1
|
Shirani N, Abdi N, Chehelgerdi M, Yaghoobi H, Chehelgerdi M. Investigating the role of exosomal long non-coding RNAs in drug resistance within female reproductive system cancers. Front Cell Dev Biol 2025; 13:1485422. [PMID: 39925739 PMCID: PMC11802832 DOI: 10.3389/fcell.2025.1485422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025] Open
Abstract
Exosomes, as key mediators of intercellular communication, have been increasingly recognized for their role in the oncogenic processes, particularly in facilitating drug resistance. This article delves into the emerging evidence linking exosomal lncRNAs to the modulation of drug resistance mechanisms in cancers such as ovarian, cervical, and endometrial cancer. It synthesizes current research findings on how these lncRNAs influence cancer cell survival, tumor microenvironment, and chemotherapy efficacy. Additionally, the review highlights potential therapeutic strategies targeting exosomal lncRNAs, proposing a new frontier in overcoming drug resistance. By mapping the interface of exosomal lncRNAs and drug resistance, this article aims to provide a comprehensive understanding that could pave the way for innovative treatments and improved patient outcomes in female reproductive system cancers.
Collapse
Affiliation(s)
- Nooshafarin Shirani
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Neda Abdi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Hajar Yaghoobi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
2
|
Iser IC, Bertoni APS, Beckenkamp LR, Consolaro MEL, Maria-Engler SS, Wink MR. Adenosinergic Signalling in Cervical Cancer Microenvironment. Expert Rev Mol Med 2025; 27:e5. [PMID: 39762204 PMCID: PMC11707834 DOI: 10.1017/erm.2024.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 01/11/2025]
Abstract
Despite the emergence of the first human papillomavirus vaccine, the incidence of cervical cancer is still responsible for more than 350,000 deaths yearly. Over the past decade, ecto-5'-nucleotidase (CD73/5'-NT) and extracellular adenosine (ADO) signalling has been the subject of many investigations to target cancer progression. In general, the adenosinergic axis has been linked to tumourigenic effects. However, CD73 can play contradictory effects, probably dependent on the tumour type, tumour microenvironment and tumour stage, thus being in some circumstances, inversely related to tumour progression. We herein reviewed the pathophysiological function of CD73 in cervical cancer and performed in silico analysis of the main components of the adenosinergic signalling in human tissues of cervical cancer compared to non-tumour cervix tissue. Our data showed that the NT5E gene, that encoded CD73, is hypermethylated, leading to a decreased CD73 expression in cervical cancer cells compared to normal cells. Consequently, the high availability of ADO cytoplasmatic/extracellular leads to its conversion to AMP by ADK, culminating in global hypermethylation. Therefore, epigenetic modulation may reveal a new role for CD73 in cervical cancer.
Collapse
Affiliation(s)
- Isabele Cristiana Iser
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Ana Paula Santin Bertoni
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Liziane Raquel Beckenkamp
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Marcia Edilaine Lopes Consolaro
- Department of Clinical Analysis and Biomedicine, Division of Clinical Cytology, State University of Maringá, Maringá, PR, Brazil
| | - Silvya Stuchi Maria-Engler
- Department of Clinical Chemistry and Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marcia Rosângela Wink
- Department of Basics Health Sciences and Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Tripathi T, Yadav J, Janjua D, Chaudhary A, Joshi U, Senrung A, Chhokar A, Aggarwal N, Bharti AC. Targeting Cervical Cancer Stem Cells by Phytochemicals. Curr Med Chem 2024; 31:5222-5254. [PMID: 38288813 DOI: 10.2174/0109298673281823231222065616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 09/06/2024]
Abstract
Cervical cancer (CaCx) poses a significant global health challenge, ranking as the fourth most common cancer among women worldwide. Despite the emergence of advanced treatment strategies, recurrence remains a bottleneck in favorable treatment outcomes and contributes to poor prognosis. The chemo- or radio-therapy resistance coupled with frequent relapse of more aggressive tumors are some key components that contribute to CaCx-related mortality. The onset of therapy resistance and relapse are attributed to a small subset of, slow-proliferating Cancer Stem Cells (CSC). These CSCs possess the properties of tumorigenesis, self-renewal, and multi-lineage differentiation potential. Because of slow cycling, these cells maintain themselves in a semi-quiescent stage and protect themselves from different anti-proliferative anti-cancer drugs. Keeping in view recent advances in their phenotypic and functional characterization, the feasibility of targeting CSC and associated stem cell signaling bears a strong translational value. The presence of CSC has been reported in CaCx (CCSC) which remains a forefront area of research. However, we have yet to identify clinically useful leads that can target CCSC. There is compelling evidence that phytochemicals, because of their advantages over synthetic anticancer drugs, could emerge as potential therapeutic leads to target these CCSCs. The present article examined the potential of phytochemicals with reported anti-CSC properties and evaluated their future in preclinical and clinical applications against CaCx.
