1
|
Pesta M, Travnicek I, Kulda V, Ostasov P, Windrichova J, Houfkova K, Knizkova T, Bendova B, Hes O, Hora M, Topolcan O, Polivka J. Prognostic Value of Tumor Tissue Up-regulated microRNAs in Clear Cell Renal Cell Carcinoma (ccRCC). In Vivo 2024; 38:1799-1805. [PMID: 38936941 PMCID: PMC11215600 DOI: 10.21873/invivo.13631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND/AIM The management of patients with clear cell renal cell carcinoma (ccRCC) includes prognosis assessment based on TNM classification and biochemical markers. This approach stratifies patients with advanced ccRCC into groups of favorable, intermediate, and poor prognosis. The aim of the study was to improve prognosis estimation using microRNAs involved in the pathogenesis of ccRCC. PATIENTS AND METHODS The study was based on a histologically-verified set of matched ccRCC FFPE tissue samples (normal renal tissue, primary tumor, metastasis, n=20+20+20). The expression of 2,549 microRNAs was analyzed using the SurePrint G3 Human miRNA microarray kit (Agilent Technologies). Prognostic value of significantly deregulated microRNAs was further evaluated on microRNA expression and clinical data of 475 patients obtained from TCGA Kidney Clear Cell Carcinoma (KIRC) database. RESULTS There were 13 up-regulated and 6 down-regulated microRNAs in tumor tissues compared to control tissues. Among them, survival analysis revealed those with prognostic significance. Patients with high expression of miR-21, miR-27a, miR-34a, miR-106b, miR-210, and miR-342 showed significantly unfavorable outcome. The opposite was observed for miR-30e, patients with low expression had significantly shorter survival. CONCLUSION The inclusion of these microRNAs in a prognostic panel holds the potential to enhance stratification scoring systems, on which the treatment of ccRCC patients is based.
Collapse
Affiliation(s)
- Martin Pesta
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Laboratory of Immunoanalysis, University Hospital in Pilsen, Pilsen, Czech Republic
| | - Ivan Travnicek
- Department of Urology, University Hospital in Pilsen, Pilsen, Czech Republic
| | - Vlastimil Kulda
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic;
| | - Pavel Ostasov
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jindra Windrichova
- Laboratory of Immunoanalysis, University Hospital in Pilsen, Pilsen, Czech Republic
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Katerina Houfkova
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Tereza Knizkova
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Barbora Bendova
- Department of Urology, University Hospital in Pilsen, Pilsen, Czech Republic
| | - Ondrej Hes
- Department of Pathology, University Hospital in Pilsen, Pilsen, Czech Republic
| | - Milan Hora
- Department of Urology, University Hospital in Pilsen, Pilsen, Czech Republic
| | - Ondrej Topolcan
- Laboratory of Immunoanalysis, University Hospital in Pilsen, Pilsen, Czech Republic
| | - Jiri Polivka
- Laboratory of Immunoanalysis, University Hospital in Pilsen, Pilsen, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
2
|
Xie L, Du B, Yu H, Gui L, Qiu J, Yuan L, Shen Y, Xu X, Li J. MicroRNA-30e-3p regulates the inflammatory response by targeting the gimap8 gene in Ctenopharyngodon idella kidney (CIK) cells. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109524. [PMID: 38527657 DOI: 10.1016/j.fsi.2024.109524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/19/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Recent studies have increasingly linked miRNAs with the modulation of inflammatory responses and immunosuppressive activities. This investigation reveals that mir-30e-3p selectively binds to and modulates gimap8, as demonstrated by luciferase reporter assays and qPCR analyses. Upon LPS stimulation of CIK cells, mir-30e-3p expression was notably elevated, inversely correlating with a decrease in gimap8 mRNA levels. Overexpression of mir-30e-3p attenuated the mRNA levels of pro-inflammatory cytokines beyond the effect of LPS alone, suggesting a regulatory role of mir-30e-3p in inflammation mediated by the gimap8 gene. These insights contribute to our understanding of the complex mechanisms governing inflammatory and immune responses.
Collapse
Affiliation(s)
- Lingli Xie
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Biao Du
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Hongyan Yu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Lang Gui
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Junqiang Qiu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Li Yuan
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
3
|
Akbaba TH, Akkaya-Ulum YZ, Batu ED, Penco F, Wittkowski H, Kant B, van Gijn ME, Foell D, Gattorno M, Ozen S, Balci-Peynircioglu B. Dysregulation of miRNA-30e-3p targeting IL-1β in an international cohort of systemic autoinflammatory disease patients. J Mol Med (Berl) 2023:10.1007/s00109-023-02327-2. [PMID: 37212859 DOI: 10.1007/s00109-023-02327-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023]
Abstract
Autoinflammation is the standard mechanism seen in systemic autoinflammatory disease (SAID) patients. This study aimed to investigate the effect of a candidate miRNA, miR-30e-3p, which was identified in our previous study, on the autoinflammation phenotype seen in SAID patients and to analyze its expression in a larger group of European SAID patients. We examined the potential anti-inflammatory effect of miR-30e-3p, which we had defined as one of the differentially expressed miRNAs in microarray analysis involved in inflammation-related pathways. This study validated our previous microarray results of miR-30e-3p in a cohort involving European SAID patients. We performed cell culture transfection assays for miR-30e-3p. Then, in transfected cells, we analyzed expression levels of pro-inflammatory genes; IL-1β, TNF-α, TGF-β, and MEFV. We also performed functional experiments, caspase-1 activation by fluorometric assay kit, apoptosis assay by flow cytometry, and cell migration assays by wound healing and filter system to understand the possible effect of miR-30e-3p on inflammation. Following these functional assays, 3'UTR luciferase activity assay and western blotting were carried out to identify the target gene of the aforementioned miRNA. MiR-30e-3p was decreased in severe European SAID patients like the Turkish patients. The functional assays associated with inflammation suggested that miR-30e-3p has an anti-inflammatory effect. 3'UTR luciferase activity assay demonstrated that miR-30e-3p directly binds to interleukin-1-beta (IL-1β), one of the critical molecules of inflammatory pathways, and reduces both RNA and protein levels of IL-1β. miR-30e-3p, which has been associated with IL-1β, a principal component of inflammation, might be of potential diagnostic and therapeutic value for SAIDs. KEY MESSAGES: miR-30e-3p, which targets IL-1β, could have a role in the pathogenesis of SAID patients. miR-30e-3p has a role in regulating inflammatory pathways like migration, caspase-1 activation. miR-30e-3p has the potential to be used for future diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Tayfun Hilmi Akbaba
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Yeliz Z Akkaya-Ulum
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ezgi Deniz Batu
- Department of Pediatric Rheumatology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Federica Penco
- Unit of Rheumatology and Autoinflammatory Diseases, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Helmut Wittkowski
- Department for Pediatric Rheumatology & Immunology, University Hospital Muenster, Muenster, Germany
| | - Benjamin Kant
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marielle E van Gijn
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Genetics, University Medical Center Groningen, Groningen, Netherlands
| | - Dirk Foell
- Department for Pediatric Rheumatology & Immunology, University Hospital Muenster, Muenster, Germany
| | - Marco Gattorno
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Seza Ozen
- Department of Pediatric Rheumatology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | |
Collapse
|
4
|
Gu XJ, Li YJ, Wang F, Ye T. MiR-30e-3p inhibits gastric cancer development by negatively regulating THO complex 2 and PI3K/AKT/mTOR signaling. World J Gastrointest Oncol 2022; 14:2170-2182. [PMID: 36438699 PMCID: PMC9694264 DOI: 10.4251/wjgo.v14.i11.2170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/05/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is a common type of digestive cancer with high morbidity and mortality rates worldwide. Considerable effort has been expended in understanding the mechanism of GC development and metastasis. The current study therefore explores the involvement of microRNAs in the regulation of GC progression.
