1
|
Xu X, Qiu Y, Chen S, Wang S, Yang R, Liu B, Li Y, Deng J, Su Y, Lin Z, Gu J, Li S, Huang L, Zhou Y. Different roles of the insulin-like growth factor (IGF) axis in non-small cell lung cancer. Curr Pharm Des 2022; 28:2052-2064. [DOI: 10.2174/1381612828666220608122934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/29/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Non-small cell lung cancer (NSCLC) remains one of the deadliest malignant diseases, with high incidence and mortality worldwide. The insulin-like growth factor (IGF) axis, consisting of IGF-1, IGF-2, related receptors (IGF-1R, -2R), and high-affinity binding proteins (IGFBP 1–6), is associated with promoting fetal development, tissue growth, and metabolism. Emerging studies have also identified the role of the IGF axis in NSCLC, including cancer growth, invasion, and metastasis. Upregulation of IGE-1 and IGF-2, overexpression of IGF-1R, and dysregulation of downstream signaling molecules involved in the PI-3K/Akt and MAPK pathways jointly increase the risk of cancer growth and migration in NSCLC. At the genetic level, some noncoding RNAs could influence the proliferation and differentiation of tumor cells through the IGF signaling pathway. The resistance to some promising drugs might be partially attributed to the IGF axis. Therapeutic strategies targeting the IGF axis have been evaluated, and some have shown promising efficacy. In this review, we summarize the biological roles of the IGF axis in NSCLC, including the expression and prognostic significance of the related components, noncoding RNA regulation, involvement in drug resistance, and therapeutic application. This review offers comprehensive understanding of NSCLC and provides insightful ideas for future research.
Collapse
Affiliation(s)
- Xiongye Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanli Qiu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Simin Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuaishuai Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruifu Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Baomo Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yufei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiating Deng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Su
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ziying Lin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jincui Gu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shaoli Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lixia Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanbin Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Katakura S, Kobayashi N, Hashimoto H, Kamimaki C, Tanaka K, Kubo S, Nakashima K, Teranishi S, Manabe S, Watanabe K, Horita N, Hara Y, Yamamoto M, Kudo M, Piao H, Kaneko T. MicroRNA-200b is a potential biomarker of the expression of PD-L1 in patients with lung cancer. Thorac Cancer 2020; 11:2975-2982. [PMID: 32893980 PMCID: PMC7529545 DOI: 10.1111/1759-7714.13653] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Advanced non-small cell lung cancer (NSCLC) has a high mortality rate and poor prognosis. However, outcomes have gradually improved after the introduction of novel immunotherapies, including immune checkpoint inhibitors (ICIs). Although programmed death-ligand 1 (PD-L1) expression in tumor tissues is a known biomarker for guiding ICI treatment of NSCLC, challenges such as difficulty of liquid biopsy and heterogeneous results during treatment persist. This study evaluated the potential of miR200b as a surrogate biomarker for PD-L1 expression. METHODS We used the human lung cancer cell lines H226, H460, H520, A549, and H1975. miR200b expression in blood and bronchoscopy specimens of NSCLC patients was evaluated using reverse-transcription-quantitative PCR. Using flow cytometry, PD-L1 expression in vitro, as well as in tumor tissues, was evaluated after transfection with a mimic miR200b or siRNA. RESULTS miR200b expression negatively correlated with PD-L1 expression in all cell lines. The induction or knockdown of miR200b also altered PD-L1 expression in vitro. The patient group with a PD-L1 tumor proportion score ≥ 50% had significantly lower miR200b expression in the bronchoscopy specimens (P = 0.025) and serum-derived exosomes (P = 0.022) than that with PD-L1 tumor proportion score < 50%. CONCLUSIONS miR200b can regulate PD-L1 expression in lung cancer cells, and miR200b expression in clinical specimens negatively correlated with PD-L1 expression. Thus, miR200b may be a useful surrogate biomarker for PD-L1 expression in lung cancer patients. KEY POINTS SIGNIFICANT FINDINGS OF THE STUDY: High PD-L1 expression was linked to low miR200b expression, whereas low PD-L1 expression was linked to high miR200b expression in human lung cancer patients. Thus, miR200b overexpression or silencing can control PD-L1 expression in cancer cells. What this study adds We demonstrated the potential of miR200b as a surrogate biomarker for PD-L1 expression in lung cancer patients.