Collapse
Affiliation(s)
- Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Udit Joshi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Anna Senrung
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
- Neuropharmacology and Drug Delivery Laboratory, Department of Zoology, Daulat Ram College, University of Delhi (North Campus), Delhi, 110007, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
- Deshbandhu College, University of Delhi, New Delhi, 110019, India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| |
Collapse
|
4
|
Liu Y, Zheng P, Jiao T, Zhang M, Wu Y, Zhang X, Wang S, Zhao Z. Paiteling induces apoptosis of cervical cancer cells by down-regulation of the E6/E7-Pi3k/Akt pathway: A network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116062. [PMID: 36535331 DOI: 10.1016/j.jep.2022.116062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/29/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Human papillomavirus (HPV) infection is considered to be the main pathogen causing intraepithelial neoplasia. Paiteling (PTL) has been used to treat intraepithelial neoplasia caused by human papillomavirus (HPV) infection for more than 20 years in China, but its specific mechanism of action is not very clear, and further research is still needed. OBJECTIVE This study designed a comprehensive strategy to study the pharmacological mechanism of paiteling in regulating cervical cancer cell apoptosis by integrating LC-MS/MS, network pharmacology and pharmacological experiments. METHODS We used liquid chromatography-tandem mass spectrometry to detect the active substances in PTL and performed protein-protein interaction analysis on the intersection of the targets of these key compounds and the targets of intraepithelial neoplasia. Additionally, by using Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes (KEGG), the potential pathway of PTL against HPV-induced intraepithelial neoplasia was predicted. Finally, we used HeLa and Ect1/E6E7 cells for experimental verification. RESULTS The protein-protein interaction network predicted that AKT1, TP53, MYC, STAT3, MTOR, and MAPK were pivotal targets for PTL to inhibit epithelial neoplasia. KEGG enrichment analysis showed that the Pi3k/Akt pathway and HPV infection had scientific significance. Compared to the control group, after PTL diluent stimulated HeLa and Ect1/E6E7 cells for 24 h, cell viability, migration, and invasion capabilities were significantly reduced, and cell apoptosis was significantly increased, conforming to a dose-effect relationship and time-effect relationship. PCR, cellular immunohistochemistry, and western blot experiments showed that PTL reduced the expression of E6, Pi3k, E7, Akt, Bcl-xl, while increasing the expression of Bad in HeLa and Ect1/E6E7 cells. CONCLUSION PTL can induce cervical cancer cell apoptosis by inhibiting the E6/E7-Pi3k/Akt signaling pathway. It may provide an effective alternative strategy of traditional Chinese medicine for the treatment of epithelial neoplasia caused by HPV infection.
Collapse
Affiliation(s)
- Yunhua Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Pengfei Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tingting Jiao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mengmeng Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yingjie Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xinjiang Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuyue Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zongjiang Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
5
|
Circular RNA circ_0004488 Increases Cervical Cancer Paclitaxel Resistance via the miR-136/MEX3C Signaling Pathway. JOURNAL OF ONCOLOGY 2022; 2022:5435333. [DOI: 10.1155/2022/5435333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
Circular RNAs have been proven to play a pivotal role in cervical cancer development, progression, and treatment resistance. However, it is unclear how these RNAs influence chemoresistance in cervical cancer, particularly cancer stem cell (CSC)-like properties. In this study, we found that circRNA circ_0004488 was highly expressed in CSC-enriched subsets of cervical cancer cell lines. The expression of circ_0004488 was upregulated in cervical cancer cells that were resistant to paclitaxel. When circ_0004488 expression was high, the prognosis was poor. Specifically, we discovered that knocking down circ_0004488 greatly decreased the development of cervical cancer cells in vivo by decreasing cell proliferation, invasion, and sphere formation. By blocking cir_0004488, cervical cancer cells become more sensitive to paclitaxel. In cervical cancer cells, circ_0004488 acted as a microRNA-136 (miR-136) sponge, increasing the expression of MEX3C (a direct target gene of miR-136) using dual-luciferase reporter assays. Moreover, MEX3C downregulation significantly reduced cell proliferation, invasion, sphere formation, and paclitaxel resistance. In conclusion, circ_0004488 was shown to induce CSC-like features and paclitaxel resistance through the miR-136/MEX3C axis. Therefore, circ_0004488 might be a good therapeutic target for treating cervical cancer.