AIM To explore the expression and function of miR-30e-3p in GC development.
METHODS MiR-30e-3p was found to be downregulated in GC, with low levels thereof predicting poor outcomes among patients with GC. Functionally, we revealed that miR-30e-3p suppressed cell growth and metastatic behaviors of GC cells. Bioinformatics analysis predicted that THO complex 2 (THOC2) was a direct target of miR-30e-3p, and the interaction between miR-30e-3p and THOC2 was further validated by a luciferase reporter assay.
RESULTS Our findings revealed that knockdown of THOC2 inhibited the growth and metastatic behaviors of GC cells. After investigating signaling pathways involved in miR-30e-3p regulation, we found that the miR-30e-3p/THOC2 axis regulated the PI3K/AKT/mTOR pathway in GC.
CONCLUSION Our findings suggest the novel functional axis miR-30e-3p/THOC2 is involved in GC development and progression. The miR-30e-3p/THOC2 axis could be utilized to develop new therapies against GC.
Collapse
Affiliation(s)
- Xiao-Jing Gu
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Prefecture, China
| | - Ya-Jun Li
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Prefecture, China
| | - Fang Wang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Prefecture, China
| | - Ting Ye
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Prefecture, China
| |
Collapse
|
5
|
Wu K, Wei Y, Yu Y, Shan M, Tang Y, Sun Y. Green tea polyphenols inhibit malignant melanoma progression via regulating circ_MITF/miR-30e-3p/HDAC2 axis. Biotechnol Appl Biochem 2022; 69:808-821. [PMID: 33797132 DOI: 10.1002/bab.2153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/20/2021] [Indexed: 11/10/2022]
Abstract
Green tea polyphenols (GTPs) are regarded as anticancer substances and have been revealed to play significant roles in the development of malignant melanoma. However, the mechanisms by which GTPs perform anticarcinogenic activity are not well elucidated. Cellular function assays revealed that GTPs inhibited melanoma cell proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and promoted apoptosis in vitro. Circ_MITF expression was elevated in melanoma tissues and cells but was decreased by GTPs in cells. Functional experiments indicated circ_MITF overexpression reversed the anticancer effects of GTPs on melanoma cells. Then the underlying mechanism analysis suggested that circ_MITF served as a sponge for miR-30e-3p to upregulate the level of HDAC2. MiR-30e-3p reexpression attenuated the regulatory effects of circ_MITF on GTPs-treated melanoma cells. Silencing of miR-30e-3p promoted the malignant phenotypes in GTPs-treated melanoma cells, which were reversed by HDAC2 knockdown. Preclinically, administration of GTPs suppressed the expression of downstream target genes and repressed tumorigenesis of xenografts in nude mice. In all, GTPs suppressed melanoma progression by regulating circ_MITF/miR-30e-3p/HDAC2 axis, providing a potential therapeutic strategy for human malignant melanoma intervention.
Collapse
Affiliation(s)
- Kejia Wu
- Department of Dermatology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Yuegang Wei
- Department of Dermatology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Ye Yu
- Department of Dermatology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Minjie Shan
- Department of Dermatology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Ye Tang
- Department of Dermatology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Yan Sun
- Department of Dermatology, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| |
Collapse
|
6
|
Minemura C, Asai S, Koma A, Kase-Kato I, Tanaka N, Kikkawa N, Kasamatsu A, Yokoe H, Hanazawa T, Uzawa K, Seki N. Identification of Tumor-Suppressive miR-30e-3p Targets: Involvement of SERPINE1 in the Molecular Pathogenesis of Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23073808. [PMID: 35409173 PMCID: PMC8998321 DOI: 10.3390/ijms23073808] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/13/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Recently, our studies revealed that some passenger strands of microRNAs (miRNAs) were closely involved in cancer pathogenesis. Analysis of miRNA expression signatures showed that the expression of miR-30e-3p (the passenger strand of pre-miR-30e) was significantly downregulated in cancer tissues. In this study, we focused on miR-30e-3p (the passenger strand of pre-miR-30e). We addressed target genes controlled by miR-30e-3p that were closely associated with the molecular pathogenesis of head and neck squamous cell carcinoma (HNSCC). Ectopic expression assays demonstrated that the expression of miR-30e-3p attenuated cancer cell malignant phenotypes (e.g., cell proliferation, migration, and invasive abilities). Our analysis of miR-30e-3p targets revealed that 11 genes (ADA, CPNE8, C14orf126, ERGIC2, HMGA2, PLS3, PSMD10, RALB, SERPINE1, SFXN1, and TMEM87B) were expressed at high levels in HNSCC patients. Moreover, they significantly predicted the short survival of HNSCC patients based on 5-year overall survival rates (p < 0.05) in The Cancer Genome Atlas (TCGA). Among these targets, SERPINE1 was found to be an independent prognostic factor for patient survival (multivariate Cox regression; hazard ratio = 1.6078, p < 0.05). Aberrant expression of SERPINE1 was observed in HNSCC clinical samples by immunohistochemical analysis. Functional assays by targeting SERPINE1 expression revealed that the malignant phenotypes (e.g., proliferation, migration, and invasion abilities) of HNSCC cells were suppressed by the silencing of SERPINE1 expression. Our miRNA-based approach will accelerate our understanding of the molecular pathogenesis of HNSCC.
Collapse
Affiliation(s)
- Chikashi Minemura
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (C.M.); (A.K.); (I.K.-K.); (N.T.); (A.K.); (K.U.)
- Department of Oral and Maxillofacial Surgery, National Defense Medical College Hospital, Tokorozawa 359-8513, Japan;
| | - Shunichi Asai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (N.K.)
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Ayaka Koma
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (C.M.); (A.K.); (I.K.-K.); (N.T.); (A.K.); (K.U.)
| | - Ikuko Kase-Kato
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (C.M.); (A.K.); (I.K.-K.); (N.T.); (A.K.); (K.U.)
| | - Nozomi Tanaka
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (C.M.); (A.K.); (I.K.-K.); (N.T.); (A.K.); (K.U.)
| | - Naoko Kikkawa
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (N.K.)
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Atsushi Kasamatsu
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (C.M.); (A.K.); (I.K.-K.); (N.T.); (A.K.); (K.U.)
| | - Hidetaka Yokoe
- Department of Oral and Maxillofacial Surgery, National Defense Medical College Hospital, Tokorozawa 359-8513, Japan;
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (C.M.); (A.K.); (I.K.-K.); (N.T.); (A.K.); (K.U.)
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (N.K.)
- Correspondence: ; Tel.: +81-43-226-2971; Fax: +81-43-227-3442
| |
Collapse
|
7
|
Motshwari DD, George C, Matshazi DM, Weale CJ, Davids SFG, Zemlin AE, Erasmus RT, Kengne AP, Matsha TE. Expression of whole blood miR-126-3p, -30a-5p, -1299, -182-5p and -30e-3p in chronic kidney disease in a South African community-based sample. Sci Rep 2022; 12:4107. [PMID: 35260775 PMCID: PMC8904505 DOI: 10.1038/s41598-022-08175-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 02/04/2022] [Indexed: 12/30/2022] Open
Abstract
The burden of chronic kidney disease (CKD) in Africa remains poorly characterized, due partly to the lack of appropriate diagnostic strategies. Although in recent years the diagnostic and prognostic utility of microRNAs (miRNAs) have gained prominence in the context of CKD, its value has not been evaluated in African populations. We investigated the expression of whole blood miRNAs (miR-126-3p, -30a-5p, -1299, -182-5p and -30e-3p) in a total sample of 1449 comprising of 13.3% individuals with CKD (stage 1-5) and 26.4% male participants, as well as the association of these miRNAs with prevalent CKD, in a community-based sample of South African adults. We used Reverse Transcription Quantitative Real-Time PCR (RT-qPCR) to analyze miRNA expression. There was an increased expression in whole blood miR-126-3p, -30a-5p, -1299 and -182-5p in individuals with CKD, compared to those without (all p ≤ 0.036), whereas miR-30e-3p showed no significant difference between the groups (p = 0.482). Only miR-126-3p, -182-5p and -30e-3p were independently associated with increased risk of CKD (all p ≤ 0.022). This study showed for the first time that there is a dysregulation of whole blood miR-126-3p, -30a-5p, -1299 and -182-5p in South Africans of mixed-ancestry with CKD. More research is needed to ascertain their role in CKD risk screening in African populations.
