1
|
Comparison between Heat-Clearing Medicine and Antirheumatic Medicine in Treatment of Gastric Cancer Based on Network Pharmacology, Molecular Docking, and Tumor Immune Infiltration Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7490279. [PMID: 35069767 PMCID: PMC8767399 DOI: 10.1155/2022/7490279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/08/2021] [Accepted: 11/21/2021] [Indexed: 02/07/2023]
Abstract
Background Clinical research found that TCM is therapeutic in treating gastric cancer. Clearing heat is the most common method, while some antirheumatic medicines are widely used in treatment as well. To explore the pharmacological mechanism, we researched the comparison between heat-clearing medicine and antirheumatic medicine in treating gastric cancer. Methods First, related ingredients and targets were searched, respectively, and are shown in an active ingredient-target network. Combining the relevant targets of gastric cancer, we constructed a PPI network and MCODE network. Then, GO and KEGG enrichment analyses were conducted. Molecular docking experiments were performed to verify the affinity of targets and ligands. Finally, we analyzed the tumor immune infiltration on gene expression, somatic CNA, and clinical outcome. Results A total of 31 ingredients and 90 targets of heat-clearing medicine, 31 ingredients and 186 targets of antirheumatic medicine, and 12,155 targets of gastric cancer were collected. Antirheumatic medicine ranked the top in all the enrichment analyses. In the KEGG pathway, both types of medicines were related to pathways in cancer. In the KEGG map, AR, MMP2, ERBB2, and TP53 were the most crucial targets. Key targets and ligands were docked with low binding energy. Analysis of tumor immune infiltration showed that the expressions of AR and ERBB2 were correlated with the abundance of immune infiltration and made a difference in clinical outcomes. Conclusions Quercetin is an important ingredient in both heat-clearing medicine and antirheumatic medicine. AR signaling pathway exists in both types of medicines. The mechanism of the antitumor effect in antirheumatic medicine was similar to trastuzumab, a targeted drug aimed at ERBB2. Both types of medicines were significant in tumor immune infiltration. The immunology of gastric tumor deserves further research.
Collapse
|
2
|
Shailender G, Kumari S, Kiranmayi P, Malla RR. Effect of MMP-2 gene silencing on radiation-induced DNA damage in human normal dermal fibroblasts and breast cancer cells. Genes Environ 2019; 41:16. [PMID: 31367263 PMCID: PMC6647068 DOI: 10.1186/s41021-019-0131-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/12/2019] [Indexed: 02/08/2023] Open
Abstract
Introduction Diagnostic and therapeutic ionizing radiation (IR) is one of the well known long term risk factors of breast cancer. Extremely lethal consequences of IR causes double-strand breaks, which are mainly responsible for genomic instability, altered gene expression, and cell death. Findings This study evaluated the effect of matrix metalloproteinases-2 (MMP-2) gene silencing using MMP-2 shRNA expression plasmids (pMMP-2) on IR induced cytotoxicity and DNA damage by MTT, dead green, γH2AX and comet assays in human normal dermal fibroblasts (HDFs) and MCF-7 human breast cancer cells. IR has decreased the viability of HDFs and MCF-7 cells with increasing IR (2-10Gy). IR induced DNA damage in both HDFs and MCF-7 cells. However, pMMP-2 transfection has increased the viability of irradiated HDFs (10Gy) and significantly decreased the viability of irradiated MCF-7 cells (10Gy). Further, DNA damage in terms of γH2AX foci decreased with pMMP-2 transfection in irradiated HDFs (10Gy) and increased in irradiated MCF-7 cells (10Gy). In addition, MMP-2 gene silencing using pMMP-2 decreased comet tail length in irradiated HDFs but increased in irradiated MCF-7 cells. Conclusions The results conclude that pMMP-2 has protected HDFs and sensitized the MCF-7 cells from IR induced DNA damage. This differential response might be due to IR induced MMP-2 distinctive ROS generation in HDFs and MCF-7 cells. Electronic supplementary material The online version of this article (10.1186/s41021-019-0131-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gugalavath Shailender
- 1Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh India
| | - Seema Kumari
- 1Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh India
| | - Patnala Kiranmayi
- 2Department of Biotechnology, Institute of Science, GITAM Deemed to be University, Visakhapatnam, Andhra Pradesh India
| | - Rama Rao Malla
- 1Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh India
| |
Collapse
|
3
|
Xie X, Xu Z, Wang C, Fang C, Zhao J, Xu L, Qian X, Dai J, Sun F, Xu D, He W. Tip60 is associated with resistance to X-ray irradiation in prostate cancer. FEBS Open Bio 2017; 8:271-278. [PMID: 29435417 PMCID: PMC5794467 DOI: 10.1002/2211-5463.12371] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/23/2017] [Accepted: 12/04/2017] [Indexed: 01/25/2023] Open
Abstract
Tip60, an oncogene, accelerates cell growth by regulating androgen receptor translocation into the nucleus in prostate cancer. However, the mechanism of Tip60 in the response of prostate cancer to radiotherapy, and radioresistance, has not been studied. Using human prostate cancer samples and two human prostate cancer cell lines (LNCaP and DU145), Tip60 protein expression and the acetylation of ataxia telangiectasia mutant (ATM) were analysed by western blotting and immunoprecipitation. Tip60 was downregulated with small interfering RNA. Cells were irradiated using X‐rays at 0.25 Gy·min−1. Cell viability was assessed by the MTT assay. The expression of Tip60 protein was increased in radioresistant prostate cancer tissues in comparison with radiosensitive tissues, which was also confirmed in both irradiated DU145 and LNCaP cells. Furthermore, the acetylation of ATM was also upregulated in a time‐dependent manner after irradiation of both DU145 and LNCaP cells. Additionally, depletion of Tip60 decreased the survival of LNCaP and DU145 cells by inducing apoptosis, reduced the acetylation of ATM and decreased the expression of phosphorylated ATM, Chk2 and cdc25A in both DU145 and LNCaP cells after X‐ray irradiation. The results of this study demonstrated that the expression of Tip60 may be related to the radioresistance of prostate cancer and could serve as a promising predictive factor for prostate cancer patients receiving radiotherapy.