Collapse
|
6
|
Hermawan A, Ikawati M, Jenie RI, Khumaira A, Putri H, Nurhayati IP, Angraini SM, Muflikhasari HA. Identification of potential therapeutic target of naringenin in breast cancer stem cells inhibition by bioinformatics and in vitro studies. Saudi Pharm J 2021; 29:12-26. [PMID: 33603536 PMCID: PMC7873751 DOI: 10.1016/j.jsps.2020.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer therapy is a strategic measure in inhibiting breast cancer stem cell (BCSC) pathways. Naringenin, a citrus flavonoid, was found to increase breast cancer cells' sensitivity to chemotherapeutic agents. Bioinformatics study and 3D tumorsphere in vitro modeling in breast cancer (mammosphere) were used in this study, which aims to explore the potential therapeutic targets of naringenin (PTTNs) in inhibiting BCSCs. Bioinformatic analyses identified direct target proteins (DTPs), indirect target proteins (ITPs), naringenin-mediated proteins (NMPs), BCSC regulatory genes, and PTTNs. The PTTNs were further analyzed for gene ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, protein-protein interaction (PPI) networks, and hub protein selection. Mammospheres were cultured in serum-free media. The effects of naringenin were measured by MTT-based cytotoxicity, mammosphere forming potential (MFP), colony formation, scratch wound-healing assay, and flow cytometry-based cell cycle analyses and apoptosis assays. Gene expression analysis was performed using real-time quantitative polymerase chain reaction (q-RT PCR). Bioinformatics analysis revealed p53 and estrogen receptor alpha (ERα) as PTTNs, and KEGG pathway enrichment analysis revealed that TGF-ß and Wnt/ß-catenin pathways are regulated by PTTNs. Naringenin demonstrated cytotoxicity and inhibited mammosphere and colony formation, migration, and epithelial to mesenchymal transition in the mammosphere. The mRNA of tumor suppressors P53 and ERα were downregulated in the mammosphere, but were significantly upregulated upon naringenin treatment. By modulating the P53 and ERα mRNA, naringenin has the potential of inhibiting BCSCs. Further studies on the molecular mechanism and formulation of naringenin in BCSCs would be beneficial for its development as a BCSC-targeting drug.
Collapse
Key Words
- BCSCs, Breast cancer stem cells
- Bioinformatics
- Breast cancer stem cells
- CSC, Cancer stem cell
- DAVID, Database for Annotation, Visualization, and Integrated Discovery
- DTPs, Direct target proteins
- DXR, Doxorubicin
- EGF, Epidermal growth factor
- EMT, Epithelial to mesenchymal transition
- ERα
- FITC, fluorescein isothiocyanate
- GO, Gene ontology
- ITPs, Indirect target proteins
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- MET, Metformin
- MFP, Mammosphere forming potential
- NAR, Naringenin
- NMPs, Naringenin-mediated proteins
- Naringenin
- P53
- PE, phycoerythrin
- PPI, Protein-protein interaction
- PTTN, Potential target of naringenin in inhibition of BCSCs
- ROS, Reactive oxygen species
- Targeted therapy
- q-RT PCR, Quantitative real-time polymerase chain reaction
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| | - Muthi Ikawati
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| | - Riris Istighfari Jenie
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| | - Annisa Khumaira
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| | - Herwandhani Putri
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| | - Ika Putri Nurhayati
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| | - Sonia Meta Angraini
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| | - Haruma Anggraini Muflikhasari
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| |
Collapse
|
7
|
Moghadam ER, Ang HL, Asnaf SE, Zabolian A, Saleki H, Yavari M, Esmaeili H, Zarrabi A, Ashrafizadeh M, Kumar AP. Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives. Biomolecules 2020; 10:E1374. [PMID: 32992587 PMCID: PMC7600196 DOI: 10.3390/biom10101374] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacological profile of phytochemicals has attracted much attention to their use in disease therapy. Since cancer is a major problem for public health with high mortality and morbidity worldwide, experiments have focused on revealing the anti-tumor activity of natural products. Flavonoids comprise a large family of natural products with different categories. Chrysin is a hydroxylated flavonoid belonging to the flavone category. Chrysin has demonstrated great potential in treating different disorders, due to possessing biological and therapeutic activities, such as antioxidant, anti-inflammatory, hepatoprotective, neuroprotective, etc. Over