Collapse
Affiliation(s)
- Dipuo D Motshwari
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Cindy George
- Non-Communicable Disease Research Unit, South African Medical Research Council, Parow, Francie van Zijl Drive, Parow Valley, Cape Town, South Africa.
| | - Don M Matshazi
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Cecil J Weale
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Saarah F G Davids
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Annalise E Zemlin
- Division of Chemical Pathology, Faculty of Medicine and Health Sciences, National Health Laboratory Service (NHLS) and University of Stellenbosch, Cape Town, South Africa
| | - Rajiv T Erasmus
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, Cape Town, South Africa
- Division of Chemical Pathology, Faculty of Medicine and Health Sciences, National Health Laboratory Service (NHLS) and University of Stellenbosch, Cape Town, South Africa
| | - Andre P Kengne
- Non-Communicable Disease Research Unit, South African Medical Research Council, Parow, Francie van Zijl Drive, Parow Valley, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Tandi E Matsha
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, Cape Town, South Africa
| |
Collapse
|
8
|
Dabi Y, Suisse S, Jornea L, Bouteiller D, Touboul C, Puchar A, Daraï E, Bendifallah S. Clues for Improving the Pathophysiology Knowledge for Endometriosis Using Plasma Micro-RNA Expression. Diagnostics (Basel) 2022; 12:175. [PMID: 35054341 PMCID: PMC8774370 DOI: 10.3390/diagnostics12010175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 02/07/2023] Open
Abstract
The pathophysiology of endometriosis remains poorly understood. The aim of the present study was to investigate functions and pathways associated with the various miRNAs differentially expressed in patients with endometriosis. Plasma samples of the 200 patients from the prospective "ENDO-miRNA" study were analyzed and all known human miRNAs were sequenced. For each miRNA, sensitivity, specificity, and ROC AUC values were calculated for the diagnosis of endometriosis. miRNAs with an AUC ≥ 0.6 were selected for further analysis. A comprehensive review of recent articles from the PubMed, Clinical Trials.gov, Cochrane Library, and Web of Science databases was performed to identify functions and pathways associated with the selected miRNAs. In total, 2633 miRNAs were found in the patients with endometriosis. Among the 57 miRNAs with an AUC ≥ 0.6: 20 had never been reported before; one (miR-124-3p) had previously been observed in endometriosis; and the remaining 36 had been reported in benign and malignant disorders. miR-124-3p is involved in ectopic endometrial cell proliferation and invasion and plays a role in the following pathways: mTOR, STAT3, PI3K/Akt, NF-κB, ERK, PLGF-ROS, FGF2-FGFR, MAPK, GSK3B/β-catenin. Most of the remaining 36 miRNAs are involved in carcinogenesis through cell proliferation, apoptosis, and invasion. The three main pathways involved are Wnt/β-catenin, PI3K/Akt, and NF-KB. Our results provide evidence of the relation between the miRNA profiles of patients with endometriosis and various signaling pathways implicated in its pathophysiology.
Collapse
Affiliation(s)
- Yohann Dabi
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
- Clinical Research Group (GRC) Paris 6, Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), 4 Rue de la Chine, 75020 Paris, France
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France
| | | | - Ludmila Jornea
- Paris Brain Institute—Institut du Cerveau—ICM, Inserm U1127, CNRS UMR 7225, AP-HP—Hôpital Pitié-Salpêtrière, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France;
| | - Delphine Bouteiller
- Gentoyping and Sequencing Core Facility, iGenSeq, Institut du Cerveau et de la Moelle Épinière, ICM, Hôpital Pitié-Salpêtrière, 47-83 Boulevard de l’Hôpital, 75013 Paris, France;
| | - Cyril Touboul
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
- Clinical Research Group (GRC) Paris 6, Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), 4 Rue de la Chine, 75020 Paris, France
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France
| | - Anne Puchar
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
| | - Emile Daraï
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
| | - Sofiane Bendifallah
- Department of Obstetrics and Reproductive Medicine, Hôpital Tenon, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France; (Y.D.); (C.T.); (A.P.); (E.D.)
- Clinical Research Group (GRC) Paris 6, Centre Expert Endométriose (C3E), Sorbonne University (GRC6 C3E SU), 4 Rue de la Chine, 75020 Paris, France
| |
Collapse
|
9
|
MicroRNA as a Biomarker for Diagnostic, Prognostic, and Therapeutic Purpose in Urinary Tract Cancer. Processes (Basel) 2021. [DOI: 10.3390/pr9122136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The incidence of urologic cancers, including kidney, upper tract urothelial, and bladder malignancies, is increasing globally, with a high percentage of cases showing metastasis upon diagnosis and low five-year survival rates. MicroRNA (miRNA), a small non-coding RNA, was found to regulate the expression of oncogenes and tumor suppressor genes in several tumors, including cancers of the urinary system. In the current review, we comprehensively discuss the recently reported up-or down-regulated miRNAs as well as their possible targets and regulated pathways involved in the development, progression, and metastasis of urinary tract cancers. These miRNAs represent potential therapeutic targets and diagnostic/prognostic biomarkers that may help in efficient and early diagnosis in addition to better treatment outcomes.
Collapse
|
10
|
Gao K, Wang T, Qiao Y, Cui B. MicroRNA-30e-3p inhibits glioma development and promotes drug sensitivity to temozolomide treatment via targeting canopy FGF signaling regulator 2. Cell Cycle 2021; 20:2361-2371. [PMID: 34657557 DOI: 10.1080/15384101.2021.1974789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Glioma is one of the most aggressive malignancies in the central nervous system and the prognosis of glioma patients remains poor. In this study, we investigated the function of microRNA-30e-3p (miR-30e-3p) in glioma development and its regulatory role in drug-resistance to temozolomide (TMZ). We found that miR-30e-3p was downregulated in glioma tissues and cell lines. Ectopic expression of miR-30e-3p inhibited the growth of glioma cells and arrested cell cycle at G0/G1 phase. Canopy FGF signaling regulator 2 (CNPY2) was predicted as a direct target of miR-30e-3p by bioinformatics analysis. Luciferase reporter assay confirmed the interaction between miR-30e-3p and CNPY2. We also demonstrated that miR-30e-3p suppressed glioma xenograft tumor development invivo and the inhibition was abolished by CNPY2 overexpression. In addition, we showed that overexpression of miR-30e-3p enhanced the sensitivity of glioma cell to TMZ treatment. Glioma cells with miR-30e-3p overexpression had decreased cell proliferation and enhanced cell apoptosis upon TMZ treatment. Moreover, we revealed that miR-30e-3p modulated TMZ sensitivity of glioma cells via negatively regulating CNPY2. Taken together, our findings demonstrate that miR-30e-3p plays a critical role in glioma development and drug sensitivity to TMZ treatment via negatively regulating CNPY2 expression. The study suggests that miR-30e-3p/CNPY2 could be developed as a novel target to improve the glioma therapy.Abbreviations: miR-30e-3p, microRNA-30e-3p; TMZ, temozolomide; CNPY2, canopy FGF signaling regulator 2; 3'-UTR, 3' untranslated region; NC, negative control.
