1
|
Chen H, Chen S, Chen C, Li A, Wei Z. Leucine zipper downregulated in cancer 1 may serve as a favorable prognostic biomarker by influencing proliferation, colony formation, cell cycle, apoptosis, and migration ability in hepatocellular carcinoma. Front Genet 2022; 13:900951. [PMID: 35957693 PMCID: PMC9358146 DOI: 10.3389/fgene.2022.900951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Aims: Leucine zipper downregulated in cancer 1 (LDOC1) inhibits tumor growth in several cancers. However, the expression and function of LDOC1 in hepatocellular carcinoma (HCC) remain unknown. In this study, we aimed to investigate how LDOC1 influenced tumor progression and the biological functions of HCC. Methods: The transcription levels of LDOC1 were determined using the GEPIA and UALCAN online databases and a real-time polymerase chain reaction. Western blot and immunohistochemistry were used to validate the protein levels of LDOC1. The online Kaplan-Meier Plotter was applied for survival analysis. Then lentivirus transfection was used to construct LDOC1 exogenous overexpression cell lines. Proliferation, clone formation, cell cycle, apoptosis, and migration assays were performed with the LDOC1-upregulated Huh7 and Hep3B cell lines. The phosphorylated and total levels of AKT and mTOR were determined using a Western blot to explore the potential molecular mechanism of LDOC1. Results: In the GEPIA and UALCAN analyses, LDOC1 was lowly expressed in tumors, had high expression in normal tissue samples (p < 0.05), and negatively correlated with tumor grade progression. The down-regulation of LDOC1 in HCC was validated with real-time polymerase chain reaction, Western blot, and immunohistochemistry (all p < 0.05). LDOC1 transcription levels were negatively associated with overall, progression-free, recurrence-free, and disease-specific survival (all p < 0.05). The functional experiments suggested that the overexpression of LDOC1 contributed to increased G1 and G2 stages in Huh7, while increased G2 stage in Hep3B, and decreased cell proliferation, clone formation, and migration, as well as increased the apoptosis rate compared with the control group (all p < 0.05). Furthermore, LDOC1 up-regulation reduced the p-AKT/AKT and p-mTOR/mTOR, which indicates an inactivation of the AKT/mTOR pathway. Conclusion: The tumor-suppressor LDOC1 varied in HCC and non-HCC tissues, which can serve as a candidate prognostic biomarker. LDOC1 influenced survival by affecting proliferation, colony formation, cell cycle, apoptosis, and migration ability, which might be attributed to the AKT/mTOR inhibition in HCC.
Collapse
Affiliation(s)
- Huaping Chen
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Siyuan Chen
- Department of Nuclear Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Chen Chen
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Aifeng Li
- Department of Nuclear Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Zhixiao Wei
- Department of Nuclear Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
- *Correspondence: Zhixiao Wei,
| |
Collapse
|
2
|
Guo J, Zhang X, Xia T, Johnson H, Feng X, Simoulis A, Wu AHB, Li F, Tan W, Johnson A, Dizeyi N, Abrahamsson PA, Kenner L, Xiao K, Zhang H, Chen L, Zou C, Persson JL. Non-invasive Urine Test for Molecular Classification of Clinical Significance in Newly Diagnosed Prostate Cancer Patients. Front Med (Lausanne) 2021; 8:721554. [PMID: 34595190 PMCID: PMC8476767 DOI: 10.3389/fmed.2021.721554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/16/2021] [Indexed: 12/02/2022] Open
Abstract
Objective: To avoid over-treatment of low-risk prostate cancer patients, it is important to identify clinically significant and insignificant cancer for treatment decision-making. However, no accurate test is currently available. Methods: To address this unmet medical need, we developed a novel gene classifier to distinguish clinically significant and insignificant cancer, which were classified based on the National Comprehensive Cancer Network risk stratification guidelines. A non-invasive urine test was developed using quantitative mRNA expression data of 24 genes in the classifier with an algorithm to stratify the clinical significance of the cancer. Two independent, multicenter, retrospective and prospective studies were conducted to assess the diagnostic performance of the 24-Gene Classifier and the current clinicopathological measures by univariate and multivariate logistic regression and discriminant analysis. In addition, assessments were performed in various Gleason grades/ISUP Grade Groups. Results: The results showed high diagnostic accuracy of the 24-Gene Classifier with an AUC of 0.917 (95% CI 0.892–0.942) in the retrospective cohort (n = 520), AUC of 0.959 (95% CI 0.935–0.983) in the prospective cohort (n = 207), and AUC of 0.930 (95% 0.912-CI 0.947) in the combination cohort (n = 727). Univariate and multivariate analysis showed that the 24-Gene Classifier was more accurate than cancer stage, Gleason score, and PSA, especially in the low/intermediate-grade/ISUP Grade Group 1–3 cancer subgroups. Conclusions: The 24-Gene Classifier urine test is an accurate and non-invasive liquid biopsy method for identifying clinically significant prostate cancer in newly diagnosed cancer patients. It has the potential to improve prostate cancer treatment decisions and active surveillance.