Collapse
Affiliation(s)
- Seigo Katakura
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuaki Kobayashi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hisashi Hashimoto
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Chisato Kamimaki
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Katsushi Tanaka
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sousuke Kubo
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kentaro Nakashima
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shuhei Teranishi
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Saki Manabe
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Keisuke Watanabe
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuyuki Horita
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yu Hara
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masaki Yamamoto
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Makoto Kudo
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Hongmei Piao
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, China
| | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
3
|
Jeong MS, Jung JH, Lee H, Kim CG, Kim SH. Methyloleanolate Induces Apoptotic And Autophagic Cell Death Via Reactive Oxygen Species Generation And c-Jun N-terminal Kinase Phosphorylation. Onco Targets Ther 2019; 12:8621-8635. [PMID: 31695422 PMCID: PMC6815788 DOI: 10.2147/ott.s211904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/01/2019] [Indexed: 01/16/2023] Open
Abstract
Background To develop a potent anticancer agent similar to oleanolate, the underlying mechanisms of its derivative, methyloleanolate, in the apoptosis and autophagy of A549 and H1299 cells were elucidated. Purpose The aim of the present study was to investigate the effect of methyloleanolate in inducing apoptotic and autophagic cell death in cancer cells. Materials and methods Flow cytometric analysis with Annexin V/PI staining, Western blot analysis, and immunofluorescence analysis were conducted in A549 and H1299 cells. Results Methyloleanolate increased the fraction of Annexin V/PI apoptotic cells and activated caspase-8, caspase-3, and death receptor 5 (DR5) more than oleanolate in A549 and H1299 cells pretreated with pancaspase inhibitor z-VAD-fmk and DR5 depletion. Also, methyloleanolate induced autophagic features of microtubule-associated protein light chain 3 3BII (LC3BII) conversion and puncta in A549 and H1299 cells, along with autophagosomes and vacuoles. Methyloleanolate blocked autophagy flux for impaired autophagy and chloroquine (CQ)-enhanced microtubule-associated protein LC3BII accumulation and cytotoxicity in A549 and H1299 cells, although 3-methyladenine (3-MA) did not. Interestingly, LC3BII accumulation was detected only in methyloleanolate-treated autophagy-related gene 5 (ATG5)+/+ mouse embryonic fibroblast (MEF) cells but not in ATG5 -/- MEF cells. Methyloleanolate reduced p-mTOR but activated p-c-Jun N-terminal kinases and reactive oxygen species production in A549 and H1299 cells. Conversely, n-acetyl-l-cysteine and SP600125 blocked apoptotic and autophagic cascades caused by methyloleanolate in A549 and H1299 cells. Conclusion Overall, the findings suggest that methyloleanolate induces apoptotic and autophagic cell death in non-small cell lung cancers via reactive oxygen species generation and c-Jun N-terminal kinase phosphorylation.