recent years, the anti-tumor activity of chrysin has been investigated, and in the present review, we provide a mechanistic discussion of the inhibitory effect of chrysin on proliferation and invasion of different cancer cells. Molecular pathways, such as Notch1, microRNAs, signal transducer and activator of transcription 3 (STAT3), nuclear factor-kappaB (NF-κB), PI3K/Akt, MAPK, etc., as targets of chrysin are discussed. The efficiency of chrysin in promoting anti-tumor activity of chemotherapeutic agents and suppressing drug resistance is described. Moreover, poor bioavailability, as one of the drawbacks of chrysin, is improved using various nanocarriers, such as micelles, polymeric nanoparticles, etc. This updated review will provide a direction for further studies in evaluating the anti-tumor activity of chrysin.
Collapse
Affiliation(s)
- Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Hui Li Ang
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
| | - Sholeh Etehad Asnaf
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, IslamicAzad University, Tehran 165115331, Iran;
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Mohammad Yavari
- Nursing and Midwifery Department, Islamic Azad University, Tehran Medical Sciences Branch, Tehran 1916893813, Iran;
| | - Hossein Esmaeili
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Milad Ashrafizadeh
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
| |
Collapse
|
8
|
Naghizadeh S, Mansoori B, Mohammadi A, Sakhinia E, Baradaran B. Gene Silencing Strategies in Cancer Therapy: An Update for Drug Resistance. Curr Med Chem 2019; 26:6282-6303. [DOI: 10.2174/0929867325666180403141554] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/10/2018] [Accepted: 03/29/2018] [Indexed: 12/14/2022]
Abstract
RNAi, post-transcriptional gene silencing mechanism, could be considered as one of the
most important breakthroughs and rapidly growing fields in science. Researchers are trying to use this
discovery in the treatment of various diseases and cancer is one of them although there are multiple
treatment procedures for treatment-resistant cancers, eradication of resistance remain as an unsolvable
problem yet. The current review summarizes both transcriptional and post-transcriptional gene silencing
mechanisms, and highlights mechanisms leading to drug-resistance such as, drug efflux, drug inactivation,
drug target alteration, DNA damages repair, and the epithelial-mesenchymal transition, as
well as the role of tumor cell heterogeneity and tumor microenvironment, involving genes in these
processes. It ultimately points out the obstacles of RNAi application for in vivo treatment of diseases
and progressions that have been achieved in this field.
Collapse
Affiliation(s)
- Sanaz Naghizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Gong D, Feng PC, Ke XF, Kuang HL, Pan LL, Ye Q, Wu JB. Silencing Long Non-coding RNA LINC01224 Inhibits Hepatocellular Carcinoma Progression via MicroRNA-330-5p-Induced Inhibition of CHEK1. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:482-497. [PMID: 31902747 PMCID: PMC6948252 DOI: 10.1016/j.omtn.2019.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/27/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) accounts for approximately 85%–90% of primary liver cancers. Based on in silico analysis, differentially expressed long non-coding RNA (lncRNA) LINC01224 in HCC, the downstream microRNA (miRNA) miR-330-5p, and its target gene checkpoint kinase 1 (CHEK1) were selected as research subjects. Herein, this study was designed to evaluate their interaction effects on the malignant phenotypes of HCC cells. LINC01224 and CHEK1 were upregulated and miR-330-5p was downregulated in HCC cells. miR-330-5p shared negative correlations with LINC01224 and CHEK1, and LINC01224 shared a positive correlation with CHEK1. Notably, LINC01224 could specifically bind to miR-330-5p, and CHEK1 was identified as a target gene of miR-330-5p. When LINC01224 was silenced or miR-330-5p was elevated, the sphere and colony formation abilities and proliferative, migrative, and invasive potentials of HCC cells were diminished, while cell cycle arrest and apoptosis were enhanced. Moreover, LINC01224 induced HCC progression in vitro and accelerated tumor formation in nude mice by increasing CHEK1 expression. The key findings of the present study demonstrated that silencing LINC01224 could downregulate the expression of CHEK1 by competitively binding to miR-330-5p, thus inhibiting HCC progression. This result highlights the LINC01224/miR-330-5p/CHEK1 axis as a novel molecular mechanism involved in the pathology of HCC.