Collapse
Affiliation(s)
- Jinan Guo
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.,Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, China.,Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Clinical Medicine Research Centre, Shenzhen, China
| | - Xuhui Zhang
- Department of Bio-diagnosis, Institute of Basic Medical Sciences, Beijing, China
| | - Taolin Xia
- Department of Urology, Foshan First People's Hospital, Foshan, China
| | | | - Xiaoyan Feng
- Department of Bio-diagnosis, Institute of Basic Medical Sciences, Beijing, China
| | - Athanasios Simoulis
- Department of Clinical Pathology and Cytology, Skåne University Hospital, Malmö, Sweden
| | - Alan H B Wu
- Clinical Laboratories, San Francisco General Hospital, San Francisco, CA, United States
| | - Fei Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | - Nishtman Dizeyi
- Department of Translational Medicine, Clinical Research Centre, Lund University, Malmö, Sweden
| | - Per-Anders Abrahamsson
- Department of Translational Medicine, Clinical Research Centre, Lund University, Malmö, Sweden
| | - Lukas Kenner
- Department of Experimental Pathology, Medical University Vienna & Unit of Laboratory Animal Pathology, University of Veterinary Medicine, Vienna, Austria
| | - Kefeng Xiao
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.,Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, China.,Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Clinical Medicine Research Centre, Shenzhen, China
| | - Heqiu Zhang
- Department of Bio-diagnosis, Institute of Basic Medical Sciences, Beijing, China
| | - Lingwu Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chang Zou
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.,Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen, China.,Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Clinical Medicine Research Centre, Shenzhen, China.,Key Laboratory of Medical Electrophysiology of Education Ministry, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jenny L Persson
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Department of Biomedical Sciences, Malmö University, Malmö, Sweden.,Division of Experimental Cancer Research, Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
3
|
Integrative Analysis of miRNA and mRNA Expression Profiles in Mammary Glands of Holstein Cows Artificially Infected with Staphylococcus aureus. Pathogens 2021; 10:pathogens10050506. [PMID: 33922375 PMCID: PMC8145100 DOI: 10.3390/pathogens10050506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/10/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus- induced mastitis is one of the most intractable problems for the dairy industry, which causes loss of milk yield and early slaughter of cows worldwide. Few studies have used a comprehensive approach based on the integrative analysis of miRNA and mRNA expression profiles to explore molecular mechanism in bovine mastitis caused by S. aureus. In this study, S. aureus (A1, B1 and C1) and sterile phosphate buffered saline (PBS) (A2, B2 and C2) were introduced to different udder quarters of three individual cows, and transcriptome sequencing and microarrays were utilized to detected miRNA and gene expression in mammary glands from the challenged and control groups. A total of 77 differentially expressed microRNAs (DE miRNAs) and 1625 differentially expressed genes (DEGs) were identified. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that multiple DEGs were enriched in significant terms and pathways associated with immunity and inflammation. Integrative analysis between DE miRNAs and DEGs proved that miR-664b, miR-23b-3p, miR-331-5p, miR-19b and miR-2431-3p were potential factors regulating the expression levels of CD14 Molecule (CD14), G protein subunit gamma 2 (GNG2), interleukin 17A (IL17A), collagen type IV alpha 1 chain (COL4A1), microtubule associated protein RP/EB family member 2 (MAPRE2), member of RAS oncogene family (RAP1B), LDOC1 regulator of NFKB signaling (LDOC1), low-density lipoprotein receptor (LDLR) and S100 calcium binding protein A9 (S100A9) in bovine mastitis caused by S. aureus. These findings could enhance the understanding of the underlying immune response in bovine mammary glands against S. aureus infection and provide a useful foundation for future application of the miRNA–mRNA-based genetic regulatory network in the breeding cows resistant to S. aureus.
Collapse
|