Collapse
Affiliation(s)
- Myoung Seok Jeong
- College of Korean Medicine, Kyung Hee University, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| | - Ji Hoon Jung
- College of Korean Medicine, Kyung Hee University, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| | - Hyemin Lee
- College of Korean Medicine, Kyung Hee University, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| | - Chang Geun Kim
- College of Korean Medicine, Kyung Hee University, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Dongdaemun-Gu, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Li Y, Zhang S, Wang Y, Peng J, Fang F, Yang X. MLH1 enhances the sensitivity of human endometrial carcinoma cells to cisplatin by activating the MLH1/c-Abl apoptosis signaling pathway. BMC Cancer 2018; 18:1294. [PMID: 30594176 PMCID: PMC6311060 DOI: 10.1186/s12885-018-5218-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/13/2018] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND MLH1 plays a critical role in maintaining the fidelity of DNA replication, and defects in human MLH1 have been reported. However, the role of MLH1 in endometrial carcinoma has not been fully investigated. Therefore, we aimed to study the role of MLH1 in the sensitivity of human endometrial carcinoma cells to cisplatin. METHODS In this study, we detected the expression of MLH1 in Ishikawa and RL95-2 cells. MLH1-siRNA and ADV-MLH1 were adopted for the silencing and overexpression of MLH1, respectively. Real-time polymerase chain reaction, Western blotting, cell proliferation assays, and cell cycle and apoptotic analyses by flow cytometry were employed to explore the underlying mechanism. A mouse xenograft model was used to investigate the effect of MLH1 on tumor growth after treatment with cisplatin. RESULTS Over-expression of MLH1 in Ishikawa cells dramatically increased the sensitivity of cells to cisplatin and enhanced cell apoptosis. By contrast, knockdown of MLH1 yielded the opposite effects in vitro. Mechanistically, cisplatin induced the MLH1/c-Abl apoptosis signaling pathway in ADV-MLH1-infected endometrial carcinoma cells, and these effects involved c-Abl, caspase-9, caspase-3 and PARP. Altogether, our results indicate that ADV-MLH1 might attenuate Ishikawa cell growth in vivo, resulting in increased cisplatin sensitivity. CONCLUSIONS MLH1 may render endometrial carcinoma cells more sensitive to cisplatin by activating the MLH1/c-Abl apoptosis signaling pathway. In addition, an applicable adenovirus vector (ADV-MLH1) for MLH1 overexpression in endometrial carcinoma was generated. Thus, ADV-MLH1 might be a novel potential therapeutic target for endometrial carcinoma.
Collapse
Affiliation(s)
- Yue Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, No. 107, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China.,Department of Obstetrics and Gynecology, Weihai Municipal Hospital, No. 70, Heping Road, WeiHai, Shandong, 264200, People's Republic of China
| | - Shihong Zhang
- Department of Obstetrics and Gynecology, Weihai Municipal Hospital, No. 70, Heping Road, WeiHai, Shandong, 264200, People's Republic of China
| | - Yuanjian Wang
- Huaxi Clinical Medical College of Sichuan University, Jiang'an campus, Chengdu City, Sichuan, 610207, People's Republic of China
| | - Jin Peng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, No. 107, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Fang Fang
- Department of Obstetrics and Gynecology, Weihai Municipal Hospital, No. 70, Heping Road, WeiHai, Shandong, 264200, People's Republic of China
| | - Xingsheng Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, No. 107, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
5
|
Ma W, Feng W, Tan J, Xu A, Hu Y, Ning L, Kang Y, Wang L, Zhao Z. miR-497 may enhance the sensitivity of non-small cell lung cancer cells to gefitinib through targeting the insulin-like growth factor-1 receptor. J Thorac Dis 2018; 10:5889-5897. [PMID: 30505497 DOI: 10.21037/jtd.2018.10.40] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Background Recently, studies have demonstrated that microRNA-497 (miR-497) plays an important role in modulating tumor cell sensitivity to chemotherapeutic drugs; however, its role in cellular resistance to the effects of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) in treatment of non-small cell lung cancer (NSCLC) is not fully understood. In this study, we explored the potential of miR-497 in targeting the insulin-like growth factor-1 receptor (IGF-1R) signaling pathways to overcome gefitinib resistance. Methods A gefitinib resistant human lung adenocarcinoma A549 cell line (A549/GR) was established by the method of gefitinib mutagenesis culture. Next, the A549/GR cells were transfected with miR-497 mimics to establish an miR-497 overexpression model, designated A549/GR-miR497-mimic. MTT assay was used to assess cell resistance to gefitinib, and western blot assay was employed to evaluate alterations of IGF-1R and the AKT1 signaling pathway. Results We found that A549/GR-miR497-mimic cells (IC50 =33.76±0.97 µmol/L) were more sensitive to gefitinib than the control group (P<0.01). In addition, the expression levels of IGF-1R and phosphorylated AKT1 (p-AKT1) in A549/GR-miR497-mimic cells were reduced. Conclusions We demonstrated that miR-497 may have the effect of reversing gefitinib resistance and increasing the sensitivity of NSCLC cells to EGFR-TKIs by inhibiting the expression of IGF-1R and reducing activation of the downstream AKT signaling pathway. Thus, miR-497 plays a vital role in the acquired resistance to EGFR-TKIs, and it may represent a potential therapeutic strategy to treat NSCLC exhibiting resistance to EGFR-TKIs.