Collapse
Affiliation(s)
- Ke Gao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi, China
| | - Tuo Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi, China
| | - Yuan Qiao
- Department of Endocrinology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi Province, China
| | - Bo Cui
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi, China
| |
Collapse
|
11
|
Gilyazova I, Ivanova E, Gilyazova G, Sultanov I, Izmailov A, Safiullin R, Pavlov V, Khusnutdinova E. Methylation and expression levels of microRNA-23b/-24-1/-27b, microRNA-30c-1/-30e, microRNA-301a and let-7g are dysregulated in clear cell renal cell carcinoma. Mol Biol Rep 2021; 48:5561-5569. [PMID: 34302585 DOI: 10.1007/s11033-021-06573-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 07/15/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Renal cell carcinoma is the most common form of kidney cancer in adults. DNA methylation of regulatory sequences at the genomic level and interaction between microRNAs and the messenger RNAs of target genes at the posttranscriptional level contribute to the dynamic regulation of gene activity. Aberrations in these mechanisms can result in impaired functioning of cell signaling pathways, such as that observed in malignant tumors. We hypothesized that microRNA genes methylation may be associated with renal cancer in patients. METHODS AND RESULTS We examined methylation levels of 22 microRNA genes in tumor and normal kidney tissue of 30 patients with TNM Stage III clear cell renal cell carcinoma using a pathway-specific real-time polymerase chain reaction array (EpiTect Methyl II PCR Arrays, Qiagen). MicroRNA expression analysis by quantitative polymerase chain reaction was also performed. Significant differences in methylation levels were found in two genes and in two clusters of microRNA genes. MicroRNA-23b/-24-1/-27b, microRNA -30c-1/-30e and let-7 g was hypermetylated in clear cell renal cell carcinoma tissue, microRNA -301a was hypomethylated in tumor compared with the adjacent normal tissues. Expression of microRNA-301a, microRNA-23b in the clear cell renal cell carcinoma tissues was significantly overexpressed when compared with the adjacent normal tissues and let-7 g was significantly downregulated in tumor. CONCLUSIONS Our results may indicate the contribution of microRNA-301a, microRNA-23b and let-7 g in the pathogenesis of renal cancer, but further studies are needed to determine the functional significance of the detected changes.
Collapse
Affiliation(s)
- I Gilyazova
- Institute of Biochemistry and Genetics - Subdivision, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation, 450054
- Bashkir State Medical University, Ufa, Russian Federation, 450008
| | - E Ivanova
- Institute of Biochemistry and Genetics - Subdivision, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation, 450054.
| | - G Gilyazova
- Bashkir State Medical University, Ufa, Russian Federation, 450008
| | - I Sultanov
- Bashkir State Medical University, Ufa, Russian Federation, 450008
| | - A Izmailov
- Bashkir State Medical University, Ufa, Russian Federation, 450008
| | - R Safiullin
- Bashkir State Medical University, Ufa, Russian Federation, 450008
| | - V Pavlov
- Bashkir State Medical University, Ufa, Russian Federation, 450008
| | - E Khusnutdinova
- Institute of Biochemistry and Genetics - Subdivision, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation, 450054
- Bashkir State Medical University, Ufa, Russian Federation, 450008
| |
Collapse
|
12
|
Song A, Yang Y, He H, Sun J, Chang Q, Xue Q. Inhibition of Long Non-Coding RNA KCNQ1OT1 Attenuates Neuroinflammation and Neuronal Apoptosis Through Regulating NLRP3 Expression via Sponging miR-30e-3p. J Inflamm Res 2021; 14:1731-1742. [PMID: 33981152 PMCID: PMC8107009 DOI: 10.2147/jir.s291274] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/14/2021] [Indexed: 11/30/2022] Open
Abstract
Background Neuroinflammation and neuronal apoptosis are considered as the critical factors in the pathogenesis of multiple neurological diseases. Recent studies have shown that long non-coding RNA (lncRNA) plays a crucial part in neuroinflammation and neuronal apoptosis. Methods The expression levels of lncRNA KCNQ1OT1, miR-30e-3p and NLRP3 in lipopolysaccharide (LPS)-induced HMC3 cells were analyzed using RT-qPCR. MTT assay, LDH release assay and ELISA were used to assess the effect of KCNQ1OT1 and miR-30e-3p on neuroinflammation and neuronal apoptosis. The targeted regulatory relationships among KCNQ1OT1, miR-30e-3p and NLRP3 were evaluated by bioinformatics analysis, dual-luciferase reporter gene assay, RT-qPCR and Western blot. Results In LPS-induced HMC3 cells, the expression levels of KCNQ1OT1 and NLRP3 were increased, while the expression level of miR-30e-3p was reduced. Knockdown of KCNQ1OT1 alleviated LPS-induced apoptosis and neuroinflammation of HMC3 cells, accompanied by increased cell viability, low LDH release and reduced cell apoptosis rate, and reduced levels of TNF-α, IL-1β and IL-6. Overexpression of miR-30e-3p had a similar effect. Additionally, KCNQ1OT1 could bind with miR-30e-3p and repress its expression in HMC3 cells, and KCNQ1OT1 overexpression counteracted miR-30e-3p’s inhibitory effect on LPS-induced neuronal damage and inflammatory response in HMC3 cells. Furthermore, KCNQ1OT1 could positively regulate the expression of NLRP3 via repressing miR-30e-3p. Conclusion Inhibition of KCNQ1OT1 could reduce neuroinflammation and neuronal apoptosis induced by LPS in HMC3 cells by regulating miR-30e-3p/NLRP3 pathway, suggesting that KCNQ1OT1 and miR-30e-3p could serve as promising therapeutic targets for treating neurological diseases.
Collapse
Affiliation(s)
- Aixia Song
- Department of Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, People's Republic of China
| | - Yuying Yang
- Stroke Office, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, People's Republic of China
| | - Hongmei He
- Department of Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, People's Republic of China
| | - Jian Sun
- Department of Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, People's Republic of China
| | - Qing Chang
- Department of Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, People's Republic of China
| | - Qian Xue
- Department of Neurology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, 075000, People's Republic of China
| |
Collapse
|
13
|
Gao X, Wang X, He H, Cao Y. LINC02308 promotes the progression of glioma through activating mTOR/AKT-signaling pathway by targeting miR-30e-3p/TM4SF1 axis. Cell Biol Toxicol 2021; 38:223-236. [PMID: 33945031 DOI: 10.1007/s10565-021-09604-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/22/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Glioma is a common brain malignancy, and the purpose of this study is to investigate the function of LINC02308 in glioma. METHODS The differentially expressed lncRNAs were screened by microarray. The expression of LINC02308 in glioma tissues and cells was evaluated. The interaction among LINC02308, miR-30e-3p, and TM4SF1 was determined. Cell proliferation and apoptosis were evaluated. The expression of mTOR/AKT-signaling and apoptosis-related markers was detected by Western blot. A xenograft tumor mouse model was constructed to investigate the roles of LINC02308. RESULTS LINC02308 was significantly overexpressed in glioma, and a high LINC02308 level was correlated with a poor prognosis. LINC02308 silencing markedly inhibited proliferation and reduced apoptosis of glioma cells and also suppressed tumor growth in the xenograft tumor mouse model. Finally, we demonstrated that LINC02308 played its oncogenic role through binding to miR-30e-3p so as to relieve miR-30e-3p-induced suppression of TM4SF1. CONCLUSIONS LINC02308 promoted glioma tumorigenesis as a sponge of miR-30e-3p to upregulate TM4SF1 and activate AKT/mTOR pathway. Graphical Abstract Hypothesis diagram illustrates the function and mechanism of LINC02308 in glioma. A schematic representation of the functional mechanism of LINC02308 in glioma.