Collapse
Affiliation(s)
- Xin Xie
- Department of Urology Ruijin Hospital Shanghai Jiaotong University, School of Medicine China
| | - Zhaoping Xu
- Department of Urology Ruijin Hospital Shanghai Jiaotong University, School of Medicine China
| | - Chenghe Wang
- Department of Urology Ruijin Hospital Shanghai Jiaotong University, School of Medicine China
| | - Chen Fang
- Department of Urology Ruijin Hospital Shanghai Jiaotong University, School of Medicine China
| | - Juping Zhao
- Department of Urology Ruijin Hospital Shanghai Jiaotong University, School of Medicine China
| | - Le Xu
- Department of Urology Ruijin Hospital Shanghai Jiaotong University, School of Medicine China
| | - Xiaoqiang Qian
- Department of Urology Ruijin Hospital Shanghai Jiaotong University, School of Medicine China
| | - Jun Dai
- Department of Urology Ruijin Hospital Shanghai Jiaotong University, School of Medicine China
| | - Fukang Sun
- Department of Urology Ruijin Hospital Shanghai Jiaotong University, School of Medicine China
| | - Danfeng Xu
- Department of Urology Ruijin Hospital Shanghai Jiaotong University, School of Medicine China
| | - Wei He
- Department of Urology Ruijin Hospital Shanghai Jiaotong University, School of Medicine China
| |
Collapse
|
4
|
Tuo H, Shu F, She S, Yang M, Zou XQ, Huang J, Hu HD, Hu P, Ren H, Peng SF, Yang YX. Sorcin induces gastric cancer cell migration and invasion contributing to STAT3 activation. Oncotarget 2017; 8:104258-104271. [PMID: 29262638 PMCID: PMC5732804 DOI: 10.18632/oncotarget.22208] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is a globally occurring malignancy that is characterized by a high mortality rate due to a high tendency to metastasize and poor prognoses. Sorcin, as known as SRI, a soluble resistance-related calcium-binding protein, plays a significant role in multidrug resistance. Sorcin is related to the migration and invasion of cancer cells. However, the mechanism remains unclear. Here, we used immunohistochemistry to confirm that the expression of sorcin in cancer tissues is higher than that in the adjacent normal tissues. The wound healing and transwell results indicate that sorcin can induce migration and invasion of GC cells. To explore the role of sorcin in GC metastasis, isobaric tags for relative and absolutely quantitation (iTRAQ) were used to examine cells with and without sorcin knockdown to identify the differentially expressed proteins (DEPs). The results were evaluated via RT-PCR and western blot to confirm the ITRAQ data. Inhibition of sorcin expression can down- regulate the expression of CTSZ, MMP2, MMP9 and p-STAT3 followed by suppression of tumor growth and metastasis. Together, we concluded that sorcin has a oncogenic activity via inducing tumor growth and metastasis, leading to development of therapeutic treatments for GC.
Collapse
Affiliation(s)
- Huan Tuo
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Feng Shu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Sha She
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Min Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xiao Qin Zou
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Juan Huang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Huai Dong Hu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.,Institute for Viral Hepatitis of Chongqing Medical University, Chongqing 400016, China
| | - Peng Hu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.,Institute for Viral Hepatitis of Chongqing Medical University, Chongqing 400016, China.,Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Hong Ren
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.,Institute for Viral Hepatitis of Chongqing Medical University, Chongqing 400016, China.,Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Shi Fang Peng
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Hunan 410008, China.,Department of Health Management Center, Xiangya Hospital, Central South University, Hunan 410008, China
| | - Yi Xuan Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.,Institute for Viral Hepatitis of Chongqing Medical University, Chongqing 400016, China.,Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|