1
|
Mello FW, Melo G, Guerra ENS, Warnakulasuriya S, Garnis C, Rivero ERC. Oral potentially malignant disorders: A scoping review of prognostic biomarkers. Crit Rev Oncol Hematol 2020; 153:102986. [PMID: 32682268 DOI: 10.1016/j.critrevonc.2020.102986] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 02/08/2023] Open
Abstract
This scoping review aimed to map evidence regarding biomarkers for malignant transformation of oral potentially malignant disorders (OPMD). Seventy-three longitudinal studies investigating prognostic biomarkers for OPMD malignant transformation were included, encompassing 5612 disorders and 108 biomarkers, of which 72 were investigated by immunohistochemistry. Most biomarkers were assessed in one or two studies, while five (p53, Ki-67, podoplanin, p16, and DNA ploidy) were analyzed in five or more studies. All studies investigating podoplanin (n = 8) reported a significant association between positive/high immunoexpression and malignant transformation. Similarly, all studies assessing DNA ploidy (n = 5) found that aneuploidy or gross genomic aberrations were significantly associated with malignant transformation. Included studies often presented mixed data from different OPMD subtypes, inadequate description of population characteristics, and lack of adjusted analysis for confounding factors. One hundred and eight biomarkers were identified and, from these, podoplanin immunoexpression and DNA ploidy were considered promising candidates for future long-term clinical research.
Collapse
Affiliation(s)
- Fernanda Weber Mello
- Postgraduate program in Dentistry, Federal University of Santa Catarina - Florianópolis, Brazil.
| | - Gilberto Melo
- Postgraduate program in Dentistry, Federal University of Santa Catarina - Florianópolis, Brazil.
| | - Eliete Neves Silva Guerra
- Laboratory of Oral Histopathology, School of Health Sciences, University of Brasília - Brasília, Brazil.
| | - Saman Warnakulasuriya
- Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London and WHO Collaborating Centre for Oral Cancer, UK.
| | - Cathie Garnis
- Department of Surgery, University of British Columbia - Vancouver, Canada.
| | | |
Collapse
|
2
|
Hossain E, Habiba U, Yanagawa-Matsuda A, Alam A, Ahmed I, Towfik Alam M, Yasuda M, Higashino F. Advantages of Using Paclitaxel in Combination with Oncolytic Adenovirus Utilizing RNA Destabilization Mechanism. Cancers (Basel) 2020; 12:cancers12051210. [PMID: 32408515 PMCID: PMC7281177 DOI: 10.3390/cancers12051210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022] Open
Abstract
Oncolytic virotherapy is a novel approach to cancer therapy. Ad-fosARE is a conditionally replicative adenovirus engineered by inserting AU-rich elements (ARE) in the 3'-untranslated region of the E1A gene. In this study, we examined the oncolytic activity of Ad-fosARE and used it in a synergistic combination with the chemotherapeutic agent paclitaxel (PTX) for treating cancer cells. The expression of E1A was high in cancer cells due to stabilized E1A-ARE mRNA. As a result, the efficiency of its replication and cytolytic activity in cancer cells was higher than in normal cells. PTX treatment increased the cytoplasmic HuR relocalization in cancer cells, enhanced viral replication through elevated E1A expression, and upregulated CAR (Coxsackie-adenovirus receptor) required for viral uptake. Furthermore, PTX altered the instability of microtubules by acetylation and detyrosination, which is essential for viral internalization and trafficking to the nucleus. These results indicate that PTX can provide multiple advantages to the efficacy of Ad-fosARE both in vitro and in vivo, and provides a basis for designing novel clinical trials. Thus, this virus has a lot of benefits that are not found in other oncolytic viruses. The virus also has the potential for treating PXT-resistant cancers.
Collapse
Affiliation(s)
- Elora Hossain
- Department of Molecular Oncology, Faculty of Dental Medicine and Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo 060-8638, Japan; (E.H.); (I.A.)
| | - Umma Habiba
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan;
| | - Aya Yanagawa-Matsuda
- Department of Vascular Biology and Molecular Pathology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan; (A.Y.-M.); (M.T.A.)
| | - Arefin Alam
- Department of Restorative Dentistry, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan;
| | - Ishraque Ahmed
- Department of Molecular Oncology, Faculty of Dental Medicine and Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo 060-8638, Japan; (E.H.); (I.A.)
| | - Mohammad Towfik Alam
- Department of Vascular Biology and Molecular Pathology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan; (A.Y.-M.); (M.T.A.)
| | - Motoaki Yasuda
- Department of Oral Molecular Microbiology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan;
| | - Fumihiro Higashino
- Department of Molecular Oncology, Faculty of Dental Medicine and Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo 060-8638, Japan; (E.H.); (I.A.)
