1
|
Tong L, Kremer V, Neo SY, Seitz C, Tobin NP, Seliger B, Harmenberg U, Colón E, Scherman Plogell AH, Liu LL, Lundqvist A. Cellular and secretome profiling uncover immunological biomarkers in the prognosis of renal cell carcinoma patients. Oncoimmunology 2025; 14:2481109. [PMID: 40126183 PMCID: PMC11934188 DOI: 10.1080/2162402x.2025.2481109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025] Open
Abstract
Renal cell carcinoma (RCC) is recognized as an immunogenic tumor, yet tumor-infiltrating lymphocytes often exhibit diminished effector function. However, the mechanisms underlying reduced T and NK cell activity in RCC remain unclear. Here, we examined the immune contexture in RCC patients undergoing nephrectomy to identify immune-related biomarkers associated with disease progression. Immune cell phenotypes and secretion profiles were assessed using flow cytometry and Luminex multiplex analysis. Supervised multivariate analysis revealed several changes of which frequencies of T and NK cells expressing CCR5, CXCR3, and PD-1 were elevated within tumors compared with peripheral blood. In addition, higher levels of regulatory T cells, PD-1+, and CXCR3+ T and NK cells were observed in patients with relapse following nephrectomy. With regards to soluble factors, tumor-derived CXCL8 was associated with higher Fuhrman grade and increased frequency of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). These biomarkers demonstrate potential relevance in the progression of RCC and merit further investigation in prospective studies.
Collapse
Affiliation(s)
- Le Tong
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Veronika Kremer
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Shi Yong Neo
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Republic of Singapore
| | - Christina Seitz
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas P. Tobin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Barbara Seliger
- Institute for Medical Immunology, Martin-Luther University Halle-Wittenberg, Halle, Germany
- Institute of Translational Immunology, Medical School “Theodor Fontane”, Brandenburg an der Havel, Germany
| | - Ulrika Harmenberg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Eugenia Colón
- Department of Women’s and Children’s Health, Karolinska Institutet and S:t Göran’s Hospital-Unilabs, Stockholm, Sweden
| | | | - Lisa L. Liu
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Wang S, Xie D, Yue H, Li G, Jiang B, Gao Y, Zheng Z, Zheng X, Wu G. Phospholipase C Beta 2 as a Key Regulator of Tumor Progression and Epithelial-Mesenchymal Transition via PI3K/AKT Signaling in Renal Cell Carcinoma. Biomedicines 2025; 13:304. [PMID: 40002717 PMCID: PMC11853330 DOI: 10.3390/biomedicines13020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/24/2024] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Renal cell carcinoma (RCC) represents the most common form of invasive kidney cancer in adults. Among the components critical to cellular regulation is Phospholipase C Beta 2 (PLCB2), a member of the phospholipase C enzyme family. This enzyme plays a vital role in managing key cellular functions such as growth, differentiation, migration, and survival. Despite its significant importance, the specific expression patterns and molecular mechanisms of PLCB2 in the progression of RCC are not well understood. Methods: This investigation employed a combination of bioinformatics analyses, scRNA-seq, functional assays, transcriptome sequencing, real-time quantitative PCR (RT-PCR), immunofluorescence, rescue experiments, and Western blotting to explore the regulatory function of PLCB2 in driving the epithelial-mesenchymal transition (EMT) in RCC through the PI3K/AKT signaling pathway. Results:PLCB2 expression is significantly elevated in RCC samples, and this increase is inversely correlated with patient prognosis. The knockdown of PLCB2 in RCC cell lines leads to a marked reduction in cell proliferation, invasion, migration, and EMT. Transcriptome sequencing further revealed that PLCB2 is significantly associated with the PI3K/AKT pathway. Notably, the PI3K activator 740Y-P was able to reverse the reductions in migration, invasion, and EMT caused by the PLCB2 knockdown. Conclusions: Our findings underscore the pivotal role of PLCB2 in regulating RCC invasion and metastasis by modulating the EMT via the PI3K/AKT signaling pathway. This highlights PLCB2 not only as a key prognostic biomarker, but also as a promising therapeutic target in the treatment of advanced-stage RCC, offering new avenues for more effective interventions.
Collapse
Affiliation(s)
- Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Deqian Xie
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hongzhe Yue
- Department of Emergency, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guandu Li
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Bowen Jiang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yaru Gao
- Department of Nursing, The Second Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Zunwen Zheng
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xu Zheng
- Department of Cell Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116011, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
3
|
Su J, Zhou L, Zhang Z, Xiao X, Qin Y, Zhou X, Huang T. The components of tumor microenvironment as biomarker for immunotherapy in metastatic renal cell carcinoma. Front Immunol 2023; 14:1146738. [PMID: 37350955 PMCID: PMC10282412 DOI: 10.3389/fimmu.2023.1146738] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023] Open
Abstract
Substantial improvement in prognosis among metastatic renal cell carcinoma (mRCC) patients has been achieved, owing to the rapid development and utilization of immunotherapy. In particular, immune checkpoint inhibitors (ICIs) have been considered the backbone of systemic therapy for patients with mRCC alongside multi-targeted tyrosine kinase inhibitors (TKIs) in the latest clinical practice guidelines. However, controversies and challenges in optimal individualized treatment regarding immunotherapy remains still About 2/3 of the patients presented non-response or acquired resistance to ICIs. Besides, immune-related toxicities, namely immune-related adverse events, are still elusive and life-threatening. Thus, reliable biomarkers to predict immunotherapeutic outcomes for mRCC patients are needed urgently. Tumor microenvironment (TME), consisting of immune cells, vasculature, signaling molecules, and extracellular matrix and regulates tumor immune surveillance and immunological evasion through complex interplay, plays a critical role in tumor immune escape and consequently manipulates the efficacy of immunotherapy. Various studied have identified the different TME components are significantly associated with the outcome of mRCC patients receiving immunotherapy, making them potential valuable biomarkers in therapeutic guidance. The present review aims to summarize the latest evidence on the associations between the components of TME including immune cells, cytokines and extracellular matrix, and the therapeutic responses among mRCC patients with ICI-based treatment. We further discuss the feasibility and limitation of these components as biomarkers.
