1
|
Lee DH, Han JW, Park H, Hong SJ, Kim CS, Kim YS, Lee IS, Kim GJ. Achyranthis radix Extract Enhances Antioxidant Effect of Placenta-Derived Mesenchymal Stem Cell on Injured Human Ocular Cells. Cells 2024; 13:1229. [PMID: 39056810 PMCID: PMC11274440 DOI: 10.3390/cells13141229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Age-related ocular diseases such as age-related macular degeneration, glaucoma, and diabetic retinopathy are major causes of irreversible vision impairment in the elderly. Conventional treatments focus on symptom relief and disease slowdown, often involving surgery, but fall short of providing a cure, leading to substantial vision loss. Regenerative medicine, particularly mesenchymal stem cells (MSCs), holds promise for ocular disease treatment. This study investigates the synergistic potential of combining placenta-derived MSCs (PD-MSCs) with Achyranthis radix extract (ARE) from Achyranthes japonica to enhance therapeutic outcomes. In a 24-h treatment, ARE significantly increased the proliferative capacity of PD-MSCs and delayed their senescence (* p < 0.05). ARE also enhanced antioxidant capabilities and increased the expression of regeneration-associated genes in an in vitro injured model using chemical damages on human retinal pigment epithelial cell line (ARPE-19) (* p < 0.05). These results suggest that ARE-primed PD-MSC have the capability to enhance the activation of genes associated with regeneration in the injured eye via increasing antioxidant properties. Taken together, these findings support the conclusion that ARE-primed PD-MSC may serve as an enhanced source for stem cell-based therapy in ocular diseases.
Collapse
Affiliation(s)
- Dae-Hyun Lee
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (D.-H.L.); (H.P.); (S.J.H.)
| | - Ji Woong Han
- Advanced PLAB, PLABiologics Co., Ltd., Seongnam 13522, Republic of Korea;
| | - Hyeri Park
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (D.-H.L.); (H.P.); (S.J.H.)
| | - Se Jin Hong
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (D.-H.L.); (H.P.); (S.J.H.)
| | - Chan-Sik Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (C.-S.K.); (Y.S.K.)
| | - Young Sook Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (C.-S.K.); (Y.S.K.)
| | - Ik Soo Lee
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (C.-S.K.); (Y.S.K.)
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (D.-H.L.); (H.P.); (S.J.H.)
| |
Collapse
|
2
|
Xin X, Cheng X, Zeng F, Xu Q, Hou L. The Role of TGF-β/SMAD Signaling in Hepatocellular Carcinoma: from Mechanism to Therapy and Prognosis. Int J Biol Sci 2024; 20:1436-1451. [PMID: 38385079 PMCID: PMC10878151 DOI: 10.7150/ijbs.89568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, with high incidence and mortality, accounting for approximately 90% of liver cancer. The development of HCC is a complex process involving the abnormal activation or inactivation of multiple signaling pathways. Transforming growth factor-β (TGF-β)/Small mothers against decapentaplegic (SMAD) signaling pathway regulates the development of HCC. TGF-β activates intracellular SMADs protein through membrane receptors, resulting in a series of biological cascades. Accumulating studies have demonstrated that TGF-β/SMAD signaling plays multiple regulatory functions in HCC. However, there is still controversy about the role of TGF-β/SMAD in HCC. Because it involves different pathogenic factors, disease stages, and cell microenvironment, as well as upstream and downstream relationships with other signaling pathways. This review will summary the regulatory mechanism of the TGF-β/SMAD signaling pathway in HCC, involving the regulation of different pathogenic factors, different disease stages, different cell populations, microenvironments, and the interaction with microRNAs. In addition, we also introduced small molecule inhibitors, therapeutic vaccines, and traditional Chinese medicine extracts based on targeting the TGF-β/SMAD signaling pathway, which will provide future research direction for HCC therapy targeting the TGF-β/SMAD signaling pathway.