- Department of Vascular Biology and Molecular Pathology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan; (A.Y.-M.); (M.T.A.)
- Correspondence: ; Tel.: +81-(0)11-706-4237
| |
Collapse
|
3
|
Ramos-Vega V, Venegas Rojas B, Donoso Torres W. Immunohistochemical analysis of cancer-associated fibroblasts and podoplanin in head and neck cancer. Med Oral Patol Oral Cir Bucal 2020; 25:e268-e276. [PMID: 31967978 PMCID: PMC7103444 DOI: 10.4317/medoral.23335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/12/2019] [Indexed: 12/24/2022] Open
Abstract
Background To immunohistochemically evaluate the association between the presence of cancer-associated fibroblasts (CAFs) and the tumour expression of podoplanin (PDPN) in head and neck squamous cell carcinoma (HNSCC) and their association with clinicopathological variables.
Material and Methods A tissue microarray (TMA) with biopsy sections from patients diagnosed with HNSCC was stained with antibodies against the CAFs marker, α-smooth muscle actin (α-SMA), and PDPN. We subsequently evaluated their expression to determine the association between them and with clinicopathological variables including age, primary tumour site, TNM stage, and tumour differentiation grade.
Results Positive reaction to α-SMA was observed in the tumour stroma, revealing spindle-shaped cells compatible with CAFs, which showed a high expression in 62% of cases and a significant association with laryngeal carcinomas, advanced clinical stages, and lower tumour differentiation (P ≤ 0.05). PDPN staining on tumour cells showed low expression in 72% of cases, and it was not associated with any clinicopathological variable or with the presence of CAFs.
Conclusions The presence of CAFs in the tumour stroma is related to an aggressive phenotype and could increase as the disease progresses, although based on our findings, it would have no relationship, at least directly, with the expression of PDPN. Key words:Cancer-associated fibroblasts, myofibroblasts, head and neck neoplasms, podoplanin, immunohistochemistry.
Collapse
Affiliation(s)
- V Ramos-Vega
- Department of Basic Biomedical Sciences University of Talca Lircay Avenue w/n, Talca, Chile
| | | | | |
Collapse
|
4
|
Diagnostic Adjuncts for Oral Cavity Squamous Cell Carcinoma and Oral Potentially Malignant Disorders. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/978-3-030-32316-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
5
|
Farah CS, Shearston K, Nguyen AP, Kujan O. Oral Carcinogenesis and Malignant Transformation. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-981-13-2931-9_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Habiba U, Kuroshima T, Yanagawa-Matsuda A, Kitamura T, Chowdhury A, Jehung JP, Hossain E, Sano H, Kitagawa Y, Shindoh M, Higashino F. HuR translocation to the cytoplasm of cancer cells in actin-independent manner. Exp Cell Res 2018; 369:218-225. [PMID: 29807023 DOI: 10.1016/j.yexcr.2018.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 11/18/2022]
Abstract
Human antigen R (HuR) is a RNA-binding protein, which binds to the AU-rich element (ARE) in the 3'-untranslated region (3'-UTR) of certain mRNA and is involved in the export and stabilization of ARE-mRNA. HuR constitutively relocates to the cytoplasm in many cancer cells, however the mechanism of intracellular HuR trafficking is poorly understood. To address this question, we examined the functional role of the cytoskeleton in HuR relocalization. We tested the effect of actin depolymerizing macrolide latrunculin A or myosin II ATPase activity inhibitor blebbistatin for HuR relocalization induced by the vasoactive hormone Angiotensin II in cancer and control normal cells. Western blot and confocal imaging data revealed that both inhibitors attenuated the cytoplasmic HuR in normal cells but no such alteration was observed in cancer cells. Concomitant with changes in intracellular HuR localization, both inhibitors markedly decreased the accumulation and half-lives of HuR target ARE-mRNAs in normal cells, whereas no change was observed in cancer cells. Furthermore, co-immunoprecipitation experiments with HuR proteins revealed clear physical interaction with ß-actin only in normal cells. The current study is the first to verify that cancer cells can implicate a microfilament independent HuR transport. We hypothesized that when cytoskeleton structure is impaired, cancer cells can acquire an alternative HuR trafficking strategy.