Collapse
Affiliation(s)
- Jiaming Su
- Department of Otorhinolaryngology and Head and Neck Surgery, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Lu Zhou
- Department of Otorhinolaryngology and Head and Neck Surgery, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Department of Otorhinolaryngology and Head and Neck Surgery, First Affiliated Hospital, Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Xue Xiao
- Department of Otorhinolaryngology and Head and Neck Surgery, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | | | - Xiaoying Zhou
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Tingting Huang
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
4
|
Rizzo M, Varnier L, Pezzicoli G, Pirovano M, Cosmai L, Porta C. IL-8 and its role as a potential biomarker of resistance to anti-angiogenic agents and immune checkpoint inhibitors in metastatic renal cell carcinoma. Front Oncol 2022; 12:990568. [PMID: 36059687 PMCID: PMC9437355 DOI: 10.3389/fonc.2022.990568] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022] Open
Abstract
The therapeutic armamentarium of metastatic Renal Cell Carcinoma (mRCC) has consistently expanded in recent years, with the introduction of VEGF/VEGFR (Vascular Endothelial Growth Factor/Vascular Endothelial Growth Factor Receptor) inhibitors, mTOR (mammalian Target Of Rapamycin) inhibitors and Immune Checkpoint (IC) inhibitors. Currently, for the first-tline treatment of mRCC it is possible to choose between a VEGFR-TKI (VEGFR-Tyrosine Kinase Inhibitor) monotherapy, an ICI-ICI (Immune Checkpoint Inhibitor) combination and an ICI-VEGFRTKI combination. However, a consistent part of patients does not derive benefit from first-line therapy with ICIs; moreover, the use of combination regimens exposes patients to significant toxicities. Therefore, there is a critical need to develop prognostic and predictive biomarkers of response to VEGFR-TKIs and ICIs, and measurement of serum IL-8 is emerging as a potential candidate in this field. Recent retrospective analyses of large phase II and phase III trials found that elevated baseline serum IL-8 correlated with higher levels of tumor and circulating immunosuppressive myeloid cells, decreased T cell activation and poor response to treatment. These findings must be confirmed in prospective clinical trials; however, they provide evidence for a potential use of serum IL-8 as biomarker of resistance to VEGFR-TKIs and ICIs. Considering the amount of new agents and treatment regimens which are transforming the management of metastatic renal cell carcinoma, serum IL-8 could become a precious resource in tailoring the best therapy for each individual patient with the disease.
Collapse
Affiliation(s)
- Mimma Rizzo
- Division of Medical Oncology, Azienda Ospedaliero Universitaria Consorziale Policlinico di Bari, Bari, Italy
- *Correspondence: Mimma Rizzo,
| | - Luca Varnier
- Department of Pediatrics, Meyer’ Childrens University Hospital, Florence, Italy
| | - Gaetano Pezzicoli
- Department of Interdisciplinary Medicine, School of Medicine, University of Bari “A. Moro”, Bari, Italy
| | - Marta Pirovano
- Division of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale (ASST) Fatebenefratelli-Sacco, Fatebenefratelli Hospital, Milan, Italy
| | - Laura Cosmai
- Division of Nephrology and Dialysis, Azienda Socio-Sanitaria Territoriale (ASST) Fatebenefratelli-Sacco, Fatebenefratelli Hospital, Milan, Italy
| | - Camillo Porta
- Division of Medical Oncology, Azienda Ospedaliero Universitaria Consorziale Policlinico di Bari, Bari, Italy
- Chair of Oncology, Interdisciplinary Department of Medicine, University of Bari “A. Moro”, Bari, Italy
| |
Collapse
|
5
|
Yang C, Song C, Wang Y, Zhou W, Zheng W, Zhou H, Deng G, Li H, Xiao W, Yang Z, Kong L, Ge H, Song Y, Sun Y. Re-Du-Ning injection ameliorates radiation-induced pneumonitis and fibrosis by inhibiting AIM2 inflammasome and epithelial-mesenchymal transition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154184. [PMID: 35665679 DOI: 10.1016/j.phymed.2022.154184] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Radiation-induced lung injury (RILI) is a common side effect in chest radiotherapy patients, and there is no good medicine to treat it. Re-Du-Ning (RDN) injection is a traditional Chinese medicine that is clinically used to treat upper respiratory tract infections and acute bronchitis. RDN has the advantage of high safety and mild side effects. The mechanism of most traditional Chinese medicine preparations is unknown. PURPOSE To illustrate the mechanisms of RDN for the treatment of RILI. METHODS Female C57BL/6 mice were used to establish a RILI model via irradiation, and RDN injection was intraperitoneally administered at doses of 5, 10, and 20 ml/kg. The cytokines were measured by ELISA and qPCR. The data related to Absent in melanoma 2 (AIM2) inflammasome were analyzed via ELISA and a network pharmacological approach. In addition, the data related to epithelial-mesenchymal transition (EMT) were analyzed via immunofluorescence, Western blotting, and a network pharmacological approach. RESULTS RDN robustly alleviated RILI. Meanwhile, RDN downregulated inflammatory cells' infiltration and the expression of pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α. Next, the potential molecular mechanisms of RDN were predicted through network pharmacology analysis. RDN may ameliorate radiation pneumonitis (RP) by inhibiting AIM2-mediated pyroptosis. Moreover, RDN treatment inhibited EMT and phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT) pathway. The active compounds from Lonicera japonica Thunb. decreased the phosphorylation of Akt. CONCLUSION These findings demonstrate that RDN, as a traditional Chinese medicine preparation, will be a candidate drug for treating RILI.
