapeutic agents are available for clinical use, and surgery and radiotherapy are the only therapeutic options available now. Still, neither treatment option alleviates hearing loss in patients with NF2 and VS; they may even exacerbate it. However, bevacizumab has been reported to be effective in suppressing the tumor’s growth and has shown unprecedented efficacy in improving hearing. We describe a new ongoing and novel clinical trial, BeatNF2, a randomized, double-blinded, placebo-controlled, multicenter trial to assess bevacizumab’s efficacy and safety in patients with NF2. The study’s primary endpoint is improved hearing function 24 weeks after the beginning of the treatment protocol. Abstract Neurofibromatosis type 2 (NF2) causes bilateral vestibular schwannomas (VSs), leading to deafness. VS is treated by surgery or radiation, but neither treatments prevent hearing loss. Bevacizumab was found to be effective in suppressing the tumor’s growth and may help to improve hearing. We are conducting a randomized, double-blind, multicenter clinical trial to verify the efficacy and safety of bevacizumab in NF2-related VS. The primary objective is to evaluate the efficacy of bevacizumab in improving hearing in the affected ear. One of the secondary objectives is to evaluate bevacizumab’s efficacy in rechallenge treatment in relapsed cases. Sixty patients will randomly receive either bevacizumab or a placebo and will be clinically observed for 48 weeks in the initial intervention phase. In the first half (24 weeks), they will receive either 5 mg/kg of bevacizumab or a placebo drug. In the second half, all patients will receive 5 mg/kg of bevacizumab. If hearing function deteriorated in a patient who had shown improvement during the first phase, a rechallenge dose with bevacizumab would be offered.
Collapse
Affiliation(s)
- Masazumi Fujii
- Department of Neurosurgery, Fukushima Medical University, Fukushima 960-1247, Japan; (K.S.); (T.S.); (M.B.)
- Correspondence: ; Tel.: +81-24-547-1268
| | - Masao Kobayakawa
- Medical Research Center, Fukushima Medical University, Fukushima 960-1247, Japan; (M.K.); (A.I.)
| | - Kiyoshi Saito
- Department of Neurosurgery, Fukushima Medical University, Fukushima 960-1247, Japan; (K.S.); (T.S.); (M.B.)
| | - Akihiro Inano
- Medical Research Center, Fukushima Medical University, Fukushima 960-1247, Japan; (M.K.); (A.I.)
| | - Akio Morita
- Department of Neurological Surgery, Nippon Medical School, Bunkyo-Ku, Tokyo 113-8602, Japan;
| | - Mitsuhiro Hasegawa
- Department of Neurosurgery, Fujita Health University, Toyoake 470-1192, Japan;
| | - Akitake Mukasa
- Department of Neurosurgery, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Takafumi Mitsuhara
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 739-8511, Japan;
| | - Takeo Goto
- Department of Neurosurgery, Osaka City University, Osaka 558-8585, Japan;
| | - Shigeru Yamaguchi
- Department of Neurosurgery, Hokkaido University, Sapporo 060-0808, Japan;
| | - Takashi Tamiya
- Department of Neurosurgery, Kagawa University, Takamatsu 760-0016, Japan;
| | - Hirofumi Nakatomi
- Department of Neurosurgery, University of Tokyo, Bunkyo-Ku, Tokyo 113-8654, Japan;
| | - Soichi Oya
- Department of Neurosurgery, Saitama Medical Center, Kawagoe 350-8550, Japan;
| | - Fumiaki Takahashi
- Center for Liberal Arts and Sciences, Iwate Medical University, Morioka 020-0023, Japan;
| | - Taku Sato
- Department of Neurosurgery, Fukushima Medical University, Fukushima 960-1247, Japan; (K.S.); (T.S.); (M.B.)
| | - Mudathir Bakhit
- Department of Neurosurgery, Fukushima Medical University, Fukushima 960-1247, Japan; (K.S.); (T.S.); (M.B.)
| | | |
Collapse
|
6
|
Tripathi M, Deora H, Kumar N, Batish A, Dutta P, Gurnani J, Mohindra S, Hussain Shahid A, Kataria K, Agrahari A, Singh Kataria M, Ahuja CK, Singh P. Role of Bevacizumab as a prophylactic and rehabilitative treatment modality in cases of sporadic and syndromic vestibular schwannoma: Fifty shades of grey! INTERDISCIPLINARY NEUROSURGERY 2020. [DOI: 10.1016/j.inat.2019.100607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
7
|
Tamura R, Fujioka M, Morimoto Y, Ohara K, Kosugi K, Oishi Y, Sato M, Ueda R, Fujiwara H, Hikichi T, Noji S, Oishi N, Ogawa K, Kawakami Y, Ohira T, Yoshida K, Toda M. A VEGF receptor vaccine demonstrates preliminary efficacy in neurofibromatosis type 2. Nat Commun 2019; 10:5758. [PMID: 31848332 PMCID: PMC6917794 DOI: 10.1038/s41467-019-13640-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
The anti-VEGF antibody bevacizumab has shown efficacy for the treatment of neurofibromatosis type 2 (NF2). Theoretically, vascular endothelial growth factor receptors (VEGFRs)-specific cytotoxic T lymphocytes (CTLs) can kill both tumor vessel cells and tumor cells expressing VEGFRs. Here we show an exploratory clinical study of VEGFRs peptide vaccine in seven patients with progressive NF2-derived schwannomas. Hearing improves in 2/5 assessable patients (40%) as determined by international guidelines, with increases in word recognition scores. Tumor volume reductions of ≥20% are observed in two patients, including one in which bevacizumab had not been effective. There are no severe adverse events related to the vaccine. Both VEGFR1-specific and VEGFR2-specific CTLs are induced in six patients. Surgery is performed after vaccination in two patients, and significant reductions in the expression of VEGFRs in schwannomas are observed. Therefore, this clinical immunotherapy study demonstrates the safety and preliminary efficacy of VEGFRs peptide vaccination in patients with NF2. The anti-vascular endothelial growth factor (VEGF) antibody bevacizumab has shown efficacy for the treatment of neurofibromatosis type 2 (NF2). Here, the authors show that VEGFRs peptide vaccination can improve hearing and reduce tumor volume in NF2 patients, including in previously bevacizumab resistant tumors.
Collapse
Affiliation(s)
- Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masato Fujioka
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yukina Morimoto
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kentaro Ohara
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kenzo Kosugi
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yumiko Oishi
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Mizuto Sato
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ryo Ueda
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hirokazu Fujiwara
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tetsuro Hikichi
- OncoTherapy Science, Inc., 3-2-1, Sakado, Takatsu-ku, Kawasaki City, Kanagawa, 213-0012, Japan
| | - Shinobu Noji
- Division of Cellular Signaling Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Naoki Oishi
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kaoru Ogawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takayuki Ohira
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazunari Yoshida
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|