1
|
Shakiba M, Rassouli FB. Joining up the scattered anticancer knowledge on auraptene and umbelliprenin: a meta-analysis. Sci Rep 2024; 14:11770. [PMID: 38783034 PMCID: PMC11116445 DOI: 10.1038/s41598-024-62747-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Auraptene (AUR) and umbelliprenin (UMB) are naturally occurring prenylated coumarins that have demonstrated promising anticancer effects across various human cancer cell lines. This meta-analysis aimed to systematically assess, compare, and quantify the anticancer efficacy of AUR and UMB by synthesizing evidence from in vitro studies. A comprehensive literature search identified 27 eligible studies investigating AUR or UMB against cancer cells. Mixed-effects models revealed significant negative associations between coumarin dose and viability for AUR (est. = - 2.27) and UMB (est. = - 3.990), underscoring their dose-dependent cytotoxicity. Meta-regression indicated slightly higher potency for UMB over AUR, potentially due to increased lipophilicity imparted by additional isoprenyl units. Machine learning approaches identified coumarin dose and cancer type as the most influential determinants of toxicity, while treatment duration and the specific coumarin displayed weaker effects. Moderate (AUR) to substantial (UMB) between-study heterogeneity was detected, although the findings proved robust. In summary, this meta-analysis establishes AUR and UMB as promising natural anticancer candidates with clear dose-toxicity relationships across diverse malignancies. The structural insights and quantifications of anticancer efficacy can inform forthcoming efforts assessing therapeutic potential in pre-clinical models and human trials.
Collapse
Affiliation(s)
- Mohammadhosein Shakiba
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh B Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, P.O. Box: 9177948974, Mashhad, Iran.
| |
Collapse
|
2
|
Barman SK, Sen MK, Mahns DA, Wu MJ, Malladi CS. Molecular Insights into the Breast and Prostate Cancer Cells in Response to the Change of Extracellular Zinc. JOURNAL OF ONCOLOGY 2024; 2024:9925970. [PMID: 38249992 PMCID: PMC10798840 DOI: 10.1155/2024/9925970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024]
Abstract
Zinc dyshomeostasis is manifested in breast and prostate cancer cells. This study attempted to uncover the molecular details prodded by the change of extracellular zinc by employing a panel of normal and cancerous breast and prostate cell lines coupled with the top-down proteomics with two-dimensional gel electrophoresis followed by liquid chromatography-tandem mass spectrometry. The protein samples were generated from MCF-7 breast cancer cells, MCF10A normal breast cells, PC3 prostate cancer cells, and RWPE-1 normal prostate cells with or without exogenous zinc exposure in a time course (T0 and T120). By comparing the cancer cells vs respective normal epithelial cells without zinc treatment (T0), differentially expressed proteins (23 upregulated and 18 downregulated in MCF-7 cells; 14 upregulated and 30 downregulated in PC3 cells) were identified, which provides insights into the intrinsic differences of breast and prostate cancer cells. The dynamic protein landscapes in the cancer cells prodded by the extracellular zinc treatment reveal the potential roles of the identified zinc-responsive proteins (e.g., triosephosphate isomerase, S100A13, tumour proteins hD53 and hD54, and tumour suppressor prohibitin) in breast and prostate cancers. This study, for the first time, simultaneously investigated the two kinds of cancer cells related to zinc dyshomeostasis, and the findings shed light on the molecular understanding of the breast and prostate cancer cells in response to extracellular zinc variation.
Collapse
Affiliation(s)
- Shital K. Barman
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Monokesh K. Sen
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown 2006, NSW, Australia
| | - David A. Mahns
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Ming J. Wu
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Chandra S. Malladi
- Proteomics and Lipidomics Lab, School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| |
Collapse
|
3
|
Julca I, Mutwil-Anderwald D, Manoj V, Khan Z, Lai SK, Yang LK, Beh IT, Dziekan J, Lim YP, Lim SK, Low YW, Lam YI, Tjia S, Mu Y, Tan QW, Nuc P, Choo LM, Khew G, Shining L, Kam A, Tam JP, Bozdech Z, Schmidt M, Usadel B, Kanagasundaram Y, Alseekh S, Fernie A, Li HY, Mutwil M. Genomic, transcriptomic, and metabolomic analysis of Oldenlandia corymbosa reveals the biosynthesis and mode of action of anti-cancer metabolites. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36807520 DOI: 10.1111/jipb.13469] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Plants accumulate a vast array of secondary metabolites, which constitute a natural resource for pharmaceuticals. Oldenlandia corymbosa belongs to the Rubiaceae family, and has been used in traditional medicine to treat different diseases, including cancer. However, the active metabolites of the plant, their biosynthetic pathway and mode of action in cancer are unknown. To fill these gaps, we exposed this plant to eight different stress conditions and combined different omics data capturing gene expression, metabolic profiles, and anti-cancer activity. Our results show that O. corymbosa extracts are active against breast cancer cell lines and that ursolic acid is responsible for this activity. Moreover, we assembled a high-quality genome and uncovered two genes involved in the biosynthesis of ursolic acid. Finally, we also revealed that ursolic acid causes mitotic catastrophe in cancer cells and identified three high-confidence protein binding targets by Cellular Thermal Shift Assay (CETSA) and reverse docking. Altogether, these results constitute a valuable resource to further characterize the biosynthesis of active metabolites in the Oldenlandia group, while the mode of action of ursolic acid will allow us to further develop this valuable compound.