Collapse
Affiliation(s)
- Chenxi Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Chenglin Song
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Yi Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Daming Road, Nanjing, Jiangsu, 210012 China
| | - Wencheng Zhou
- Department of Pharmacy, First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou 310006, China
| | - Wei Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Han Zhou
- Department of Radiation Oncology, Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210002, China
| | - Guoliang Deng
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Haibo Li
- Jiangsu Kanion Pharmaceutical Co. Ltd. and State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co. Ltd. and State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China
| | - Zhongqi Yang
- Department of Geriatrics, First Affiliated Hospital of Guangzhou University of Chinese Medicine, 16 Jichang Road, Guangzhou, Guangdong 510405, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Huiming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| | - Yaohong Song
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 157 Daming Road, Nanjing, Jiangsu, 210012 China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Deparment of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| |
Collapse
|
6
|
Filimon A, Preda IA, Boloca AF, Negroiu G. Interleukin-8 in Melanoma Pathogenesis, Prognosis and Therapy-An Integrated View into Other Neoplasms and Chemokine Networks. Cells 2021; 11:120. [PMID: 35011682 PMCID: PMC8750532 DOI: 10.3390/cells11010120] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cutaneous melanoma accounts for only about 7% of skin cancers but is causing almost 90% of deaths. Melanoma cells have a distinct repertoire of mutations from other cancers, a high plasticity and degree of mimicry toward vascular phenotype, stemness markers, versatility in evading and suppress host immune control. They exert a significant influence on immune, endothelial and various stromal cells which form tumor microenvironment. The metastatic stage, the leading cause of mortality in this neoplasm, is the outcome of a complex, still poorly understood, cross-talk between tumor and other cell phenotypes. There is accumulating evidence that Interleukin-8 (IL-8) is emblematic for advanced melanomas. This work aimed to present an updated status of IL-8 in melanoma tumor cellular complexity, through a comprehensive analysis including data from other chemokines and neoplasms. The multiple processes and mechanisms surveyed here demonstrate that IL-8 operates following orchestrated programs within signaling webs in melanoma, stromal and vascular cells. Importantly, the yet unknown molecularity regulating IL-8 impact on cells of the immune system could be exploited to overturn tumor fate. The molecular and cellular targets of IL-8 should be brought into the attention of even more intense scientific exploration and valorization in the therapeutical management of melanoma.
Collapse
Affiliation(s)
| | | | | | - Gabriela Negroiu
- Group of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania; (A.F.); (I.A.P.); (A.F.B.)
| |
Collapse
|
7
|
Cui N, Han Q, Cao Q, Wang K, Zhou X, Hou P, Liu C, Chen L, Xu L. Lefty A is involved in sunitinib resistance of renal cell carcinoma cells via regulation of IL-8. Biol Chem 2021; 402:1247-1256. [PMID: 34363384 DOI: 10.1515/hsz-2021-0280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022]
Abstract
Renal cell carcinoma (RCC) is the third most frequent malignancy within urological oncology. Sunitinib has been used as the standard of treatment for first-line RCC therapy. Understanding mechanisms of sunitinib resistance in RCC cell is important for clinical therapy and drug development. We established sunitinib resistant RCC cells by treating cells with increasing concentrations of sunitinib and named resistant cells as RCC/SR. Lefty A, an important embryonic morphogen, was increased in RCC/SR cells. Targeted inhibition of Lefty via its siRNAs restored the sensitivity of renal resistant cells to sunitinib treatment. It was due to that si-Lefty can decrease the expression of interleukin-8 (IL-8) in RCC/SR cells. Knockdown of IL-8 abolished Lefty-regulated sunitinib sensitivity of RCC cells. Mechanistically, Lefty can regulate IL-8 transcription via activation of p65, one major transcription factor of IL-8. Collectively, our present revealed that Lefty A can regulate sunitinib sensitivity of RCC cells of via NF-κB/IL-8 signals. It indicated that targeted inhibition of Lefty might be a potent approach to overcome sunitinib resistance of RCC.
Collapse
Affiliation(s)
- Ning Cui
- Medical Imaging Center, Taihe Hospital, No.32 Renmin South Road, Shiyan 442000, Hubei Province, China
| | - Qiang Han
- Medical Imaging Center, Taihe Hospital, No.32 Renmin South Road, Shiyan 442000, Hubei Province, China
| | - Qizhen Cao
- Medical Imaging Center, Taihe Hospital, No.32 Renmin South Road, Shiyan 442000, Hubei Province, China
| | - Kejun Wang
- Medical Imaging Center, Taihe Hospital, No.32 Renmin South Road, Shiyan 442000, Hubei Province, China
| | - Xujia Zhou
- Medical Imaging Center, Taihe Hospital, No.32 Renmin South Road, Shiyan 442000, Hubei Province, China
| | - Pingzhi Hou
- Medical Imaging Center, Taihe Hospital, No.32 Renmin South Road, Shiyan 442000, Hubei Province, China
| | - Chao Liu
- Medical Imaging Center, Taihe Hospital, No.32 Renmin South Road, Shiyan 442000, Hubei Province, China
| | - Lungang Chen
- Medical Imaging Center, Taihe Hospital, No.32 Renmin South Road, Shiyan 442000, Hubei Province, China
| | - Lin Xu
- Medical Imaging Center, Taihe Hospital, No.32 Renmin South Road, Shiyan 442000, Hubei Province, China
| |
Collapse
|
8
|
Sharma R, Kadife E, Myers M, Kannourakis G, Prithviraj P, Ahmed N. Determinants of resistance to VEGF-TKI and immune checkpoint inhibitors in metastatic renal cell carcinoma. J Exp Clin Cancer Res 2021; 40:186. [PMID: 34099013 PMCID: PMC8183071 DOI: 10.1186/s13046-021-01961-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/25/2021] [Indexed: 01/03/2023] Open
Abstract
Vascular endothelial growth factor tyrosine kinase inhibitors (VEGF-TKIs) have been the mainstay of treatment for patients with advanced renal cell carcinoma (RCC). Despite its early promising results in decreasing or delaying the progression of RCC in patients, VEGF-TKIs have provided modest benefits in terms of disease-free progression, as 70% of the patients who initially respond to the treatment later develop drug resistance, with 30% of the patients innately resistant to VEGF-TKIs. In the past decade, several molecular and genetic mechanisms of VEGF-TKI resistance have been reported. One of the mechanisms of VEGF-TKIs is inhibition of the classical angiogenesis pathway. However, recent studies have shown the restoration of an alternative angiogenesis pathway in modulating resistance. Further, in the last 5 years, immune checkpoint inhibitors (ICIs) have revolutionized RCC treatment. Although some patients exhibit potent responses, a non-negligible number of patients are innately resistant or develop resistance within a few months to ICI therapy. Hence, an understanding of the mechanisms of VEGF-TKI and ICI resistance will help in formulating useful knowledge about developing effective treatment strategies for patients with advanced RCC. In this article, we review recent findings on the emerging understanding of RCC pathology, VEGF-TKI and ICI resistance mechanisms, and potential avenues to overcome these resistance mechanisms through rationally designed combination therapies.