Collapse
Affiliation(s)
- Dan Gong
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China; Jiangxi Key Laboratory of Cinical and Translational Cancer Research, Nanchang 330006, P.R. China
| | - Peng-Cheng Feng
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China; Jiangxi Key Laboratory of Cinical and Translational Cancer Research, Nanchang 330006, P.R. China
| | - Xing-Fei Ke
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China; Jiangxi Key Laboratory of Cinical and Translational Cancer Research, Nanchang 330006, P.R. China
| | - Hui-Lan Kuang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China; Jiangxi Key Laboratory of Cinical and Translational Cancer Research, Nanchang 330006, P.R. China
| | - Li-Li Pan
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China; Jiangxi Key Laboratory of Cinical and Translational Cancer Research, Nanchang 330006, P.R. China
| | - Qiang Ye
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China; Jiangxi Key Laboratory of Cinical and Translational Cancer Research, Nanchang 330006, P.R. China
| | - Jian-Bing Wu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China; Jiangxi Key Laboratory of Cinical and Translational Cancer Research, Nanchang 330006, P.R. China.
| |
Collapse
|
10
|
Brodaczewska KK, Bielecka ZF, Maliszewska-Olejniczak K, Szczylik C, Porta C, Bartnik E, Czarnecka AM. Metastatic renal cell carcinoma cells growing in 3D on poly‑D‑lysine or laminin present a stem‑like phenotype and drug resistance. Oncol Rep 2019; 42:1878-1892. [PMID: 31545459 PMCID: PMC6788014 DOI: 10.3892/or.2019.7321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
3D spheroids are built by heterogeneous cell types in different proliferative and metabolic states and are enriched in cancer stem cells. The main aim of the study was to investigate the usefulness of a novel metastatic renal cell carcinoma (RCC) 3D spheroid culture for in vitro cancer stem cell physiology research and drug toxicity screening. RCC cell lines, Caki-1 (skin metastasis derived) and ACHN (pleural effusion derived), were efficiently cultured in growth-factor/serum deprived, defined, StemXvivo and Nutristem medium on laminin-coated or poly-D-lysine-coated plates. In optimal 3D culture conditions, ACHN cells (StemXVivo/poly-D-lysine) formed small spheroids with remaining adherent cells of an epithelial phenotype, while Caki-1 cells (StemXVivo/laminin) formed large dark spheroids with significantly reduced cell viability in the center. In the 3D structures, expression levels of genes encoding stem transcription factors (OCT4, SOX2, NES) and RCC stem cell markers (CD105, CD133) were deregulated in comparison to these expression levels in traditional 2D culture. Sunitinib, epirubicin and doxycycline were more toxic to cells cultured in monolayers than for cells in 3D spheroids. High numbers of cells arrested in the G0/G1 phase of the cell cycle were found in spheroids under sunitinib treatment. We showed that metastatic RCC 3D spheroids supported with ECM are a useful model to determine the cancer cell growth characteristics that are not found in adherent 2D cultures. Due to the more complex architecture, spheroids may mimic in vivo micrometastases and may be more appropriate to investigate novel drug candidate responses, including the direct effects of tyrosine kinase inhibitor activity against RCC cells.