Collapse
Affiliation(s)
- Xin Xin
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Xiyu Cheng
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Fanxin Zeng
- Department of Clinical Research Center, Dazhou Central Hospital, Dazhou, Sichuan province, China
| | - Qing Xu
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Lingling Hou
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, China
| |
Collapse
|
3
|
shan L, xiaotong D, Qiyi W, Jingxian L, Tianmu H, Jianyong Z, Xiaofei L. Mechanisms underlying the activity of paederus in hepatocellular carcinoma: A network pharmacology and in vitro validation approach. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2022; 3:100089. [DOI: 10.1016/j.prmcm.2022.100089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Lu Y, Zhang J, Wu Y. Interference with circRNA DOCK1 inhibits hepatocellular carcinoma cell proliferation, invasion and migration by regulating the miR-654-5p/SMAD2 axis. Mol Med Rep 2021; 24:609. [PMID: 34184075 PMCID: PMC8240177 DOI: 10.3892/mmr.2021.12247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth most common cause of cancer-related death worldwide. The aim of the present study was to discuss the role of circular RNA (circRNA) dedicator of cytokinesis 1 (DOCK1) in HCC and whether it can affect cell proliferation, invasion and migration by regulating the microRNA (miR)-654-5p/SMAD2 axis. The expression levels of circRNA DOCK1, miR-654-5p and SMAD2 mRNA in HCC cells and transfected Hep3b cells were detected by reverse transcription-quantitative PCR analysis. SMAD2 protein expression levels in HCC cells and transfected Hep3b cells were analyzed by western blot analysis. The viability, proliferation, migration and invasion of transfected Hep3b cells was in turn detected by Cell Counting Kit-8, clone formation, wound healing and Transwell assays. The interaction of circRNA DOCK1 and miR-654-5p, miR-654-5p and SMAD2 was confirmed by the dual-luciferase reporter assay. As a result, the expression of circRNA DOCK1 and SMAD2 was increased, and miR-654-5p was decreased in HCC cells. circRNA DOCK1 directly targeted to miR-654-5p and miR-654-5p directly targeted to SMAD2. Interference with circRNA DOCK1 inhibited the proliferation, invasion and migration of HCC cells by upregulating miR-654-5p expression. The effects of circRNA DOCK1 knockdown could be partially reversed by transfection with a miR-654-5p inhibitor and SMAD2 overexpression. In conclusion, interference with circRNA DOCK1 inhibited proliferation, invasion and migration of HCC cells by regulating the miR-654-5p/SMAD2 axis.
Collapse
Affiliation(s)
- Yujuan Lu
- Department of Infectious Diseases, Zibo Central Hospital, Zibo, Shandong 255036, P.R. China
| | - Jingzhi Zhang
- Department of Critical Care Medicine, Zibo Integrated Chinese and Western Medicine Hospital, Zibo, Shandong 255026, P.R. China
| | - Yanhui Wu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
5
|
Tang KY, Du SL, Wang QL, Zhang YF, Song HY. Traditional Chinese medicine targeting cancer stem cells as an alternative treatment for hepatocellular carcinoma. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 18:196-202. [DOI: 10.1016/j.joim.2020.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
|
6
|
Yan H, Sun BM, Zhang YY, Li YJ, Huang CX, Feng FZ, Li C. Upregulation of miR-183-5p is responsible for the promotion of apoptosis and inhibition of the epithelial-mesenchymal transition, proliferation, invasion and migration of human endometrial cancer cells by downregulating Ezrin. Int J Mol Med 2018; 42:2469-2480. [PMID: 30226564 PMCID: PMC6192766 DOI: 10.3892/ijmm.2018.3853] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022] Open
Abstract
Endometrial cancer is a life‑threatening malignancy that affects women all over the world, and it has an increasing incidence. MicroRNAs (miRNAs/miRs) have been reported to be involved in cellular activities in endometrial cancer. The present study aimed to examine the effects of miR‑183‑5p on the epithelial‑mesenchymal transition (EMT), proliferation, invasion, migration and apoptosis of human endometrial cancer cells by targeting Ezrin. Primary endometrial cancer tissues and adjacent normal tissues were obtained for the investigation. The protein expression of Ezrin in tissues was detected by immunohistochemistry. The expression level of miR‑183‑5p and the mRNA and protein expression levels of Ezrin and EMT‑associated genes were determined by reverse transcription‑quantitative polymerase chain reaction and western blot analyses. Endometrial cancer cells were treated with miR‑183‑5p inhibitors, small interfering RNA targeting Ezrin or miR‑183‑5p inhibitors. Cell proliferation, cell cycle, apoptosis, migration and invasion were then evaluated using an MTT assay, flow cytometry, scratch test and Transwell assay, respectively. Compared with normal adjacent tissues, the expression of miR‑183‑5p was decreased in endometrial cancer tissues, and the expression of Ezrin was significantly increased in endometrial cancer tissues. The protein expression of Ezrin was correlated with the severity and poor prognosis of endometrial cancer. Notably, the target prediction program and the luciferase reporter gene assay confirmed that miR‑183‑5p targeted and negatively regulated the expression of Ezrin. In vivo experiments revealed that the increased expression of miR‑183‑5p and decreased expression of Ezrin inhibited EMT, cell proliferation, migration and invasion, but promoted cell apoptosis in Ishikawa cells. These results suggested that the upregulated expression of miR‑183‑5p promoted apoptosis and suppressed the EMT, proliferation, invasion and migration of human endometrial cancer cells by downregulating Ezrin.