Collapse
Affiliation(s)
- Revati Sharma
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria, 3350, Australia
- Federation University Australia, Ballarat, Victoria, 3350, Australia
| | - Elif Kadife
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria, 3350, Australia
| | - Mark Myers
- Federation University Australia, Ballarat, Victoria, 3350, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria, 3350, Australia
- Federation University Australia, Ballarat, Victoria, 3350, Australia
| | | | - Nuzhat Ahmed
- Fiona Elsey Cancer Research Institute, Ballarat, Victoria, 3350, Australia.
- Federation University Australia, Ballarat, Victoria, 3350, Australia.
- The Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia.
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, 3052, Australia.
| |
Collapse
|
9
|
Farjood F, Ahmadpour A, Ostvar S, Vargis E. Acute mechanical stress in primary porcine RPE cells induces angiogenic factor expression and in vitro angiogenesis. J Biol Eng 2020; 14:13. [PMID: 32355505 PMCID: PMC7183714 DOI: 10.1186/s13036-020-00235-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022] Open
Abstract
Background Choroidal neovascularization (CNV) is a major cause of blindness in patients with age-related macular degeneration. CNV is characterized by new blood vessel growth and subretinal fluid accumulation, which results in mechanical pressure on retinal pigment epithelial (RPE) cells. The overexpression of RPE-derived angiogenic factors plays an important role in inducing CNV. In this work, we investigated the effect of mechanical stress on the expression of angiogenic factors in porcine RPE cells and determined the impact of conditioned medium on in-vitro angiogenesis. Results The goal of this study was to determine whether low levels of acute mechanical stress during early CNV can induce the expression of angiogenic factors in RPE cells and accelerate angiogenesis. Using a novel device, acute mechanical stress was applied to primary porcine RPE cells and the resulting changes in the expression of major angiogenic factors, VEGF, ANG2, HIF-1α, IL6, IL8 and TNF-α, were examined using immunocytochemistry, qRT-PCR, and ELISA. An in vitro tube formation assay was used to determine the effect of secreted angiogenic proteins due to mechanical stress on endothelial tube formation by human umbilical vein endothelial cells (HUVECs). Our results showed an increase in the expression of VEGF, ANG2, IL-6 and IL-8 in response to mechanical stress, resulting in increased in vitro angiogenesis. Abnormal epithelial-mesenchymal transition (EMT) in RPE cells is also associated with CNV and further retinal degeneration. Our qRT-PCR results verified an increase in the expression of EMT genes, CDH2, VIM and FN1, in RPE cells. Conclusions In conclusion, we showed that acute mechanical stress induces the expression of major angiogenic and EMT factors and promotes in vitro angiogenesis, suggesting that mechanical stress plays a role in promoting aberrant angiogenesis in AMD.
Collapse
Affiliation(s)
- Farhad Farjood
- 1Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322 USA.,2Present address: Neural Stem Cell Institute, Rensselaer, NY 12144 USA
| | - Amir Ahmadpour
- 1Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322 USA.,3Present address: Department of Animal Sciences, Yasouj University, Yasouj, 75918-74934 Iran
| | - Sassan Ostvar
- 4Division of General Medicine, Columbia University Medical Center, New York, NY 10032 USA
| | - Elizabeth Vargis
- 1Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322 USA
| |
Collapse
|
10
|
Interleukin-8 Dedifferentiates Primary Human Luminal Cells to Multipotent Stem Cells. Mol Cell Biol 2020; 40:MCB.00508-19. [PMID: 32015100 DOI: 10.1128/mcb.00508-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/02/2020] [Indexed: 11/20/2022] Open
Abstract
During aging, cellular plasticity and senescence play important roles in tissue regeneration and the pathogenesis of different diseases, including cancer. We have recently shown that senescent breast luminal cells can activate their adjacent stromal fibroblasts. In the present report, we present clear evidence that these senescence-related active fibroblasts can dedifferentiate proliferating primary human luminal cells to multipotent stem cells in an interleukin-8 (IL-8)-dependent manner. This was confirmed using recombinant IL-8, while the truncated protein was not active. This IL-8-related dedifferentiation of luminal cells was mediated through the STAT3-dependent downregulation of p16INK4A and the microRNA miR-141. Importantly, these in vitro-generated mammary stem cells exhibited high molecular and cellular similarities to human mammary stem cells. They have also shown a long-term mammary gland-reconstituting ability and the capacity to produce milk postdelivery. Thereby, these IL-8-generated mammary stem cells could be of great value for autologous cell therapy procedures and also for biomedical research as well as drug development.