Collapse
Affiliation(s)
- Wei Ma
- The First Affiliated Hospital of Jinan University, Guangzhou 510000, China.,Department of Respiration, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Weiye Feng
- Department of Respiration, The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou 510000, China
| | - Jie Tan
- Department of Respiration, The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou 510000, China
| | - Airu Xu
- Department of Respiration, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Yudong Hu
- Department of Respiration, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Lanlan Ning
- Department of Electrocardiogram, Guangzhou First People's Hospital, Guangzhou 510180, China
| | - Yanhong Kang
- Department of Respiration, The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou 510000, China
| | - Liuqian Wang
- Quality Control Department, Guangzhou First People's Hospital, Guangzhou 510180, China
| | - Ziwen Zhao
- The First Affiliated Hospital of Jinan University, Guangzhou 510000, China.,Department of Respiration, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW This review summarizes recent data supporting the concept that urinary microRNAs are a useful new class of biomarker. They may improve capacity to stratify patients with chronic kidney disease according to risk of progression, and may also inform about response to therapy. RECENT FINDINGS MicroRNAs are present, stable and readily quantifiable in tissues and body fluids, including urine, and have widespread importance as regulators in the kidney. Urinary microRNAs are typically released from the nephron or downstream structures, and their abundance may reflect altered microRNA expression in the kidney, or release into the lumen by the cells comprising the different regions of the nephron. As a consequence, abundance of specific microRNAs in the urine may change in various pathological states. Large-scale studies are now needed, to test the capacity of specific microRNAs to inform about risk and response to therapy. SUMMARY Urinary microRNAs appear useful sentinels for pathological processes occurring in the kidney and may enable a 'personalized medicine' approach to the management and stratification of renal disease.
Collapse
|
7
|
Yuan F, Liu L, Lei Y, Hu Y. MiRNA-142-3p increases radiosensitivity in human umbilical cord blood mononuclear cells by inhibiting the expression of CD133. Sci Rep 2018; 8:5674. [PMID: 29618746 PMCID: PMC5884857 DOI: 10.1038/s41598-018-23968-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/22/2018] [Indexed: 01/02/2023] Open
Abstract
This study is to explore the molecular regulation mechanism of CD133 which is associated with malignancy and poor prognosis of blood system diseases. CD133+HUCB-MNC (human umbilical cord blood mononuclear cells) and CD133-HUCB-MNC were isolated and amplificated from umbilical cord blood, and then were exposed to different doses of radiation and subjected to a clonogenic assay. CCK-8 kit was used to detect cell viability, Annexin V-FITC/PI cell apoptosis detection kit was used for the detection of apoptotic cells and the BrdU assay was performed by flow cytometry. The expression of protein was analyzed by western blots. The profile of miRNA expression in response to radiation was examined and validated by RT-PCR. miR-142-3p inhibited the expression of CD133 in umbilical cord blood mononuclear cells to increase radiosensitivity. CD133+HUCB-MNC cells were more radioresistant compared with CD133-HUCB-MNC cells. CD133+HUCB-MNC cells showed higher p-AKT and p-ERK levels after radiation. And miR-142-3p acted on 3'UTR of CD133 mRNA to inhibit CD133 expression. Moreover, miRNA-142-3p mimic increased radiosensitivity in CD133+HUCB-MNC cells. Our results elucidated a novel regulation pathway in hematopoietic stem cells and suggested a potential therapeutic approach for blood system diseases therapy.
Collapse
Affiliation(s)
- Fang Yuan
- 1Department of Oncology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Lu Liu
- Department of Clinical Nutrition, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yonghong Lei
- Department of Plastic Surgery, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yi Hu
- 1Department of Oncology, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|