Collapse
Affiliation(s)
- Xianfeng Gao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun City, Jilin Province, 130031, People's Republic of China
| | - Xiaoya Wang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan Province, 637000, People's Republic of China
| | - Huaiqiang He
- Department of Intensive Medicine, The First Hospital of Jilin University, Changchun City, Jilin Province, 130031, People's Republic of China
| | - Yang Cao
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun City, Jilin Province, 130031, People's Republic of China. .,Department of Clinical Laboratory, The First Hospital of Jilin University, No. 3302 Jilin Road, Erdao District, Changchun City, Jilin Province, ,130021, People's Republic of China.
| |
Collapse
|
14
|
Ghafouri-Fard S, Shirvani-Farsani Z, Branicki W, Taheri M. MicroRNA Signature in Renal Cell Carcinoma. Front Oncol 2020; 10:596359. [PMID: 33330087 PMCID: PMC7734191 DOI: 10.3389/fonc.2020.596359] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
Renal cell carcinoma (RCC) includes 2.2% of all diagnosed cancers and 1.8% of cancer-related mortalities. The available biomarkers or screening methods for RCC suffer from lack of sensitivity or high cost, necessitating identification of novel biomarkers that facilitate early diagnosis of this cancer especially in the susceptible individuals. MicroRNAs (miRNAs) have several advantageous properties that potentiate them as biomarkers for cancer detection. Expression profile of miRNAs has been assessed in biological samples from RCC patients. Circulatory or urinary levels of certain miRNAs have been proposed as markers for RCC diagnosis or follow-up. Moreover, expression profile of some miRNAs has been correlated with response to chemotherapy, immunotherapy or targeted therapeutic options such as sunitinib. In the current study, we summarize the results of studies that assessed the application of miRNAs as biomarkers, therapeutic targets or modulators of response to treatment modalities in RCC patients.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University G.C., Tehran, Iran
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology of the Jagiellonian University, Kraków, Poland
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Peng X, Wang J, Zhang C, Liu K, Zhao L, Chen X, Huang G, Lai Y. A three-miRNA panel in serum as a noninvasive biomarker for colorectal cancer detection. Int J Biol Markers 2020; 35:74-82. [PMID: 32914665 DOI: 10.1177/1724600820950740] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Circulating miRNAs have been proved to be promising biomarkers for disease detection in recent years. The present study aimed at exploring available serum miRNA biomarkers for the detection of colorectal cancer. METHODS A three-phase study was performed to select and validate candidate miRNAs with significant dysregulation in colorectal cancer using quantitative reverse transcription-polymerase chain reaction. This study recruited 137 colorectal cancer patients and 145 healthy controls. The diagnostic values of miRNAs were evaluated by receiver operating characteristic analysis. Bioinformatics analyses were utilized to predict target genes of miRNAs, and to conduct functional annotation and enrichment. RESULTS miR-30e-3p, miR-31-5p, miR-34b-3p and miR-146a-5p, miR-148a-3p and miR-192-5p were significantly dysregulated in colorectal cancer serum when compared with healthy controls. The panel composed of miR-30e-3p, miR-146a-5p, and miR-148a-3p exhibited strong diagnostic ability. The area under the receiver operating characteristic curve of the three-miRNA panel was 0.883, with a sensitivity of 0.800 and specificity of 0.787. CONCLUSION The present study identified a three-miRNA panel in serum with a strong diagnostic ability of colorectal cancer, which may be able to serve as a novel noninvasive biomarker for colorectal cancer detection.
Collapse
Affiliation(s)
- Xiqi Peng
- Shantou University Medical College, Shantou, Guangdong, China
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jingyao Wang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Chunduo Zhang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Kaihao Liu
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Anhui Medical University, Hefei, Anhui, China
| | - Liwen Zhao
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Anhui Medical University, Hefei, Anhui, China
| | - Xuan Chen
- Shantou University Medical College, Shantou, Guangdong, China
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Guocheng Huang
- Shantou University Medical College, Shantou, Guangdong, China
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yongqing Lai
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
16
|
Liu Y, Xu Y, Ding L, Yu L, Zhang B, Wei D. LncRNA MEG3 suppressed the progression of ovarian cancer via sponging miR-30e-3p and regulating LAMA4 expression. Cancer Cell Int 2020; 20:181. [PMID: 32489317 PMCID: PMC7245736 DOI: 10.1186/s12935-020-01259-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/12/2020] [Indexed: 12/17/2022] Open
Abstract
Background Ovarian cancer (OC) is a common female reproductive malignancy with a high mortality rate. Although LAMA4 was observed to be downregulated in OC cells, its mechanism in regulating OC metastasis is still unknown. This study aimed to investigate the effect of LAMA4 and its mechanism on OC. Methods To achieve this aim, a microarray analysis was performed to screen out the key genes involved in OC pathogenesis. Western-blot and qRT-PCR assays were also carried out to detect protein and mRNA expressions, respectively. A luciferase reporter assay was further used to confirm the direct interaction of miR-30e-3p with MEG3, and the direct interaction of miR-30e-3p with LAMA4 mRNA. Cytological experiments (CCK8, colony formation assay, wound-healing assay etc.) were then performed to explore the roles of miR-30e-3p, MEG3, and LAMA4 in OC cells. Results After carrying out microarray analysis, LAMA4 was confirmed as a key gene associated with OC pathogenesis. Research results proved that miR-30e-3p was markedly upregulated, while MEG3 and LAMA4 were noticeably downregulated in OC tissues and cells. The overexpression of LAMA4 significantly impaired the proliferation, migration, and invasion of OC cells. However, the upregulation of MEG3 increased the expression of LAMA4 by sponging miR-30e-3p, which alleviated the malignancy of OC cells. Conclusions Observations showed that forced LAMA4 overexpression could inhibit OC progression, which was regulated by MEG3 via sponging miR-30e-3p. The findings of this research could provide new insights into the mechanism by which MEG3 and LAMA4 exert their anti-oncogenic roles in OC progression. Trial registration Not applicable
Collapse
Affiliation(s)
- Yang Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008 Henan China
| | - Yangchun Xu
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, 130062 Jilin China
| | - Lei Ding
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, 130028 Jilin China
| | - Lili Yu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, 130028 Jilin China
| | - Butian Zhang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, 130028 Jilin China
| | - Dan Wei
- Key Laboratory of Birth Defect Prevention of National Health Commission, Zhengzhou, 450002 Henan China.,School of Life Sciences and Technology, Xinxiang Medical University, No. 601 Jinsui Avenue, Hongqi District, Xinxiang, 453003 Henan China
| |
Collapse
|
17
|
Zhu C, Na N, Sheng H, Feng B, Wang H, Zhu P, Zhang W, Zhang M, Deng Z. Ginkgolic acid inhibits the growth of renal cell carcinoma cells via inactivation of the EGFR signaling pathway. Exp Ther Med 2020; 19:2949-2956. [PMID: 32256780 PMCID: PMC7086188 DOI: 10.3892/etm.2020.8570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/09/2020] [Indexed: 12/15/2022] Open
Abstract
Renal cell carcinoma (RCC) is one of the most common urological malignancies occurring in adult human kidneys worldwide. Recent research on antitumor drugs has focused on plant extracts, a class of compounds that play critical roles in cancer treatment. The present study aimed to investigate the potential antitumor effect of ginkgolic acid (GA) in RCC. Transwell invasion assay, cell counting kit-8 assay and flow cytometry were used to measure cell migration, cell viability and apoptosis, respectively. A network pharmacology approach was applied to identify pathway information, combining molecular docking techniques to screen for key target information. In the present study, GA inhibited the viability and proliferation of RCC cells (786-O and A498), both in vitro and in vivo, via G1 arrest. GA also reduced RCC cell invasion and migration. In addition, the epidermal growth factor receptor (EGFR) was identified as a critical target protein of GA, which significantly inactivated EGFR signaling in RCC (P<0.05). Collectively, the present study provided evidence that GA exerts its anticancer function by directly targeting the EGFR signaling pathway, revealing the potential of GA therapy for RCC.