Collapse
|
11
|
MCP-1/MCPIP-1 Signaling Modulates the Effects of IL-1β in Renal Cell Carcinoma through ER Stress-Mediated Apoptosis. Int J Mol Sci 2019; 20:ijms20236101. [PMID: 31816951 PMCID: PMC6928829 DOI: 10.3390/ijms20236101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/21/2019] [Accepted: 11/29/2019] [Indexed: 01/07/2023] Open
Abstract
In renal cell carcinoma (RCC), interleukin (IL)-1β may be a pro-metastatic cytokine. However, we have not yet noted the clinical association between tumoral expression or serum level of IL-1β and RCC in our patient cohort. Herein, we investigate molecular mechanisms elicited by IL-1β in RCC. We found that IL-1β stimulates substantial monocyte chemoattractant protein (MCP)-1 production in RCC cells by activating NF-kB and AP-1. In our xenograft RCC model, intra-tumoral MCP-1 injection down-regulated Ki67 expression and reduced tumor size. Microarray analysis revealed that MCP-1 treatment altered protein-folding processes in RCC cells. MCP-1-treated RCC cells and xenograft tumors expressed MCP-1-induced protein (MCPIP) and molecules involved in endoplasmic reticulum (ER) stress-mediated apoptosis, namely C/EBP Homologous Protein (CHOP), protein kinase-like ER kinase (PERK), and calnexin (CNX). ER stress-mediated apoptosis in MCP-1-treated RCC cells was confirmed using Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) assay. Moreover, ectopic MCPIP expression increased PERK expression in Human embryonic kidney (HEK)293 cells. Our meta-analysis revealed that low MCP-1 levels reduce 1-year post-nephrectomy survival in patients with RCC. Immunohistochemistry indicated that in some RCC biopsy samples, the correlation between MCP-1 or MCPIP expression and tumor stages was inverse. Thus, MCP-1 and MCPIP potentially reduce the IL-1β-mediated oncogenic effect in RCC; our findings suggest that ER stress is a potential RCC treatment target.
Collapse
|
12
|
Brodaczewska KK, Bielecka ZF, Maliszewska-Olejniczak K, Szczylik C, Porta C, Bartnik E, Czarnecka AM. Metastatic renal cell carcinoma cells growing in 3D on poly‑D‑lysine or laminin present a stem‑like phenotype and drug resistance. Oncol Rep 2019; 42:1878-1892. [PMID: 31545459 PMCID: PMC6788014 DOI: 10.3892/or.2019.7321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
3D spheroids are built by heterogeneous cell types in different proliferative and metabolic states and are enriched in cancer stem cells. The main aim of the study was to investigate the usefulness of a novel metastatic renal cell carcinoma (RCC) 3D spheroid culture for in vitro cancer stem cell physiology research and drug toxicity screening. RCC cell lines, Caki-1 (skin metastasis derived) and ACHN (pleural effusion derived), were efficiently cultured in growth-factor/serum deprived, defined, StemXvivo and Nutristem medium on laminin-coated or poly-D-lysine-coated plates. In optimal 3D culture conditions, ACHN cells (StemXVivo/poly-D-lysine) formed small spheroids with remaining adherent cells of an epithelial phenotype, while Caki-1 cells (StemXVivo/laminin) formed large dark spheroids with significantly reduced cell viability in the center. In the 3D structures, expression levels of genes encoding stem transcription factors (OCT4, SOX2, NES) and RCC stem cell markers (CD105, CD133) were deregulated in comparison to these expression levels in traditional 2D culture. Sunitinib, epirubicin and doxycycline were more toxic to cells cultured in monolayers than for cells in 3D spheroids. High numbers of cells arrested in the G0/G1 phase of the cell cycle were found in spheroids under sunitinib treatment. We showed that metastatic RCC 3D spheroids supported with ECM are a useful model to determine the cancer cell growth characteristics that are not found in adherent 2D cultures. Due to the more complex architecture, spheroids may mimic in vivo micrometastases and may be more appropriate to investigate novel drug candidate responses, including the direct effects of tyrosine kinase inhibitor activity against RCC cells.
Collapse
Affiliation(s)
- Klaudia K Brodaczewska
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, 04‑141 Warsaw, Poland
| | - Zofia F Bielecka
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, 04‑141 Warsaw, Poland
| | | | - Cezary Szczylik
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, 04‑141 Warsaw, Poland
| | - Camillo Porta
- Department of Internal Medicine and Therapeutics, University of Pavia, I‑27100 Pavia, Italy
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Poland
| | - Anna M Czarnecka
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, 04‑141 Warsaw, Poland
| |
Collapse
|
13
|
Pinto MT, Ferreira Melo FU, Malta TM, Rodrigues ES, Plaça JR, Silva WA, Panepucci RA, Covas DT, de Oliveira Rodrigues C, Kashima S. Endothelial cells from different anatomical origin have distinct responses during SNAIL/TGF-β2-mediated endothelial-mesenchymal transition. Am J Transl Res 2018; 10:4065-4081. [PMID: 30662651 PMCID: PMC6325528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Endothelial-mesenchymal transition (EndMT) is a complex process whereby differentiated endothelial cells undergo phenotypic transition to mesenchymal cells. EndMT can be stimulated by several factors and the most common are the transforming growth factor-beta (TGF-β) and SNAIL transcription factor. Given the diversity of the vascular system, it is unclear whether endothelial cells lining different vessels are able to undergo EndMT through the same mechanisms. Here we evaluate the molecular and functional changes that occur in different types of endothelial cells following induction of EndMT by overexpression of SNAIL and TGF-β2. RESULTS We found that responses to induction by SNAIL are determined by cell origin and marker expression. Human coronary endothelial cells (HCAECs) showed the greatest EndMT responses evidenced by significant reciprocal changes in the expression of mesenchymal and endothelial markers, effects that were potentiated by a combination of SNAIL and TGF-β2. Key molecular events associated with EndMT driven by SNAIL/TGF-β2 involved extracellular-matrix remodeling and inflammation (IL-8, IL-12, IGF-1, and TREM-1 signaling). Notch signaling pathway members DLL4, NOTCH3 and NOTCH4 as well as members of the Wnt signaling pathway FZD2, FZD9, and WNT5B were altered in the combination treatment strategy, implicating Notch and Wnt signaling pathways in the induction process. CONCLUSION Our results provide a foundation for understanding the roles of specific signaling pathways in mediating EndMT in endothelial cells from different anatomical origins.