Collapse
Affiliation(s)
- Umma Habiba
- Department of Oral Pathology and Biology, Hokkaido University Faculty of Dental Medicine and Graduate School of Dental Medicine, Sapporo, Japan
| | - Takeshi Kuroshima
- Department of Oral Diagnosis and Medicine, Hokkaido University Faculty of Dental Medicine and Graduate School of Dental Medicine, Sapporo, Japan
| | - Aya Yanagawa-Matsuda
- Department of Oral Pathology and Biology, Hokkaido University Faculty of Dental Medicine and Graduate School of Dental Medicine, Sapporo, Japan
| | - Tetsuya Kitamura
- Department of Oral Pathology and Biology, Hokkaido University Faculty of Dental Medicine and Graduate School of Dental Medicine, Sapporo, Japan
| | - Afma Chowdhury
- Department of Restorative Dentistry, Hokkaido University Faculty of Dental Medicine and Graduate School of Dental Medicine, Sapporo, Japan
| | - Jumond P Jehung
- Department of Restorative Dentistry, Hokkaido University Faculty of Dental Medicine and Graduate School of Dental Medicine, Sapporo, Japan
| | - Elora Hossain
- Department of Molecular Oncology, Hokkaido University Faculty of Dental Medicine and Graduate School of Biomedical Science and Engineering, 060-8586,North 13, West 7, Kita ku, Sapporo, Japan
| | - Hidehiko Sano
- Department of Restorative Dentistry, Hokkaido University Faculty of Dental Medicine and Graduate School of Dental Medicine, Sapporo, Japan
| | - Yoshimasa Kitagawa
- Department of Oral Diagnosis and Medicine, Hokkaido University Faculty of Dental Medicine and Graduate School of Dental Medicine, Sapporo, Japan
| | - Masanobu Shindoh
- Department of Oral Pathology and Biology, Hokkaido University Faculty of Dental Medicine and Graduate School of Dental Medicine, Sapporo, Japan
| | - Fumihiro Higashino
- Department of Oral Pathology and Biology, Hokkaido University Faculty of Dental Medicine and Graduate School of Dental Medicine, Sapporo, Japan; Department of Molecular Oncology, Hokkaido University Faculty of Dental Medicine and Graduate School of Biomedical Science and Engineering, 060-8586,North 13, West 7, Kita ku, Sapporo, Japan.
| |
Collapse
|
7
|
Retzbach EP, Sheehan SA, Nevel EM, Batra A, Phi T, Nguyen ATP, Kato Y, Baredes S, Fatahzadeh M, Shienbaum AJ, Goldberg GS. Podoplanin emerges as a functionally relevant oral cancer biomarker and therapeutic target. Oral Oncol 2018; 78:126-136. [PMID: 29496040 DOI: 10.1016/j.oraloncology.2018.01.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/14/2017] [Accepted: 01/18/2018] [Indexed: 12/22/2022]
Abstract
Oral cancer has become one of the most aggressive types of cancer, killing 140,000 people worldwide every year. Current treatments for oral cancer include surgery and radiation therapies. These procedures can be very effective; however, they can also drastically decrease the quality of life for survivors. New chemotherapeutic treatments are needed to more effectively combat oral cancer. The transmembrane receptor podoplanin (PDPN) has emerged as a functionally relevant oral cancer biomarker and chemotherapeutic target. PDPN expression promotes tumor cell migration leading to oral cancer invasion and metastasis. Here, we describe the role of PDPN in oral squamous cell carcinoma progression, and how it may be exploited to prevent and treat oral cancer.
Collapse
Affiliation(s)
- Edward P Retzbach
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Stephanie A Sheehan
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Evan M Nevel
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Amber Batra
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Tran Phi
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Angels T P Nguyen
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Yukinari Kato
- New Industry Creation Hatchery Center, Tohoku University; Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Soly Baredes
- Department of Otolaryngology-Head and Neck Surgery, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Mahnaz Fatahzadeh
- Department of Diagnostic Sciences, New Jersey School of Dental Medicine, Rutgers University, Newark, NJ 07103 USA
| | - Alan J Shienbaum
- Department of Pathology, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Gary S Goldberg
- Department of Molecular Biology and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA.
| |
Collapse
|
8
|
Clinical Significance and Biological Role of HuR in Head and Neck Carcinomas. DISEASE MARKERS 2018; 2018:4020937. [PMID: 29619127 PMCID: PMC5829322 DOI: 10.1155/2018/4020937] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/27/2017] [Indexed: 12/17/2022]
Abstract
Background Hu-antigen R (HuR) is a posttranscriptional regulator of several target mRNAs, implicated in carcinogenesis. This review aims to present the current evidence regarding the biological role and potential clinical significance of HuR in head and neck carcinomas. Methods The existing literature concerning HuR expression and function in head and neck carcinomas is critically presented and summarised. Results HuR is expressed in the majority of the examined samples, showing higher cytoplasmic levels in malignant or premalignant cases. Moreover, HuR modulates several genes implicated in biological processes important for malignant transformation, growth, and invasiveness. HuR seems to be an adverse prognosticator in patients with OSCCs, whereas a correlation with a more aggressive phenotype is reported in several types of carcinomas. Conclusions A consistent role of HuR in the carcinogenesis and progression of head and neck carcinomas is suggested; nevertheless, further studies are warranted to expand the present information.
Collapse
|