1
|
Zhou Q, Kong D, Li W, Shi Z, Liu Y, Sun R, Ma X, Qiu C, Liu Z, Hou Y, Jiang J. LncRNA HOXB-AS3 binding to PTBP1 protein regulates lipid metabolism by targeting SREBP1 in endometrioid carcinoma. Life Sci 2023; 320:121512. [PMID: 36858312 DOI: 10.1016/j.lfs.2023.121512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 03/02/2023]
Abstract
Endometrial cancer (EC) is a malignant tumor with a high incidence in women, and the survival rate of high-risk patients decreases significantly after disease progression. The regulatory role of long non-coding RNAs (LncRNAs) in tumors has been widely appreciated, but there have been few studies in EC. To investigate the effect of HOXB-AS3 in EC, we used bioinformatics tools for prediction and collected clinical samples to detect the expression of HOXB-AS3. Colony formation assay, MTT assay, flow cytometry and apoptosis assay, and transwell assay were used to verify the role of HOXB-AS3 in EC. HOXB-AS3 was upregulated in EC, promoted the proliferation and invasive ability of EC cells, and inhibited apoptosis. In addition, the ROC curve illustrated its diagnostic value. We explored experiments via lentiviral transduction, FISH, Oil Red O staining, TC and FFA content detection, RNA-pulldown, RIP, and other mechanisms to reveal that HOXB-AS3 can bind to PTBP1 and co-regulate the expression of SREBP1, thereby regulating lipid metabolism in EC cells. To the best of our knowledge, this is the first study on HOXB-AS3 in disorders of lipid metabolism in EC. In addition, we believe HOXB-AS3 has the potential to be a neoplastic marker or a therapeutic target.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Deshui Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China; Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, PR China
| | - Wenzhi Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Zhengzheng Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Yao Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Rui Sun
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Xiaohong Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Chunping Qiu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Zhiming Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Yixin Hou
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Jie Jiang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
2
|
CEP55 predicts the poor prognosis and promotes tumorigenesis in endometrial cancer by regulating the Foxo1 signaling. Mol Cell Biochem 2022; 478:1561-1571. [DOI: 10.1007/s11010-022-04607-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 10/28/2022] [Indexed: 11/26/2022]
|
3
|
Zhao Q, Lin X, Wang G. Targeting SREBP-1-Mediated Lipogenesis as Potential Strategies for Cancer. Front Oncol 2022; 12:952371. [PMID: 35912181 PMCID: PMC9330218 DOI: 10.3389/fonc.2022.952371] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Sterol regulatory element binding protein-1 (SREBP-1), a transcription factor with a basic helix–loop–helix leucine zipper, has two isoforms, SREBP-1a and SREBP-1c, derived from the same gene for regulating the genes of lipogenesis, including acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase. Importantly, SREBP-1 participates in metabolic reprogramming of various cancers and has been a biomarker for the prognosis or drug efficacy for the patients with cancer. In this review, we first introduced the structure, activation, and key upstream signaling pathway of SREBP-1. Then, the potential targets and molecular mechanisms of SREBP-1-regulated lipogenesis in various types of cancer, such as colorectal, prostate, breast, and hepatocellular cancer, were summarized. We also discussed potential therapies targeting the SREBP-1-regulated pathway by small molecules, natural products, or the extracts of herbs against tumor progression. This review could provide new insights in understanding advanced findings about SREBP-1-mediated lipogenesis in cancer and its potential as a target for cancer therapeutics.