Collapse
Affiliation(s)
- Mariana Tomazini Pinto
- National Institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell-Based Therapy and Regional Blood Center of Ribeirão PretoBrazil
- Faculty of Pharmaceutical Sciences, University of São PauloRibeirão Preto, Brazil
- Molecular Oncology Research Center, Barretos Cancer HospitalBarretos, SP, Brazil
| | - Fernanda Ursoli Ferreira Melo
- National Institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell-Based Therapy and Regional Blood Center of Ribeirão PretoBrazil
| | - Tathiane Maistro Malta
- National Institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell-Based Therapy and Regional Blood Center of Ribeirão PretoBrazil
| | - Evandra Strazza Rodrigues
- National Institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell-Based Therapy and Regional Blood Center of Ribeirão PretoBrazil
| | - Jessica Rodrigues Plaça
- National Institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell-Based Therapy and Regional Blood Center of Ribeirão PretoBrazil
| | - Wilson Araújo Silva
- National Institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell-Based Therapy and Regional Blood Center of Ribeirão PretoBrazil
- Faculty of Medicine of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Rodrigo Alexandre Panepucci
- National Institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell-Based Therapy and Regional Blood Center of Ribeirão PretoBrazil
- Faculty of Medicine of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Dimas Tadeu Covas
- National Institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell-Based Therapy and Regional Blood Center of Ribeirão PretoBrazil
- Faculty of Medicine of Ribeirão Preto, University of São PauloRibeirão Preto, Brazil
| | - Claudia de Oliveira Rodrigues
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M, Miller School of MedicineMiami, Florida, USA
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M, Miller School of MedicineMiami, Florida, USA
| | - Simone Kashima
- National Institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell-Based Therapy and Regional Blood Center of Ribeirão PretoBrazil
- Faculty of Pharmaceutical Sciences, University of São PauloRibeirão Preto, Brazil
| |
Collapse
|
14
|
Nfonsam VN, Nfonsam LE, Chen D, Omesiete PN, Cruz A, Runyan RB, Jandova J. COMP Gene Coexpresses With EMT Genes and Is Associated With Poor Survival in Colon Cancer Patients. J Surg Res 2018; 233:297-303. [PMID: 30502262 DOI: 10.1016/j.jss.2018.08.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/18/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND About 1.2 million new cases of colon cancer (CC) and 0.6 million deaths are reported every year, establishing CC as an important contributor to worldwide cancer morbidity and mortality. Although the overall incidence and mortality of CC have declined over the past 3 decades, the number of early-onset colon cancer ([EOCC], patients <50 y old) continues to rise alarmingly. These young patients are often diagnosed at a more advanced stage and tend to have poor survival. Our recently published data showed that the cartilage oligomeric matrix protein (COMP) is overexpressed in early-onset colon cancer patients. COMP is also reported in several cancers to coexpress with epithelial-mesenchymal transition (EMT) transcription factors. Given the role of EMT in cancer metastasis and cell invasion, we assessed the correlation between COMP gene expression and EMT gene expression in CC, and COMP's relationship to patient survival. METHODS mRNA expression of COMP was compared to that of EMT markers using the UCSC Cancer Genomics Browser. Survival analysis was performed using the UCSC Xena Browser for cancer genomics. RESULTS Expression analysis revealed coexpression of COMP with the EMT markers CDH2, FN1, VIM, TWIST1, TWIST2, SNAI1, SNAI2, ZEB1, ZEB2, POSTN, MMP2, MMP9, and COL1A1. Samples that were more mesenchymal had higher expression levels of COMP and EMT markers, thus suggesting a potential role of COMP in EMT. Patients with increased COMP expression presented with poorer overall survival compared to patients with no change or reduced COMP expression (P = 0.02). CONCLUSIONS These findings reveal COMP as a potential biomarker for CC especially in more aggressive CC and CC in young patients, with a likely role in EMT during tumor metastasis and invasion, and a contributing factor to patient survival.
Collapse
Affiliation(s)
| | | | - Debbie Chen
- Department of Surgery, University of Arizona, Tucson, Arizona
| | | | - Alejandro Cruz
- Department of Surgery, University of Arizona, Tucson, Arizona
| | - Raymond B Runyan
- Department of Cellular and Molecular Medicine, UA, Tucson, Arizona
| | - Jana Jandova
- Department of Surgery, University of Arizona, Tucson, Arizona
| |
Collapse
|
15
|
Xiao P, Long X, Zhang L, Ye Y, Guo J, Liu P, Zhang R, Ning J, Yu W, Wei F, Yu J. Neurotensin/IL-8 pathway orchestrates local inflammatory response and tumor invasion by inducing M2 polarization of Tumor-Associated macrophages and epithelial-mesenchymal transition of hepatocellular carcinoma cells. Oncoimmunology 2018; 7:e1440166. [PMID: 29900041 DOI: 10.1080/2162402x.2018.1440166] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 12/12/2022] Open
Abstract
We previously demonstrated that neurotensin (NTS) induces local inflammation and promotes tumor invasion in hepatocellular carcinoma (HCC). However, the underlying molecular mechanisms are not clear. In this study, positive correlations between NTS and interleukin (IL)-8 were identified at both the mRNA and protein levels in 71 fresh HCC tissues and 100 paraffin-embedded HCC tissues. Furthermore, significant correlations were determined among the co-expression of NTS and IL-8, infiltration of inflammatory cells and enhanced epithelial-mesenchymal transition (EMT) of HCC cells. NTS-induced IL-8 production was associated with activation of the mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) pathways rather than the protein kinase C (PKC) and phosphoinositide-3 kinase (PI3K) pathways, whose specific antagonists significantly inhibited activation of the NTS/IL-8 pathway. IL-8, which promoted EMT and HCC invasion both in vitro and in vivo, was produced by NTS-induced HCC cells and was effectively attenuated by blocking IL-8 receptors in vitro. Moreover, HCC-derived IL-8 attracted more CD68+ tumor-associated macrophages (TAMs) and CD66b+ polymorphonuclear neutrophils (PMNs) to the local microenvironment, displaying enhanced cytokine secretion and phagocytosis. IL-8 stimulated the M2 polarization of TAMs, which promoted the EMT and invasive potential of HCC cells. Blockage of the IL-8 receptor, NTR1 receptor or both significantly reduced HCC metastases in tumor-bearing mouse models via inhibiting EMT. In summary, aberrant activation of the NTS/IL-8 pathway in HCC dramatically stimulated the invasive potential of HCC cells. HCC-derived IL-8 promoted a pro-oncogenic inflammatory microenvironment by inducing M2-type TAMs and indirectly promoting EMT, which might be a valuable therapeutic target to prevent tumor progression.