Collapse
Affiliation(s)
- Chao Zhu
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Na Na
- Department of Outpatients, 900th Hospital of The Joint Logistics Support Force (People's Liberation Army), Fuzhou, Fujian 350000, P.R. China
| | - Haibo Sheng
- Department of Urology, Airforce Medical Center (People's Liberation Army), Beijing 100142, P.R. China
| | - Bing Feng
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Hao Wang
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Ping Zhu
- Department of Pathology, 971st Navy Hospital of PLA, Qingdao, Shandong 266071, P.R. China
| | - Wei Zhang
- Department of Pathology, 971st Navy Hospital of PLA, Qingdao, Shandong 266071, P.R. China
| | - Meina Zhang
- Department of Pathology, 971st Navy Hospital of PLA, Qingdao, Shandong 266071, P.R. China
| | - Zhen Deng
- Department of Urology, 900th Hospital of The Joint Logistics Support Force (People's Liberation Army), Fuzhou, Fujian 350000, P.R. China
| |
Collapse
|
18
|
Heinzelmann J, Arndt M, Pleyers R, Fehlmann T, Hoelters S, Zeuschner P, Vogt A, Pryalukhin A, Schaeffeler E, Bohle RM, Gajda M, Janssen M, Stoeckle M, Junker K. 4-miRNA Score Predicts the Individual Metastatic Risk of Renal Cell Carcinoma Patients. Ann Surg Oncol 2019; 26:3765-3773. [DOI: 10.1245/s10434-019-07578-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Indexed: 12/24/2022]
|
19
|
Wang H, Ma Y, Lin Y, Liu J, Chen R, Xu B, Liang Y. An Isoxazole Derivative SHU00238 Suppresses Colorectal Cancer Growth through miRNAs Regulation. Molecules 2019; 24:molecules24122335. [PMID: 31242597 PMCID: PMC6630644 DOI: 10.3390/molecules24122335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 06/22/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Isoxazoline and isoxazole derivatives represent an important class of five-membered heterocycles, which play a pivotal role in drug discovery. In our previous study, we developed a series of isoxazole derivatives with an efficient method. In this study, we evaluated their effects on tumor cell growth. HCT116 cells were treated with isoxazole derivatives; an cholecystokinin octapeptide (CCK-8) assay was used to calculate the IC50 (half maximal inhibitory concentration) of each derivative. Compound SHU00238, which was obtained by the copper nitrate-mediated [2+2+1] cycloaddition reaction of olefinic azlactone with naphthalene-1,4-dione, has a lower IC50; we analyzed its inhibitory activity in further assays. Cell apoptosis was estimated by flow cytometry analysis in vitro. SHU00238 injection was used to treat tumor-bearing mice. We found that SHU00238 suppressed cell viability and promoted cell apoptosis in vitro. SHU00238 treatment significantly inhibited colonic tumor growth in vivo. Furthermore, we compared the miRNAs expression changes in HCT116 cells before and after SHU00238 treatment. MiRNA profiling revealed that SHU00238 treatment affected cell fate by regulating a set of miRNAs. In conclusion, SHU00238 impedes CRC tumor cell proliferation and promotes cell apoptosis by miRNAs regulation.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Chemistry, Qianweichang College, Shanghai University, Shanghai 200444, China.
- School of Life Science, Shanghai University, Shanghai 200444, China.
| | - Yurui Ma
- School of Life Science, Shanghai University, Shanghai 200444, China.
| | - Yifan Lin
- Department of Chemistry, Qianweichang College, Shanghai University, Shanghai 200444, China.
| | - Jiajie Liu
- Department of Chemistry, Qianweichang College, Shanghai University, Shanghai 200444, China.
| | - Rui Chen
- School of Life Science, Shanghai University, Shanghai 200444, China.
| | - Bin Xu
- Department of Chemistry, Qianweichang College, Shanghai University, Shanghai 200444, China.
- Innovative Drug Research Center, Shanghai University, Shanghai 200444, China.
| | - Yajun Liang
- School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
20
|
Deng Z, Cai H, Lin L, Zhu L, Wu W, Yang S, Cai J, Tan J. lncRNA ATXN8OS promotes breast cancer by sequestering miR‑204. Mol Med Rep 2019; 20:1057-1064. [PMID: 31173245 PMCID: PMC6625414 DOI: 10.3892/mmr.2019.10367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/26/2019] [Indexed: 12/25/2022] Open
Abstract
Breast cancer (BC) is a common malignancy among women and the leading cause of female cancer mortality worldwide. In recent years, increasing evidence has shown that long non-coding RNAs (lncRNAs) can act as competing endogenous RNAs (ceRNAs) in human cancer and that they are involved in many biological processes, including proliferation, migration, apoptosis and invasion. In the present study, the biological function and molecular mechanism of ataxin 8 opposite strand (ATXN8OS) in BC tissue and cell lines were investigated. It was found that ATXN8OS was markedly up-regulated in BC tissue and cell lines, and that its level of overexpression was inversely linked with the overall survival rate of patients with BC. Knockdown of ATXN8OS inhibited proliferation, viability and invasion in the human MCF7 and MDA-MB-231 BC cell lines. In addition, microRNA-204 (miR-204) was negatively associated with the expression of ATXN8OS in BC tissues and cell lines. A luciferase assay demonstrated a direct binding site for miR-204 within ATXN8OS, and inhibition of miR-204 stimulated the tumour-promoting effect of ATXN8OS on BC cells. In conclusion, the present study suggested that ATXN8OS acts as a tumour promoter by sequestering miR-204 during the development of BC, therefore providing a mechanistic insight which may facilitate the diagnosis and treatment of BC.
Collapse
Affiliation(s)
- Zhen Deng
- Department of Urology, 900th Hospital of the Joint Logistics Support Force, People's Liberation Army, Fuzhou, Fujian 350000, P.R. China
| | - Huayu Cai
- Department of Urology, 900th Hospital of the Joint Logistics Support Force, People's Liberation Army, Fuzhou, Fujian 350000, P.R. China
| | - Liying Lin
- Department of General Surgery, 900th Hospital of the Joint Logistics Support Force, People's Liberation Army, Fuzhou, Fujian 350000, P.R. China
| | - Lingfeng Zhu
- Department of Urology, 900th Hospital of the Joint Logistics Support Force, People's Liberation Army, Fuzhou, Fujian 350000, P.R. China
| | - Weizhen Wu
- Department of Urology, 900th Hospital of the Joint Logistics Support Force, People's Liberation Army, Fuzhou, Fujian 350000, P.R. China
| | - Shunliang Yang
- Department of Urology, 900th Hospital of the Joint Logistics Support Force, People's Liberation Army, Fuzhou, Fujian 350000, P.R. China
| | - Jinquan Cai
- Department of Urology, 900th Hospital of the Joint Logistics Support Force, People's Liberation Army, Fuzhou, Fujian 350000, P.R. China
| | - Jianming Tan
- Department of Urology, 900th Hospital of the Joint Logistics Support Force, People's Liberation Army, Fuzhou, Fujian 350000, P.R. China
| |
Collapse
|
21
|
Baulida J, Díaz VM, Herreros AGD. Snail1: A Transcriptional Factor Controlled at Multiple Levels. J Clin Med 2019; 8:jcm8060757. [PMID: 31141910 PMCID: PMC6616578 DOI: 10.3390/jcm8060757] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/27/2022] Open
Abstract
Snail1 transcriptional factor plays a key role in the control of epithelial to mesenchymal transition and fibroblast activation. As a consequence, Snail1 expression and function is regulated at multiple levels from gene transcription to protein modifications, affecting its interaction with specific cofactors. In this review, we describe the different elements that control Snail1 expression and its activity both as transcriptional repressor or activator.