Collapse
Affiliation(s)
- Qiushi Zhao
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Xingyu Lin
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Xingyu Lin, ; Guan Wang,
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- *Correspondence: Xingyu Lin, ; Guan Wang,
| |
Collapse
|
4
|
Genistein induces long-term expression of progesterone receptor regardless of estrogen receptor status and improves the prognosis of endometrial cancer patients. Sci Rep 2022; 12:10303. [PMID: 35717540 PMCID: PMC9206647 DOI: 10.1038/s41598-022-13842-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/18/2022] [Indexed: 11/24/2022] Open
Abstract
Progesterone is used to treat uterine endometrial cancer in young patients wishing to preserve their fertility as well as in advanced or recurrent patients, but its response rate is limited. The antitumor effect of progesterone is mediated by progesterone receptor (PR) binding. Hence, loss of progesterone’s therapeutic effect, i.e., development of progesterone resistance, is mainly due to decreased PR expression. However, little is known about underlying mechanisms that regulate PR expression. Immunohistochemistry analysis of specimens from 31 young, endometrial cancer patients showed that elevated PR expression significantly increased (P < 0.05) rates of progression-free and overall survival. We investigated mechanisms of regulating PR expression and suppressing cell proliferation using genistein, a chemotherapeutic agent against different cancers. Genistein inhibits cell growth by inducing cell cycle arrest in G2 and apoptosis; moreover, it upregulates prolonged expression of PR-B and forkhead box protein O1, regardless of estrogen receptor alpha expression in endometrial cancer cells. Genistein-induced PR expression decreases CCAAT/enhancer binding protein beta expression and activates c-Jun N-terminal kinase pathway, rather than causing epigenetic alterations of the PR promoter. Therefore, increased PR expression is an important antitumor effect of genistein. This may help to improve the response rates of fertility-sparing treatments for young patients.
Collapse
|
5
|
Jahanbakhshi F, Maleki Dana P, Badehnoosh B, Yousefi B, Mansournia MA, Jahanshahi M, Asemi Z, Halajzadeh J. Curcumin anti-tumor effects on endometrial cancer with focus on its molecular targets. Cancer Cell Int 2021; 21:120. [PMID: 33602218 PMCID: PMC7891161 DOI: 10.1186/s12935-021-01832-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
Curcumin is extracted from turmeric and shows a variety of properties that make it a useful agent for treating diseases and targeting different biological mechanisms, including apoptosis, angiogenesis, inflammation, and oxidative stress. This phenolic compound is safe even at high doses. However, it has poor bioavailability. The incidence rates of endometrial cancer (EC) that is one of the most prevalent gynecological malignancies is increasing. Meanwhile, the onset age of EC has been decreased in past few years. Besides, EC does not show a convenient prognosis, particularly at advanced stages. Based on this information, discovering new approaches or enhancing the available ones is required to provide better care for EC patients. In this review, we cover studies concerned with the anti-tumor effects of curcumin on EC. We focus on molecular mechanisms that are targeted by curcumin treatment in different processes of cancer development and progression, such as apoptosis, inflammation, and migration. Furthermore, we present the role of curcumin in targeting some microRNAs (miRNAs) that may play a role in EC.
Collapse
Affiliation(s)
- Fahime Jahanbakhshi
- Department of Gynecology and Obstetrics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Bita Badehnoosh
- Department of Gynecology and Obstetrics, Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Moghadeseh Jahanshahi
- Clinical Research Development Center (CRDC), Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Jamal Halajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
6
|
Sidorkiewicz I, Jóźwik M, Niemira M, Krętowski A. Insulin Resistance and Endometrial Cancer: Emerging Role for microRNA. Cancers (Basel) 2020; 12:E2559. [PMID: 32911852 PMCID: PMC7563767 DOI: 10.3390/cancers12092559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022] Open
Abstract
Endometrial cancer (EC) remains one of the most common cancers of the female reproductive system. Epidemiological and clinical data implicate insulin resistance (IR) and its accompanying hyperinsulinemia as key factors in the development of EC. MicroRNAs (miRNAs) are short molecules of non-coding endogenous RNA that function as post-transcriptional regulators. Accumulating evidence has shown that the miRNA expression pattern is also likely to be associated with EC risk factors. The aim of this work was the verification of the relationships between IR, EC, and miRNA, and, as based on the literature data, elucidation of miRNA's potential utility for EC prevention in IR patients. The pathways affected in IR relate to the insulin receptors, insulin-like growth factors and their receptors, insulin-like growth factor binding proteins, sex hormone-binding globulin, and estrogens. Herein, we present and discuss arguments for miRNAs as a plausible molecular link between IR and EC development. Specifically, our careful literature search indicated that dysregulation of at least 13 miRNAs has been ascribed to both conditions. We conclude that there is a reasonable possibility for miRNAs to become a predictive factor of future EC in IR patients.