Collapse
Affiliation(s)
- Pei Xiao
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China.,Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Xinxin Long
- Department of Oncology, Tengzhou Central People's Hospital, Tengzhou, Shandong, P.R. China
| | - Lijie Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China.,Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Yingnan Ye
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China
| | - Jincheng Guo
- Bioinformatics Research Group & Health Big-Data, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, P.R. China
| | - Pengpeng Liu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China
| | - Rui Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China
| | - Junya Ning
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China.,Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Wenwen Yu
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P. R. China.,Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, P. R. China
| |
Collapse
|
16
|
Sagini MN, Zepp M, Bergmann F, Bozza M, Harbottle R, Berger MR. The expression of genes contributing to pancreatic adenocarcinoma progression is influenced by the respective environment. Genes Cancer 2018; 9:114-129. [PMID: 30108682 PMCID: PMC6086001 DOI: 10.18632/genesandcancer.173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/16/2018] [Indexed: 01/26/2023] Open
Abstract
Pancreatic adenocarcinoma is a highly aggressive malignancy with dismal prognosis and limited curative options. We investigated the influence of organ environments on gene expression in RNU rats by orthotopic and intraportal infusion of Suit2-007luc cells into the pancreas, liver and lung respectively. Tumor tissues from these sites were analyzed by chip array and histopathology. Generated data was analyzed by Chipster and Ingenuity Pathway Analysis (±1.5 expression fold change and p<0.05). Further analysis of functional annotations derived from IPA, was based on selected genes with significant modulation of expression. Comparison of groups was performed by creating ratios from the mean expression values derived from pancreas and respective in vitro values, whereas those from liver and lung were related to pancreas, respectively. Genes of interest from three functional annotations for respective organs were identified by exclusion-overlap analyses. From the resulting six genes, transglutaminase2 (TGM2) was further investigated by various assays. Its knockdown with siRNA induced dose dependent inhibitory and stimulatory effects on cell proliferation and cell migration, respectively. DNA fragmentation indicated apoptotic cell death in response to TGM2 knockdown. Cell cycle analysis by FACS showed that TGM2 knockdown induced G1/S blockade. Therefore, TGM2 and its associated genes may be promising therapeutic targets.
Collapse
Affiliation(s)
- Micah N. Sagini
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Zepp
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Bergmann
- University Clinic of Heidelberg, Institute of Pathology, Heidelberg, Germany
| | - Matthias Bozza
- DNA Vectors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Richard Harbottle
- DNA Vectors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin R. Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
17
|
Kawami M, Harabayashi R, Harada R, Yamagami Y, Yumoto R, Takano M. Folic acid prevents methotrexate-induced epithelial-mesenchymal transition via suppression of secreted factors from the human alveolar epithelial cell line A549. Biochem Biophys Res Commun 2018; 497:457-463. [PMID: 29448106 DOI: 10.1016/j.bbrc.2018.02.111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 02/06/2023]
Abstract
Methotrexate (MTX) often induces serious lung diseases such as pulmonary fibrosis. Although MTX is known to be a folic acid (FA) antagonist, the effect of FA on MTX-induced lung injury remains unclear. Recent studies indicate that epithelial-mesenchymal transition (EMT) is involved in pulmonary fibrosis. Here, we aimed to clarify the effect of FA on MTX-induced EMT in human alveolar epithelial cell line A549 using conditioned medium (CM). CM was prepared from the supernatants of A549 cells treated with MTX in the absence (CMM) or presence (CMMF) of FA. FA suppressed EMT-like morphological changes and elevated mRNA/protein expression levels of α-smooth muscle actin induced by MTX in A549 cells. In addition, CMM induced EMT-like phenotypical changes, whereas CMMF had no effect on the phenotype of A549 cells, indicating that FA may suppress MTX-induced EMT via inhibiting the secretion of certain factors into the supernatant of the cells. Furthermore, FA also prevented CMM-induced EMT-like phenotypical changes in A549 cells. These findings indicate that FA may be a useful pharmaceutical for MTX-induced lung injury.
Collapse
Affiliation(s)
- Masashi Kawami
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Rika Harabayashi
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Risako Harada
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Yohei Yamagami
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Ryoko Yumoto
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Mikihisa Takano
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
18
|
Papillary renal cell carcinoma-derived chemerin, IL-8, and CXCL16 promote monocyte recruitment and differentiation into foam-cell macrophages. J Transl Med 2017; 97:1296-1305. [PMID: 28759013 PMCID: PMC5668481 DOI: 10.1038/labinvest.2017.78] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 11/26/2022] Open
Abstract
Papillary renal cell carcinoma (pRCC) is the second most common type of renal cell carcinoma. The only curative treatment available for pRCC is radical surgery. If the disease becomes widespread, neither chemo- nor radiotherapy will have therapeutic effect, hence further research on pRCC is of utmost importance. Histologically, pRCC is characterized by a papillary growth pattern with focal aggregation of macrophages of the foam cell phenotype. In other forms of cancer, a clear role for tumor-associated macrophages during cancer growth and progression has been shown. Although the presence of foamy macrophages is a histological hallmark of pRCC tumors, little is known regarding their role in pRCC biology. In order to study the interaction between pRCC tumor and myeloid cells, we established primary cultures from pRCC tissue. We show that human pRCC cells secrete the chemokines IL-8, CXCL16, and chemerin, and that these factors attract primary human monocytes in vitro. RNAseq data from The Cancer Genome Atlas confirmed a high expression of these factors in pRCC tissue. Conditioned medium from pRCC cultures induced a shift in human monocytes toward the M2 macrophage phenotype. In extended cultures, these macrophages became enlarged and loaded with lipids, adopting the foam cell morphology found in pRCC tissue. These results show for the first time that pRCC primary tumor cells secrete factors that attract and differentiate monocytes into anti-inflammatory tumor-associated macrophages with foam cell histology.