Collapse
Affiliation(s)
- Josep Baulida
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada al CSIC, 08003 Barcelona, Spain.
| | - Víctor M Díaz
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada al CSIC, 08003 Barcelona, Spain.
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada al CSIC, 08003 Barcelona, Spain.
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| |
Collapse
|
22
|
Braga EA, Fridman MV, Loginov VI, Dmitriev AA, Morozov SG. Molecular Mechanisms in Clear Cell Renal Cell Carcinoma: Role of miRNAs and Hypermethylated miRNA Genes in Crucial Oncogenic Pathways and Processes. Front Genet 2019; 10:320. [PMID: 31110513 PMCID: PMC6499217 DOI: 10.3389/fgene.2019.00320] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/22/2019] [Indexed: 12/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the third most common urological cancer, and it has the highest mortality rate. The increasing drug resistance of metastatic ccRCC has resulted in the search for new biomarkers. Epigenetic regulatory mechanisms, such as genome-wide DNA methylation and inhibition of protein translation by interaction of microRNA (miRNA) with its target messenger RNA (mRNA), are deeply involved in the pathogenesis of human cancers, including ccRCC, and may be used in its diagnosis and prognosis. Here, we review oncogenic and oncosuppressive miRNAs, their putative target genes, and the crucial pathways they are involved in. The contradictory behavior of a number of miRNAs, such as suppressive and anti-metastatic miRNAs with oncogenic potential (for example, miR-99a, miR-106a, miR-125b, miR-144, miR-203, miR-378), is examined. miRNAs that contribute mostly to important pathways and processes in ccRCC, for instance, PI3K/AKT/mTOR, Wnt-β, histone modification, and chromatin remodeling, are discussed in detail. We also separately consider their participation in crucial oncogenic processes, such as hypoxia and angiogenesis, metastasis, and epithelial-mesenchymal transition (EMT). The review also considers the interactions of long non-coding RNAs (lncRNAs) and miRNAs of significance in ccRCC. Recent advances in the understanding of the role of hypermethylated miRNA genes in ccRCC and their usefulness as biomarkers are reviewed based on our own data and those available in the literature. Finally, new data and perspectives concerning the clinical applications of miRNAs in the diagnosis, prognosis, and treatment of ccRCC are discussed.
Collapse
Affiliation(s)
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Research Center of Medical Genetics, Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
23
|
The uremic toxin p-cresyl sulfate induces proliferation and migration of clear cell renal cell carcinoma via microRNA-21/ HIF-1α axis signals. Sci Rep 2019; 9:3207. [PMID: 30824757 PMCID: PMC6397167 DOI: 10.1038/s41598-019-39646-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 07/06/2018] [Indexed: 12/17/2022] Open
Abstract
p-Cresyl sulfate (pCS), a uremic toxin, can cause renal damage and dysfunction. Studies suggest that renal dysfunction increases the prevalence of renal cancer. However, the effect of pCS on the proliferation and migration of renal cancer is unclear. Clear cell renal cell carcinoma (ccRCC) expresses mutant von Hippel-Lindau gene and is difficult to treat. Hypoxia-inducible factor-1α and 2-α (HIF-1α and HIF-2α) as well as microRNA-21 (miR-21) can regulate the proliferation and migration of ccRCC cells. However, the association between HIF-α and miR-21 in ccRCC remains unclear. Therefore, the effects of pCS on ccRCC cells were investigated for HIF-α and miR-21 signals. Our results showed that pCS induced overexpression of HIF-1α and promoted the proliferation and regulated epithelial-mesenchymal transition-related proteins, including E-cadherin, fibronectin, twist and vimentin in ccRCC cells. pCS treatment increased miR-21 expression. Specifically, inhibition of miR-21 blocked pCS-induced proliferation and migration. Taken together, the present results demonstrate that pCS directly induced the proliferation and migration of ccRCC cells through mechanisms involving miR-21/HIF-1α signaling pathways.
Collapse
|
24
|
Abstract
Background: MicroRNAs are a class of small RNA molecules that inhibit protein expression through either degradation of messenger RNA or interference with protein translation. Our previous work suggested an involvement of miR-30e in myocardial fibrosis; however, the exact role of miR-30e in the pathogenesis of cardiac fibrosis and the underlying mechanisms are not known. Methods: Male Sprague Dawley rats were treated with isoproterenol (ISO) to induce cardiac remodeling and fibrosis and treated with either miR-30e agomir (AG) or antagomir and respective controls. The expression of miR-30e was evaluated by reverse transcription and quantitative polymerase chain reaction. Myocardial fibrosis was assessed by Masson's trichrome staining, and the level of oxidative stress and the expression of Snai1 and transforming growth factor-beta (TGF-β) were detected using Western blots. Results: A significant downregulation of miR-30e was found in the hearts of ISO-treated rats with cardiac fibrosis compared with nontreated controls. In vivo administration of miR-30e AG increased the survival of ISO-treated rats compared with AG-negative control administration, which was associated with reduced oxidative stress. We further identified Snai1 as a novel miR-30e target. Snai1 expression was significantly increased in hearts from ISO-treated rats, which coincided with decreased miR-30e expression and increased TGF-β expression. An miR-30e putative target sequence was identified in the 3′-untranslated region (UTR) Snai1. In a reporter assay, miR-30e greatly suppressed the activity of wild-type 3′-UTR–fused luciferase reporter, but showed no significant effect with the mutated 3′-UTR–fused reporter. Conclusion: MiR-30e attenuated ISO-induced cardiac dysfunction and cardiac fibrosis in a rat cardiac remodeling model. Mechanistically, miR-30e suppressed Snai1/TGF-β pathway which was involved in ISO-induced cardiac remodeling.
Collapse
|
25
|
Zhao H, Zhao H, Xia X, Liu X. MicroRNA-599 targets high-mobility group AT-hook 2 to inhibit cell proliferation and invasion in clear cell renal carcinoma. Mol Med Rep 2018; 17:7451-7459. [PMID: 29568870 DOI: 10.3892/mmr.2018.8755] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/06/2018] [Indexed: 11/05/2022] Open
Abstract
Dysregulation of microRNAs (miRNAs) is associated with the occurrence and development of clear cell renal cell carcinoma (ccRCC) through their participation in a number of critical biological processes. Therefore, an in‑depth investigation into miRNAs and their biological roles within ccRCC may provide useful insights and lead to the identification of novel therapeutic methods for patients with ccRCC. miRNA‑599 (miR‑599) serves critical roles in different types of human cancer. However, the expression pattern, biological function and molecular mechanism of miR‑599 in ccRCC remain unknown. The present study aimed to detect the expression level of miR‑599 in ccRCC, examine its effect on ccRCC progression and further explore the possible underlying mechanisms. It was observed that miR‑599 was significantly underexpressed in ccRCC tissues and cell lines compared with the control. Functional assays revealed that restored expression of miR‑599 restricted the proliferation and invasion of ccRCC cells. Bioinformatics analysis, luciferase reporter assay, reverse transcription‑quantitative polymerase chain reaction and western blot analysis demonstrated that high‑mobility group AT‑hook 2 (HMGA2) was a direct target of miR‑599 in ccRCC. HMGA2 knockdown simulated the suppressive effects caused by miR‑599 overexpression in ccRCC. Recovered HMGA2 expression partially rescued the miR‑599‑mediated inhibition of ccRCC proliferation and invasion. These results suggest that miR‑599 may serve tumour suppressive roles in ccRCC by directly targeting HMGA2, indicating that miR‑599 may have potential as a treatment for patients with ccRCC.