Collapse
Affiliation(s)
- Klaudia K Brodaczewska
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, 04‑141 Warsaw, Poland
| | - Zofia F Bielecka
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, 04‑141 Warsaw, Poland
| | | | - Cezary Szczylik
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, 04‑141 Warsaw, Poland
| | - Camillo Porta
- Department of Internal Medicine and Therapeutics, University of Pavia, I‑27100 Pavia, Italy
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Poland
| | - Anna M Czarnecka
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, 04‑141 Warsaw, Poland
| |
Collapse
|
11
|
Organista-Nava J, Gómez-Gómez Y, Garibay-Cerdenares OL, Leyva-Vázquez MA, Illades-Aguiar B. Cervical cancer stem cell-associated genes: Prognostic implications in cervical cancer. Oncol Lett 2019; 18:7-14. [PMID: 31289465 PMCID: PMC6540231 DOI: 10.3892/ol.2019.10307] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 03/18/2019] [Indexed: 12/14/2022] Open
Abstract
Cervical cancer is the fourth most common type of gynecological malignancy to affect females, worldwide. Although high-risk human papillomavirus (HR-HPV) infection is the primary etiologic agent associated with the development of cervical cancer, cancer stem cells (CSCs) also serve a prominent role in the development, metastasis, recurrence and prognosis of the disease. CSCs are a small subpopulation of cells that have the ability to self-renew and are present in the majority of tumors, including cervical cancer. Studies describing the phenotype of cervical CSCs (CCSCs) vary in their definition of the expression pattern of principal biomarkers, including Musashi-1, aldehyde dehydrogenase 1, Oct3/4, Sox2 and CD49f. However, these markers are not observed in all cancers, although several may be present in multiple tumor types. The present review describes the potential biomarkers of CSCs in cervical cancer. These CCSC biomarkers may serve as molecular targets to enhance the efficacy and reduce the side effects associated with chemotherapeutic treatment in HR-HPV-positive cervical cancer.
Collapse
Affiliation(s)
- Jorge Organista-Nava
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero 39090, Mexico
| | - Yazmín Gómez-Gómez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero 39090, Mexico
| | - Olga Lilia Garibay-Cerdenares
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero 39090, Mexico.,Consejo Nacional de Ciencia y Tecnología, Mexico City 03940, Mexico
| | - Marco Antonio Leyva-Vázquez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero 39090, Mexico
| | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero 39090, Mexico
| |
Collapse
|
12
|
Toledo-Guzmán ME, Hernández MI, Gómez-Gallegos ÁA, Ortiz-Sánchez E. ALDH as a Stem Cell Marker in Solid Tumors. Curr Stem Cell Res Ther 2019; 14:375-388. [PMID: 30095061 DOI: 10.2174/1574888x13666180810120012] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023]
Abstract
Aldehyde dehydrogenase (ALDH) is an enzyme that participates in important cellular mechanisms as aldehyde detoxification and retinoic acid synthesis; moreover, ALDH activity is involved in drug resistance, a characteristic of cancer stem cells (CSCs). Even though ALDH is found in stem cells, CSCs and progenitor cells, this enzyme has been successfully used to identify and isolate cell populations with CSC properties from several tumor origins. ALDH is allegedly involved in cell differentiation through its product, retinoic acid. However, direct or indirect ALDH inhibition, using specific inhibitors or retinoic acid, has shown a reduction in ALDH activity, along with the loss of stem cell traits, reduction of cell proliferation, invasion, and drug sensitization. For these reasons, ALDH and retinoic acid are promising therapeutic targets. This review summarizes the current evidence for ALDH as a CSCs marker in solid tumors, as well as current knowledge about the functional roles of ALDH in CSCs. We discuss the controversy of ALDH activity to maintain CSC stemness, or conversely, to promote cell differentiation. Finally, we review the advances in using ALDH inhibitors as anti-cancer drugs.
