1
|
Snyers L, Laffer S, Löhnert R, Weipoltshammer K, Schöfer C. CX-5461 causes nucleolar compaction, alteration of peri- and intranucleolar chromatin arrangement, an increase in both heterochromatin and DNA damage response. Sci Rep 2022; 12:13972. [PMID: 35978024 PMCID: PMC9385865 DOI: 10.1038/s41598-022-17923-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/02/2022] [Indexed: 11/09/2022] Open
Abstract
In this study, we characterize the changes in nucleolar morphology and its dynamics induced by the recently introduced compound CX-5461, an inhibitor of ribosome synthesis. Time-lapse imaging, immunofluorescence and ultrastructural analysis revealed that exposure of cells to CX-5461 has a profound impact on their nucleolar morphology and function: nucleoli acquired a compact, spherical shape and display enlarged, ring-like masses of perinucleolar condensed chromatin. Tunnels consisting of chromatin developed as transient structures running through nucleoli. Nucleolar components involved in rRNA transcription, fibrillar centres and dense fibrillar component with their major constituents ribosomal DNA, RNA polymerase I and fibrillarin maintain their topological arrangement but become reduced in number and move towards the nucleolar periphery. Nucleolar changes are paralleled by an increased amount of the DNA damage response indicator γH2AX and DNA unwinding enzyme topoisomerase I in nucleoli and the perinucleolar area suggesting that CX-5461 induces torsional stress and DNA damage in rDNA. This is corroborated by the irreversibility of the observed altered nucleolar phenotypes. We demonstrate that incubation with CX-5461, apart from leading to specific morphological alterations, increases senescence and decreases cell replication. We discuss that these alterations differ from those observed with other drugs interfering with nucleolar functions.
Collapse
Affiliation(s)
- Luc Snyers
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria
| | - Sylvia Laffer
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria
| | - Renate Löhnert
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria
| | - Klara Weipoltshammer
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria
| | - Christian Schöfer
- Department for Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstr. 17, 1090, Vienna, Austria.
| |
Collapse
|
2
|
Poulose N, Forsythe N, Polonski A, Gregg G, Maguire S, Fuchs M, Minner S, Sauter G, McDade SS, Mills IG. VPRBP Functions Downstream of the Androgen Receptor and OGT to Restrict p53 Activation in Prostate Cancer. Mol Cancer Res 2022; 20:1047-1060. [PMID: 35348747 PMCID: PMC9381113 DOI: 10.1158/1541-7786.mcr-21-0477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 02/13/2022] [Accepted: 03/23/2022] [Indexed: 01/07/2023]
Abstract
Androgen receptor (AR) is a major driver of prostate cancer initiation and progression. O-GlcNAc transferase (OGT), the enzyme that catalyzes the covalent addition of UDP-N-acetylglucosamine (UDP-GlcNAc) to serine and threonine residues of proteins, is often highly expressed in prostate cancer with its expression correlated with high Gleason score. In this study, we have identified an AR and OGT coregulated factor, Vpr (HIV-1) binding protein (VPRBP) also known as DDB1 and CUL4 Associated Factor 1 (DCAF1). We show that VPRBP is regulated by the AR at the transcript level, and stabilized by OGT at the protein level. VPRBP knockdown in prostate cancer cells led to a significant decrease in cell proliferation, p53 stabilization, nucleolar fragmentation, and increased p53 recruitment to the chromatin. In human prostate tumor samples, VPRBP protein overexpression correlated with AR amplification, OGT overexpression, a shorter time to postoperative biochemical progression and poor clinical outcome. In clinical transcriptomic data, VPRBP expression was positively correlated with the AR and also with AR activity gene signatures. IMPLICATIONS In conclusion, we have shown that VPRBP/DCAF1 promotes prostate cancer cell proliferation by restraining p53 activation under the influence of the AR and OGT.
Collapse
Affiliation(s)
- Ninu Poulose
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom.,Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Corresponding Authors: Ian G. Mills, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom. E-mail: ; and Ninu Poulose,
| | - Nicholas Forsythe
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom
| | - Adam Polonski
- University Medical Center Hamburg-Eppendorf Department of Pathology, Hamburg, Germany
| | - Gemma Gregg
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom
| | - Sarah Maguire
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom
| | - Marc Fuchs
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom
| | - Sarah Minner
- University Medical Center Hamburg-Eppendorf Department of Pathology, Hamburg, Germany
| | - Guido Sauter
- University Medical Center Hamburg-Eppendorf Department of Pathology, Hamburg, Germany
| | - Simon S. McDade
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom
| | - Ian G. Mills
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, United Kingdom.,Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Corresponding Authors: Ian G. Mills, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom. E-mail: ; and Ninu Poulose,
| |
Collapse
|
3
|
Öztürk E, Despot-Slade E, Pichler M, Zenobi-Wong M. RhoA activation and nuclearization marks loss of chondrocyte phenotype in crosstalk with Wnt pathway. Exp Cell Res 2017; 360:113-124. [PMID: 28865751 DOI: 10.1016/j.yexcr.2017.08.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/20/2017] [Accepted: 08/29/2017] [Indexed: 12/24/2022]
Abstract
De-differentiation comprises a major drawback for the use of autologous chondrocytes in cartilage repair. Here, we investigate the role of RhoA and canonical Wnt signaling in chondrocyte phenotype. Chondrocyte de-differentiation is accompanied by an upregulation and nuclear localization of RhoA. Effectors of canonical Wnt signaling including β-catenin and YAP/TAZ are upregulated in de-differentiating chondrocytes in a Rho-dependent manner. Inhibition of Rho activation with C3 transferase inhibits nuclear localization of RhoA, induces expression of chondrogenic markers on 2D and enhances the chondrogenic effect of 3D culturing. Upregulation of chondrogenic markers by Rho inhibition is accompanied by loss of canonical Wnt signaling markers in 3D or on 2D whereas treatment of chondrocytes with Wnt-3a abrogates this effect. However, induction of canonical Wnt signaling inhibits chondrogenic markers on 2D but enhances chondrogenic re-differentiation on 2D with C3 transferase or in 3D. These data provide insights on the context-dependent role of RhoA and Wnt signaling in de-differentiation and on mechanisms to induce chondrogenic markers for therapeutic approaches.
Collapse
Affiliation(s)
- Ece Öztürk
- Cartilage Engineering + Regeneration Laboratory, ETH Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Evelin Despot-Slade
- Cartilage Engineering + Regeneration Laboratory, ETH Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Michael Pichler
- Cartilage Engineering + Regeneration Laboratory, ETH Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Marcy Zenobi-Wong
- Cartilage Engineering + Regeneration Laboratory, ETH Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland.
| |
Collapse
|