Collapse
Affiliation(s)
- Irene Julca
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | | | - Vaishnervi Manoj
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zahra Khan
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Soak Kuan Lai
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Lay K Yang
- Shared Analytics, Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore
| | - Ing T Beh
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jerzy Dziekan
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yoon P Lim
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| | - Shen K Lim
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore
| | - Yee W Low
- Singapore Botanic Gardens, Singapore, 259569, Singapore
| | - Yuen I Lam
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Seth Tjia
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Qiao W Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Przemyslaw Nuc
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, 61-614, Poland
| | - Le M Choo
- Singapore Botanic Gardens, Singapore, 259569, Singapore
| | - Gillian Khew
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
- Singapore Botanic Gardens, Singapore, 259569, Singapore
| | - Loo Shining
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Antony Kam
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - James P Tam
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | | | - Bjoern Usadel
- IBG-4 Bioinformatics, Forschungszentrum Jülich, Jülich, 52428, Germany
| | - Yoganathan Kanagasundaram
- Shared Analytics, Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, 138671, Singapore
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Alisdair Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Hoi Y Li
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
5
|
Fathi E, Yarbro JM, Homayouni R. NIPSNAP protein family emerges as a sensor of mitochondrial health. Bioessays 2021; 43:e2100014. [PMID: 33852167 PMCID: PMC10577685 DOI: 10.1002/bies.202100014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022]
Abstract
Since their discovery over two decades ago, the molecular and cellular functions of the NIPSNAP family of proteins (NIPSNAPs) have remained elusive until recently. NIPSNAPs interact with a variety of mitochondrial and cytoplasmic proteins. They have been implicated in multiple cellular processes and associated with different physiologic and pathologic conditions, including pain transmission, Parkinson's disease, and cancer. Recent evidence demonstrated a direct role for NIPSNAP1 and NIPSNAP2 proteins in regulation of mitophagy, a process that is critical for cellular health and maintenance. Importantly, NIPSNAPs contain a 110 amino acid domain that is evolutionary conserved from mammals to bacteria. However, the molecular function of the conserved NIPSNAP domain and its potential role in mitophagy have not been explored. It stands to reason that the highly conserved NIPSNAP domain interacts with a substrate that is ubiquitously present across all species and can perhaps act as a sensor for mitochondrial health.
Collapse
Affiliation(s)
- Esmat Fathi
- Department of Biological Sciences, University of Memphis, Memphis, TN, United States
- Beaumont Research Institute, Beaumont Health, Royal Oak, MI, United States
| | - Jay M. Yarbro
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ramin Homayouni
- Beaumont Research Institute, Beaumont Health, Royal Oak, MI, United States
- Oakland University William Beaumont School of Medicine, Oakland University, Rochester, MI, United States
| |
Collapse
|
6
|
Shahzadi I, Ali Z, Baek SH, Mirza B, Ahn KS. Assessment of the Antitumor Potential of Umbelliprenin, a Naturally Occurring Sesquiterpene Coumarin. Biomedicines 2020; 8:biomedicines8050126. [PMID: 32443431 PMCID: PMC7277383 DOI: 10.3390/biomedicines8050126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 12/22/2022] Open
Abstract
Cancer is one of the greatest causes of mortality worldwide. The prevalence rates of different types of cancer is increasing around the world as well. Limitations in chemotherapy and radiotherapy, owing to multiple side effects including cytotoxic effects of antitumor compounds on normal cells as well as the development of resistance to these treatment options in patients, create a serious threat to successful treatment of cancer. The use of natural compounds to prevent and treat cancers has been found to be quite effective, with fewer adverse effects found in patients. Umbelliprenin (UMB) is a naturally occurring sesquiterpene compound found in Ferula species and recently in Artemisia absinthium. Many studies have highlighted the antitumor potential of UMB in different cancer cell lines as well as in animal models. UMB exerts its anticancer actions by regulating extrinsic and intrinsic apoptotic pathways; causing inhibition of the cell cycle at the G0/G1 phase; and attenuating migration and invasion by modulating the Wnt signaling, NF-ĸB, TGFβ, and Fox3 signaling pathways. UMB also affects the key hallmarks of tumor cells by attenuating tumor growth, angiogenesis, and metastasis. This review provides an insight into the role of UMB as a potential antitumor drug for different malignancies and highlights the signaling cascades affected by UMB treatment in diverse tumor cell lines and preclinical models.
Collapse
Affiliation(s)
- Iram Shahzadi
- Plant Molecular Biology Lab, Institute of Biological Sciences, Department of Biochemistry, Quaid i Azam University, Islamabad 45320, Pakistan;
| | - Zain Ali
- Molecular Cancer Therapeutics Lab, Institute of Biological Sciences, Department of Biochemistry, Quaid i Azam University, Islamabad 45320, Pakistan;
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Korea;
| | - Bushra Mirza
- Plant Molecular Biology Lab, Institute of Biological Sciences, Department of Biochemistry, Quaid i Azam University, Islamabad 45320, Pakistan;
- Correspondence: (B.M.); (K.S.A.)
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Correspondence: (B.M.); (K.S.A.)
| |
Collapse
|