Collapse
Affiliation(s)
- Mariel E Toledo-Guzmán
- Departamento de Bioquimica, Laboratorio de Terapia Genica, Escuela Nacional de Ciencias Biologicas, Posgrado de Biomedicina y Biotecnologia Molecular, Instituto Politecnico Nacional, Mexico City, Mexico
- Subdireccion de Investigacion Basica, Instituto Nacional de Cancerologia, Av San Fernando 22, Colonia Seccion XVI, Tlalpan 14080, Mexico City, Mexico
| | - Miguel Ibañez Hernández
- Departamento de Bioquimica, Laboratorio de Terapia Genica, Escuela Nacional de Ciencias Biologicas, Posgrado de Biomedicina y Biotecnologia Molecular, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Ángel A Gómez-Gallegos
- Subdireccion de Investigacion Basica, Instituto Nacional de Cancerologia, Av San Fernando 22, Colonia Seccion XVI, Tlalpan 14080, Mexico City, Mexico
- Posgrado de Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Elizabeth Ortiz-Sánchez
- Subdireccion de Investigacion Basica, Instituto Nacional de Cancerologia, Av San Fernando 22, Colonia Seccion XVI, Tlalpan 14080, Mexico City, Mexico
| |
Collapse
|
13
|
Sasaki N, Ishiwata T, Hasegawa F, Michishita M, Kawai H, Matsuda Y, Arai T, Ishikawa N, Aida J, Takubo K, Toyoda M. Stemness and anti-cancer drug resistance in ATP-binding cassette subfamily G member 2 highly expressed pancreatic cancer is induced in 3D culture conditions. Cancer Sci 2018; 109:1135-1146. [PMID: 29444383 PMCID: PMC5891171 DOI: 10.1111/cas.13533] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 12/22/2022] Open
Abstract
The expression of ATP-binding cassette subfamily G member 2 (ABCG2) is related to tumorigenic cancer stem cells (CSC) in several cancers. However, the effects of ABCG2 on CSC-related malignant characteristics in pancreatic ductal adenocarcinoma (PDAC) are not well elucidated. In this study, we compared the characteristics of low (ABCG2-) and high (ABCG2+)-ABCG2-expressing PDAC cells after cell sorting. In adherent culture condition, human PDAC cells, PANC-1, contained approximately 10% ABCG2+ cell populations, and ABCG2+ cells displayed more and longer microvilli compared with ABCG2- cells. Unexpectedly, ABCG2+ cells did not show significant drug resistance against fluorouracil, gemcitabine and vincristine, and ABCG2- cells exhibited higher sphere formation ability and stemness marker expression than those of ABCG2+ cells. Cell growth and motility was greater in ABCG2- cells compared with ABCG2+ cells. In contrast, epithelial-mesenchymal transition ability between ABCG2- and ABCG2+ cells was comparable. In 3D culture conditions, spheres derived from ABCG2- cells generated a large number of ABCG2+ cells, and the expression levels of stemness markers in these spheres were higher than spheres from ABCG2+ cells. Furthermore, spheres containing large populations of ABCG2+ cells exhibited high resistance against anti-cancer drugs presumably depending on ABCG2. ABCG2+ cells in PDAC in adherent culture are not correlated with stemness and malignant behaviors, but ABCG2+ cells derived from ABCG2- cells after sphere formation have stemness characteristics and anti-cancer drug resistance. These findings suggest that ABCG2- cells generate ABCG2+ cells and the malignant potential of ABCG2+ cells in PDAC varies depending on their environments.
Collapse
Affiliation(s)
- Norihiko Sasaki
- Research Team for Geriatric Medicine (Vascular Medicine)Tokyo Metropolitan Institute of GerontologyTokyoJapan
| | - Toshiyuki Ishiwata
- Division of Aging and CarcinogenesisResearch Team for Geriatric PathologyTokyo Metropolitan Institute of GerontologyTokyoJapan
| | - Fumio Hasegawa
- Division of Aging and CarcinogenesisResearch Team for Geriatric PathologyTokyo Metropolitan Institute of GerontologyTokyoJapan
| | - Masaki Michishita
- Department of Veterinary PathologySchool of Veterinary MedicineNippon Veterinary and Life Science UniversityTokyoJapan
| | - Hiroki Kawai
- Research and Development DepartmentLPixleTokyoJapan
| | - Yoko Matsuda
- Department of PathologyTokyo Metropolitan Geriatric Hospital and Institute of GerontologyTokyoJapan
| | - Tomio Arai
- Department of PathologyTokyo Metropolitan Geriatric Hospital and Institute of GerontologyTokyoJapan
| | - Naoshi Ishikawa
- Division of Aging and CarcinogenesisResearch Team for Geriatric PathologyTokyo Metropolitan Institute of GerontologyTokyoJapan
| | - Junko Aida
- Division of Aging and CarcinogenesisResearch Team for Geriatric PathologyTokyo Metropolitan Institute of GerontologyTokyoJapan
| | - Kaiyo Takubo
- Division of Aging and CarcinogenesisResearch Team for Geriatric PathologyTokyo Metropolitan Institute of GerontologyTokyoJapan