Collapse
|
19
|
Liu L, Miao L, Liu Y, Qi A, Xie P, Chen J, Zhu H. S100A11 regulates renal carcinoma cell proliferation, invasion, and migration via the EGFR/Akt signaling pathway and E-cadherin. Tumour Biol 2017; 39:1010428317705337. [PMID: 28513300 DOI: 10.1177/1010428317705337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
S100A11 is a S100 protein family member that contributes to cancer progression. Upregulated in human renal cancer tissues, S100A11 may be a prognostic marker for clear cell renal cell carcinoma, but how it functions in cancer is uncertain. Thus, we studied S100A11 and noted knockdown of S100A11 using short hairpin RNA, which inhibited proliferation, invasion, and migration of renal carcinoma cells as well as increased expression of E-cadherin and decreased expression of epidermal growth factor receptor/Akt in renal carcinoma cells. Therefore, S100A11 may be a key molecular target for treating renal carcinoma.
Collapse
Affiliation(s)
- Lin Liu
- 1 Xuzhou Medical University, Xuzhou, China.,2 Xinyi People's Hospital, Xinyi, China
| | - Long Miao
- 1 Xuzhou Medical University, Xuzhou, China
| | - Yang Liu
- 3 Xuzhou Medical University Affiliated Hospital, Xuzhou, China
| | - Aihua Qi
- 2 Xinyi People's Hospital, Xinyi, China
| | - Ping Xie
- 4 Huai'an Hospital Affiliated of Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an, China
| | - Jiacun Chen
- 3 Xuzhou Medical University Affiliated Hospital, Xuzhou, China
| | - Haitao Zhu
- 3 Xuzhou Medical University Affiliated Hospital, Xuzhou, China
| |
Collapse
|
20
|
Zhao Z, Wang S, Lin Y, Miao Y, Zeng Y, Nie Y, Guo P, Jiang G, Wu J. Epithelial-mesenchymal transition in cancer: Role of the IL-8/IL-8R axis. Oncol Lett 2017; 13:4577-4584. [PMID: 28599458 DOI: 10.3892/ol.2017.6034] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 01/19/2017] [Indexed: 12/26/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a biological process that is associated with cancer metastasis and invasion. In cancer, EMT promotes cell motility, invasion and distant metastasis. Interleukin (IL)-8 is highly expressed in tumors and may induce EMT. The IL-8/IL-8R axis has a vital role in EMT in carcinoma, which is regulated by several signaling pathways, including the transforming growth factor β-spleen associated tyrosine kinase/Src-AKT/extracellular signal-regulated kinase, p38/Jun N-terminal kinase-activating transcription factor-2, phosphoinositide 3-kinase/AKT, nuclear factor-κB and Wnt signaling pathways. Blocking the IL-8/IL-8R signaling pathway may be a novel strategy to reduce metastasis and improve patient survival rates. This review will cover IL-8-IL-8R signaling pathway in tumor epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Zhiwei Zhao
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shichao Wang
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Yingbo Lin
- Department of Oncology and Pathology, Karolinska Institute, Cancer Centre Karolinska, SE-171 76 Stockholm, Sweden
| | - Yali Miao
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ye Zeng
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yongmei Nie
- School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Peng Guo
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Guangyao Jiang
- Outpatient Building, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jiang Wu
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| |
Collapse
|
21
|
Zhang XL, Xing RG, Chen L, Liu CR, Miao ZG. PI3K/Akt signaling is involved in the pathogenesis of bleomycin-induced pulmonary fibrosis via regulation of epithelial-mesenchymal transition. Mol Med Rep 2016; 14:5699-5706. [DOI: 10.3892/mmr.2016.5960] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/19/2016] [Indexed: 11/06/2022] Open
|
22
|
Sheng L, Mao X, Yu Q, Yu D. Effect of the PI3K/AKT signaling pathway on hypoxia-induced proliferation and differentiation of bone marrow-derived mesenchymal stem cells. Exp Ther Med 2016; 13:55-62. [PMID: 28123468 PMCID: PMC5245145 DOI: 10.3892/etm.2016.3917] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/09/2016] [Indexed: 12/15/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cell (BM-MSC) transplantation has been demonstrated to be an effective way of augmenting angiogenesis of ischemic tissue. The low oxygen conditions in ischemic tissue directly affect the biological behavior of engrafted cells. However, to date, the mechanism through which hypoxia regulates self-renewal, differentiation and paracrine function of BM-MSCs remains unclear. Clarification of this mechanism would be beneficial to the use of stem cell-based therapy. The PI3K/AKT pathway has been extensively investigated for its role in cell proliferation, cell transformation, paracrine function and angiogenesis. The present study aimed to analyze the role of PI3K/AKT pathway in hypoxia-induced proliferation of BM-MSCs and their differentiation into endothelial cells in vitro by the application of LY294002, a PI3K/AKT pathway inhibitor, with cells cultured in normoxia serving as a control. The results showed that rat BM-MSCs at passage 3 and 4 displayed only few phenotypical differences in the expression of surface antigens as detected by flow cytometry. When compared with the cells treated in normoxia, the proliferation of BM-MSCs in hypoxia was promoted, a greater number of cells expressed CD31 and a higher expression of vascular endothelial growth factor was observed after culture in hypoxic conditions. However, by inhibiting with LY294002, these changes induced by hypoxia were partly inhibited. In conclusion, the present study showed that the PI3K/AKT pathway served an important role in hypoxia-enhanced in vitro proliferation of BM-MSCs and their differentiation into endothelial cells and paracrine vascular endothelial growth factor.
Collapse
Affiliation(s)
- Lingling Sheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, P.R. China
| | - Xiyuan Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, P.R. China
| | - Qingxiong Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, P.R. China
| | - Dong Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, P.R. China
| |
Collapse
|