Collapse
Affiliation(s)
- Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (M.N.); (A.K.)
| | - Maciej Jóźwik
- Department of Gynecology and Gynecologic Oncology, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland;
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (M.N.); (A.K.)
| | - Adam Krętowski
- Clinical Research Centre, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (M.N.); (A.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland
| |
Collapse
|
7
|
Martyna B, Małgorzata MW, Nikola Z, Beniamin G, Urszula M, Grażyna J. Expression Profile of Genes Associated with the Proteins Degradation Pathways in Colorectal adenocarcinoma. Curr Pharm Biotechnol 2019; 20:551-561. [DOI: 10.2174/1389201020666190516090744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/01/2019] [Accepted: 05/02/2019] [Indexed: 11/22/2022]
Abstract
Background:Changes in expression of genes associated with proteins or organelles degradation system in the cell may be a cause or signal to carcinogenesis. Thus, the aim of this study was to assess the profile of gene expression linked to the degradation systems of proteins or organelles in histo-pathologically confirmed colorectal adenocarcinoma in relation to normal colon tissue.Methods:Using oligonucleotide microarrays and GeneSpring 13.0, and PANTHER 13.1 software’s we characterized 1095 mRNAs linked to the degradation system of proteins and organelles in sections of colorectal cancer from patients at various clinical stages of disease. Subsequent analyses with restrictive assumptions narrowed down the number of genes differentiating cancer, assuming a P-value of less than 0.05.Results:We found that most of the significant genes were silenced in the development of colorectal cancer. The FOXO1 had the lowest fold change value in the first clinical stage (CSI) comparing to the control. The HSPA8 was up-regulated in the two early clinical stages (CSI and CSII), and UBB only in the CSI. Only little-known PTPN22 showed increasing expression at all stages.Conclusion:In summary, the examined colorectal adenocarcinoma samples were characterized by almost complete silencing of the significant genes associated with the degradation of proteins and mitochondria in transcriptomic level. The FOXO1, HSPA8 and UBB genes may become potential diagnostic and/or therapeutic targets in the early stage of this cancer.
Collapse
Affiliation(s)
- Bednarczyk Martyna
- Department and Clinic of Internal Diseases, School of Public Health, Medical University of Silesia, Katowice, Poland
| | - Muc-Wierzgoń Małgorzata
- Department and Clinic of Internal Diseases, School of Public Health, Medical University of Silesia, Katowice, Poland
| | - Zmarzły Nikola
- Department of Molecular Biology, School of Pharmacy and the Division of Laboratory Medicine, Medical University of Silesia, Katowice, Poland
| | - Grabarek Beniamin
- Department of Molecular Biology, School of Pharmacy and the Division of Laboratory Medicine, Medical University of Silesia, Katowice, Poland
| | - Mazurek Urszula
- Department of Molecular Biology, School of Pharmacy and the Division of Laboratory Medicine, Medical University of Silesia, Katowice, Poland
| | - Janikowska Grażyna
- Department of Analytical Chemistry, School of Pharmacy and the Division of Laboratory Medicine, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
8
|
Wang Y, Zhang L, Che X, Li W, Liu Z, Jiang J. Roles of SIRT1/FoxO1/SREBP-1 in the development of progestin resistance in endometrial cancer. Arch Gynecol Obstet 2018; 298:961-969. [PMID: 30206735 DOI: 10.1007/s00404-018-4893-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE The prevalence of endometrial cancer (EC) is increasing worldwide. Progestin therapy is effective for both early stage EC patients who require preserving fertility and advanced or recurrent patients. Progestin resistance resulting from downregulation of progesterone receptor (PR) remains a major problem, and its mechanism is currently unclear. It was demonstrated that Sirtuin 1 (SIRT1), forkhead transcription factor 1 (FoxO1) and sterol regulatory element binding protein-1 (SREBP-1) may act as a pathway and play crucial roles in the development of EC in our previous studies. In the present study, we investigated the effect on the development of progestin resistance and the relationship with PR of SIRT1/FoxO1/SREBP-1. METHODS A progestin-resistant Ishikawa cell line was established in the stimulation and selection of medroxyprogesterone acetate (MPA), and the resistance was analyzed by MTT assay, flow cytometry, and Transwell invasion assay. qRT-PCR and western blotting were conducted to detect the expression of SIRT1, FoxO1, SREBP-1 and PR. SIRT1 knockdown progestin-resistant cells were established by lentiviral transduction. RESULTS The new progestin-resistant cell line presented sufficient resistance to MPA in aspects of proliferation, distribution of cell cycle and apoptosis compared with original Ishikawa cells. Besides, the invasion capability of progestin-resistant cells was observably increased. In both protein and mRNA levels, SIRT1 and SREBP-1 were upregulated in progestin-resistant cells, while PR and FoxO1 were downregulated. SIRT1 was knocked down by lentivirus transfection in progestin-resistant cells, resulting in upregulation of PR, FoxO1 and downregulation of SREBP-1, thereby SIRT1 knockdown cells were more sensitive to MPA compared with progestin-resistant cells. CONCLUSION SIRT1/FoxO1/SREBP-1 act as a pathway targeting PR and involve in the development of progestin resistance in Ishikawa cells.