| | - Masashi Toyoda
- Research Team for Geriatric Medicine (Vascular Medicine)Tokyo Metropolitan Institute of GerontologyTokyoJapan
| |
Collapse
|
14
|
Potikanond S, Sookkhee S, Na Takuathung M, Mungkornasawakul P, Wikan N, Smith DR, Nimlamool W. Kaempferia parviflora Extract Exhibits Anti-cancer Activity against HeLa Cervical Cancer Cells. Front Pharmacol 2017; 8:630. [PMID: 28955234 PMCID: PMC5600991 DOI: 10.3389/fphar.2017.00630] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/28/2017] [Indexed: 01/20/2023] Open
Abstract
Kaempferia parviflora (KP) has been traditionally used as a folk remedy to treat several diseases including cancer, and several studies have reported cytotoxic activities of extracts of KP against a number of different cancer cell lines. However, many aspects of the molecular mechanism of action of KP remain unclear. In particular, the ability of KP to regulate cancer cell growth and survival signaling is still largely unexplored. The current study aimed to investigate the effects of KP on cell viability, cell migration, cell invasion, cell apoptosis, and on signaling pathways related to growth and survival of cervical cancer cells, HeLa. We discovered that KP reduced HeLa cell viability in a concentration-dependent manner. The potent cytotoxicity of KP against HeLa cells was associated with a dose-dependent induction of apoptotic cell death as determined by flow cytometry and observation of nuclear fragmentation. Moreover, KP-induced cell apoptosis was likely to be mediated through the intrinsic apoptosis pathway since caspase 9 and caspase 7, but not BID, were shown to be activated after KP exposure. Based on the observation that KP induced apoptosis in HeLa cell, we further investigated the effects of KP at non-cytotoxic concentrations on suppressing signal transduction pathways relevant to cell growth and survival. We found that KP suppressed the MAPK and PI3K/AKT signaling pathways in cells activated with EGF, as observed by a significant decrease in phosphorylation of ERK1/2, Elk1, PI3K, and AKT. The data suggest that KP interferes with the growth and survival of HeLa cells. Consistent with the inhibitory effect on EGF-stimulated signaling, KP potently suppressed the migration of HeLa cells. Concomitantly, KP was demonstrated to markedly inhibit HeLa cell invasion. The ability of KP in suppressing the migration and invasion of HeLa cells was associated with the suppression of matrix metalloproteinase-2 production. These data strongly suggest that KP may slow tumor progression and metastasis in patients with cervical cancer. Taken together, the present report provides accumulated evidence revealing the potent anti-cancer activities of Kaempferia parviflora against cervical cancer HeLa cells, and suggests its potential use as an alternative way for cervical cancer prevention and therapy.
Collapse
Affiliation(s)
- Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai UniversityChiang Mai, Thailand
| | - Siriwoot Sookkhee
- Department of Microbiology, Faculty of Medicine, Chiang Mai UniversityChiang Mai, Thailand
| | - Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai UniversityChiang Mai, Thailand
| | - Pitchaya Mungkornasawakul
- Department of Chemistry, Faculty of Science, Chiang Mai UniversityChiang Mai, Thailand.,Environmental Science Program, Faculty of Science, Chiang Mai UniversityChiang Mai, Thailand
| | - Nitwara Wikan
- Institute of Molecular Biosciences, Mahidol UniversityNakorn Pathom, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol UniversityNakorn Pathom, Thailand
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai UniversityChiang Mai, Thailand
| |
Collapse
|
15
|
Abstract
It is well known that a decreased expression or inhibited activity of telomerase in cancer cells is accompanied by an increased sensitivity to some drugs (e.g., doxorubicin, cisplatin, or 5-fluorouracil). However, the mechanism of the resistance resulting from telomerase alteration remains elusive. There are theories claiming that it might be associated with telomere shortening, genome instability, hTERT translocation, mitochondria functioning modulation, or even alterations in ABC family gene expression. However, association of those mechanisms, i.e., drug resistance and telomerase alterations, is not fully understood yet. We review the current theories on the aspect of the role of telomerase in cancer cells resistance to therapy. We believe that revealing/unravelling this correlation might significantly contribute to an increased efficiency of cancer cells elimination, especially the most difficult ones, i.e., drug resistant.
Collapse
|