Collapse
Affiliation(s)
- Hailing Zhao
- Department of Pediatrics, Yidu Central Hospital of Weifang, Weifang, Shandong 262550, P.R. China
| | - Huizhen Zhao
- Department of Pediatrics, Yidu Central Hospital of Weifang, Weifang, Shandong 262550, P.R. China
| | - Xiaolin Xia
- Department of Pediatrics, Yidu Central Hospital of Weifang, Weifang, Shandong 262550, P.R. China
| | - Xiujuan Liu
- Department of Nephrology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
26
|
Yang R, Hong H, Wang M, Ma Z. Correlation Between Single-Nucleotide Polymorphisms Within miR-30a and Related Target Genes and Risk or Prognosis of Nephrotic Syndrome. DNA Cell Biol 2018; 37:233-243. [PMID: 29356585 DOI: 10.1089/dna.2017.4024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study was aimed to figure out the association of single-nucleotide polymorphisms (SNPs) within miR-30a and its downstream molecules (i.e., Notch1, Snail1, p53, CD73, and TET1) with susceptibility to and prognosis of nephrotic syndrome (NS). In the aggregate, 265 patients and 281 healthy controls were gathered, and related laboratory indicators were examined. The miR-30a, Notch1, Snail1, TET1, p53, and CD73 expressions were also evaluated by quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemistry, or enzyme-linked immunosorbent assay. Besides, the SNPs were genotyped by RT-PCR with aid of ABI-PRISM™ 377 DNA sequencing instrument. As a result, the NS patients were correlated with remarkably higher 24-h protein excretion, random urine protein/creatinine (UPCR), and serum creatinine, along with lower estimated glomerular filtration rate and serum albumin, when compared with normal subjects (p < 0.05). Furthermore, significant correlations were present between miR-30a expression and the expressions of Notch1 (rs = -0.350), p53 (rs = -0.339), CD73 (rs = -0.300), TET1 (rs = -0.249), and Snail1 (rs = -0.829) (all p < 0.05). The SNPs of miR-30a [i.e., rs2222722 (C>T)], Notch1 [i.e., rs3124599 (G>A), rs3124591 (C>T), and rs139994842 (G>A)], Snail1 [i.e., rs6020178 (T>C)], p53 [i.e., rs1042522 (C>G)], and CD73 [i.e., rs9444348 (G>A) and rs4431401 (T>C)] were significantly correlated with both differed NS risk and altered hormone sensitivity to NS (all p < 0.05). Moreover, haplotype AC of CD73 and haplotype ATG of Notch1 were the helpful factors against NS (p < 0.05), yet haplotype GT of CD73 functioned oppositely (p < 0.05). The haplotype AT of CD73 was beneficial to the NS patients for that the carriers could be treated with hormones without severe complications (p < 0.05). Conclusively, the SNPs situated within miR-30a and its downstream molecules (i.e., Notch1, Snail1, p53, CD73, and TET1) could become the promising biomarkers for both NS diagnosis and prediction of NS prognosis.
Collapse
Affiliation(s)
- Ruiheng Yang
- Department of Nephrology, Liaocheng People's Hospital , Liaocheng, China
| | - Hong Hong
- Department of Nephrology, Liaocheng People's Hospital , Liaocheng, China
| | - Mengjun Wang
- Department of Nephrology, Liaocheng People's Hospital , Liaocheng, China
| | - Zhongchao Ma
- Department of Nephrology, Liaocheng People's Hospital , Liaocheng, China
| |
Collapse
|
27
|
He YH, Chen C, Shi Z. The biological roles and clinical implications of microRNAs in clear cell renal cell carcinoma. J Cell Physiol 2017; 233:4458-4465. [PMID: 29215721 DOI: 10.1002/jcp.26347] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/02/2017] [Indexed: 12/18/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) accounts for about 3% of tumors in adults as well as 85% of all primary renal carcinoma. And it is the third most predominant urological carcinoma, but it has the maximum mortality rate. Early diagnosis and proper follow-up of ccRCC patients may improve the prognosis of the illness. Thus, it is imperative to understand the new biomarkers of ccRCC and study new method for the modern therapy of this deadly disease. Furthermore, a large number of microRNAs (miRNAs), small non-coding RNAs, have been relevant to tumor type, stage, or survival and miRNAs might be progressed as the markers of diagnosis or prognosis in ccRCC. A growing body of data also advised the rationality of regarding miRNAs as therapeutic targets for ccRCC treatment. In this review, we tried to summarize biogenesis of miRNAs and their expression profiles, biological roles, and clinical implications in ccRCC.
Collapse
Affiliation(s)
- Ying-Hua He
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China.,Department of Pharmacy, Zhejiang International Exchange Center of Clinical Traditional Chinese Medicine, Hangzhou, Zhejiang, China.,Department of Pharmacy, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Chen Chen
- Department of PIVAS, Binhu Hospital of Hefei City, Hefei, Anhui Province, China
| | - Zheng Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China.,Department of Pharmacy, Zhejiang International Exchange Center of Clinical Traditional Chinese Medicine, Hangzhou, Zhejiang, China.,Department of Pharmacy, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Aquino-Jarquin G. Emerging Role of CRISPR/Cas9 Technology for MicroRNAs Editing in Cancer Research. Cancer Res 2017; 77:6812-6817. [PMID: 29208606 DOI: 10.1158/0008-5472.can-17-2142] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/05/2017] [Accepted: 09/21/2017] [Indexed: 11/16/2022]
Abstract
MicroRNAs (miRNA) are small, noncoding RNA molecules with a master role in the regulation of important tasks in different critical processes of cancer pathogenesis. Because there are different miRNAs implicated in all the stages of cancer, for example, functioning as oncogenes, this makes these small molecules suitable targets for cancer diagnosis and therapy. RNA-mediated interference has been one major approach for sequence-specific regulation of gene expression in eukaryotic organisms. Recently, the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 system, first identified in bacteria and archaea as an adaptive immune response to invading genetic material, has been explored as a sequence-specific molecular tool for editing genomic sequences for basic research in life sciences and for therapeutic purposes. There is growing evidence that small noncoding RNAs, including miRNAs, can be targeted by the CRISPR/Cas9 system despite their lacking an open reading frame to evaluate functional loss. Thus, CRISPR/Cas9 technology represents a novel gene-editing strategy with compelling robustness, specificity, and stability for the modification of miRNA expression. Here, I summarize key features of current knowledge of genomic editing by CRISPR/Cas9 technology as a feasible strategy for globally interrogating miRNA gene function and miRNA-based therapeutic intervention. Alternative emerging strategies for nonviral delivery of CRISPR/Cas9 core components into human cells in a clinical context are also analyzed critically. Cancer Res; 77(24); 6812-7. ©2017 AACR.
Collapse
Affiliation(s)
- Guillermo Aquino-Jarquin
- Laboratorio de Investigación en Genómica, Genética y Bioinformática, Torre de Hemato-Oncología, 4to. Piso, Sección II, Hospital Infantil de México, Federico Gómez, Mexico.
| |
Collapse
|