Collapse
Affiliation(s)
- Yilin Wang
- Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Lili Zhang
- Jinan Central Hospital of Shandong University, 105 Jiefang Road, Jinan, 250013, Shandong, China
| | - Xiaoxia Che
- Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Wenzhi Li
- Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Zhiming Liu
- Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Jie Jiang
- Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
9
|
Fang Q, Sang L, Du S. Long noncoding RNA LINC00261 regulates endometrial carcinoma progression by modulating miRNA/FOXO1 expression. Cell Biochem Funct 2018; 36:323-330. [PMID: 30019459 DOI: 10.1002/cbf.3352] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/24/2018] [Accepted: 06/26/2018] [Indexed: 12/18/2022]
Abstract
Long noncoding RNA LINC00261 was reported to be downregulated in multiple cancers. LINC00261 overexpression inhibits cancer cell proliferation, migration, and invasion. But the expression and function of LIN00261 in endometrial carcinoma are still elusive. We found that LINC00261 mRNA levels were downregulated in endometrial carcinoma, and LINC00261 overexpression inhibited endometrial carcinoma cell proliferation, migration, and invasion. miRNAs, including miR-182, miR-183, miR-153, miR-27a, and miR-96, were predicted to bind LINC00261 and FOXO1, and functioned to attenuate expression of LINC00261 and FOXO1. Overexpressed LINC00261 lowered these dissociative miRNAs, resulting in increase of FOXO1 protein levels. The knockdown of FOXO1 eliminated the suppression effect of overexpressed LINC00261 on endometrial carcinoma cell aggressiveness. LINC00261 promotes FOXO1 expression through reducing FOXO1-targeted miRNAs to suppress endometrial carcinoma cell proliferation, migration, and invasion. SIGNIFICANCE OF THE STUDY LINC00261 is downregulated in endometrial carcinoma and associated with metastasis of this cancer. LINC00261 elevates FOXO1 protein levels through reducing FOXO1-targeted miRNAs to suppress endometrial carcinoma cell proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Qianjin Fang
- Department of Obstetrics and Gynecology, the Second People's Hospital of Hefei, Anhui Medical University Affiliated Hefei Hospital, Hefei, Anhui Province, China
| | - Lin Sang
- Department of Obstetrics and Gynecology, the Second People's Hospital of Hefei, Anhui Medical University Affiliated Hefei Hospital, Hefei, Anhui Province, China
| | - Shihua Du
- Department of Obstetrics and Gynecology, the Second People's Hospital of Hefei, Anhui Medical University Affiliated Hefei Hospital, Hefei, Anhui Province, China
| |
Collapse
|
10
|
Yan X, Huang L, Liu L, Qin H, Song Z. Nuclear division cycle 80 promotes malignant progression and predicts clinical outcome in colorectal cancer. Cancer Med 2018; 7:420-432. [PMID: 29341479 PMCID: PMC5806104 DOI: 10.1002/cam4.1284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/12/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is a common human malignancy worldwide and increasing studies have attributed its malignant progression to abnormal molecular changes in cancer cells. Nuclear division cycle 80 (NDC80) is a newly discovered oncoprotein that regulates cell proliferation and cycle in numerous malignancies. However, its clinical significance and biological role in CRC remain unclear. Therefore, in this study, we firstly analyze its expression in a retrospective cohort enrolling 224 CRC patients and find its overexpression is significantly correlated with advanced tumor stage and poor prognosis in CRC patients. In addition, our result reveals it is an independent adverse prognostic factor affecting CRC-specific and disease-free survival. The subgroup analysis indicates NDC80 expression can stratify the clinical outcome in stage II and III patients, but fails in stage I and IV patients. In cellular assays, we find knockdown of NDC80 dramatically inhibits the proliferative ability, apoptosis resistance, cell cycle progression, and clone formation of CRC cells in vitro. Using xenograft model, we further prove knockdown of NDC80 also inhibits the tumorigenic ability of CRC cells in vivo. Finally, the microarray analysis is utilized to preliminarily clarify the oncogenic molecular mechanisms regulated by NDC80 and the results suggest it may promote CRC progression partly by downregulating tumor suppressors such as dual specificity phosphatase 5 and Forkhead box O1. Taken together, our study provides novel evidences to support that NDC80 is not only a promising clinical biomarker but also a potential therapeutical target for CRC precise medicine.
Collapse
Affiliation(s)
- Xuebing Yan
- Department of General SurgeryShanghai Tenth People's HospitalTongji University School of MedicineNo. 301, Yan‐chang RoadShanghai200072China
| | - Linsheng Huang
- Anhui Medical UniversityNo. 81, Mei‐shan RoadHefei230032China
| | - Liguo Liu
- Department of General SurgeryShanghai Jiao Tong University Affiliated Sixth People's HospitalNo. 600, Yi‐shan RoadShanghai200233China
| | - Huanlong Qin
- Department of General SurgeryShanghai Tenth People's HospitalTongji University School of MedicineNo. 301, Yan‐chang RoadShanghai200072China
- Anhui Medical UniversityNo. 81, Mei‐shan RoadHefei230032China
| | - Zhenshun Song
- Department of General SurgeryShanghai Tenth People's HospitalTongji University School of MedicineNo. 301, Yan‐chang RoadShanghai200072China
| |
Collapse
|
11
|
Melnik BC. Milk disrupts p53 and DNMT1, the guardians of the genome: implications for acne vulgaris and prostate cancer. Nutr Metab (Lond) 2017; 14:55. [PMID: 28814964 PMCID: PMC5556685 DOI: 10.1186/s12986-017-0212-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/08/2017] [Indexed: 02/06/2023] Open
Abstract
There is accumulating evidence that milk shapes the postnatal metabolic environment of the newborn infant. Based on translational research, this perspective article provides a novel mechanistic link between milk intake and milk miRNA-regulated gene expression of the transcription factor p53 and DNA methyltransferase 1 (DNMT1), two guardians of the human genome, that control transcriptional activity, cell survival, and apoptosis. Major miRNAs of milk, especially miRNA-125b, directly target TP53 and complex p53-dependent gene regulatory networks. TP53 regulates the expression of key genes involved in cell homeostasis such as FOXO1, PTEN, SESN1, SESN2, AR, IGF1R, BAK1, BIRC5, and TNFSF10. Nuclear interaction of p53 with DNMT1 controls gene silencing. The most abundant miRNA of milk and milk fat, miRNA-148a, directly targets DNMT1. Reduced DNMT1 expression further attenuates the activity of histone deacetylase 1 (HDAC1) involved in the regulation of chromatin structure and access to transcription. The presented milk-mediated miRNA-p53-DNMT1 pathway exemplified at the promoter regulation of survivin (BIRC5) provides a novel explanation for the epidemiological association between milk consumption and acne vulgaris and prostate cancer. Notably, p53- and DNMT1-targeting miRNAs of bovine and human milk survive pasteurization and share identical seed sequences, which theoretically allows the interaction of bovine miRNAs with the human genome. Persistent intake of milk-derived miRNAs that attenuate p53- and DNMT1 signaling of the human milk consumer may thus present an overlooked risk factor promoting acne vulgaris, prostate cancer, and other p53/DNMT1-related Western diseases. Therefore, bioactive miRNAs of commercial milk should be eliminated from the human food chain.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Am Finkenhügel 7a, D-49076 Osnabrück, Germany
| |
Collapse
|