Collapse
Affiliation(s)
- Hua Yan
- Department of Obstetrics and Gynecology, Linyi Central Hospital, Linyi, Shandong 276400, P. R. China
| | - Bing-Mei Sun
- Department of Obstetrics and Gynecology, Linyi Central Hospital, Linyi, Shandong 276400, P. R. China
| | - Yu-Ying Zhang
- Department of Obstetrics and Gynecology, Linyi Central Hospital, Linyi, Shandong 276400, P. R. China
| | - Yu-Juan Li
- Department of Obstetrics and Gynecology, Linyi Central Hospital, Linyi, Shandong 276400, P. R. China
| | - Cheng-Xiang Huang
- Department of Obstetrics and Gynecology, Linyi Central Hospital, Linyi, Shandong 276400, P. R. China
| | - Fu-Zhong Feng
- Department of Obstetrics and Gynecology, Linyi Central Hospital, Linyi, Shandong 276400, P. R. China
| | - Cui Li
- Department of Obstetrics and Gynecology, Linyi Central Hospital, Linyi, Shandong 276400, P. R. China
| |
Collapse
|
7
|
Ge Y, Gao Q, Yan F, Zhang X, Liu Y, Zhou Y. Su Yang Decoction induces human colon carcinoma cell apoptosis by activating caspases. Oncol Lett 2018; 17:422-431. [PMID: 30655783 DOI: 10.3892/ol.2018.9625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 07/05/2018] [Indexed: 01/03/2023] Open
Abstract
Su Yang Decoction (SYD) is a popular healthcare product comprised of various brassicaceous vegetables known to exhibit anticancer activity. However, the effects of SYD on tumor growth, following its combination with brassicaceous vegetables into a compound formula, require further investigation. In the present study, a quality control of SYD was subjected to high-performance liquid chromatography for the quantitative and qualitative determination of sulforaphane, the main anticancer component of SYD. SYD inhibited colon cancer cell proliferation in a dose- and time-dependent manner and induced G1 phase arrest in colon cancer HT-29 cell lines. In addition, SYD triggered caspase-mediated apoptosis in a dose-dependent manner and induced the cleavage of poly (ADP-ribose) polymerase, tumor necrosis factor superfamily member 10, X-linked inhibitor of apoptosis, and truncated BH3 interacting domain death agonist. Furthermore, the expression of FADD-like interleukin-1β-converting enzyme (FLICE)-like inhibitory proteins (FLIPs) and long isoform of FLICE-inhibitory protein was reduced by SYD and the direct targeting of cellular-FLIP with small interfering RNA inhibited colon cancer cell proliferation and decreased the SYD concentration required for proliferation inhibition. SYD treatment was also associated with the translocation of proapoptotic BCL2 associated X, apoptosis regulator to the mitochondria and the release of cytochrome c from the mitochondria to the cytosol. The aforementioned results indicate that SYD exerts anti-colorectal cancer effects through an underlying mechanism that may involve caspase activation.
Collapse
Affiliation(s)
- Yazhong Ge
- Department of Healthy Food Development, Infinitus (China) Company Ltd., Guangzhou, Guangdong 510024, P.R. China.,School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510102, P.R. China.,Department of Pharmacology, College of Pharmaceutical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Qing Gao
- Department of Healthy Food Development, Infinitus (China) Company Ltd., Guangzhou, Guangdong 510024, P.R. China.,Department of Pharmacology, College of Pharmaceutical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Fengjiao Yan
- Department of Pharmacology, College of Pharmaceutical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China.,Department of Cardiovascular Medicine, The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaona Zhang
- Department of Pharmacology, College of Pharmaceutical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China.,Department of Pharmacology, The Sixth Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong 510520, P.R. China
| | - Yurong Liu
- Department of Pharmacology, College of Pharmaceutical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Yi Zhou
- Department of Pharmacology, College of Pharmaceutical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| |
Collapse
|
8
|
Ju RJ, Cheng L, Peng XM, Wang T, Li CQ, Song XL, Liu S, Chao JP, Li XT. Octreotide-modified liposomes containing daunorubicin and dihydroartemisinin for treatment of invasive breast cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:616-628. [PMID: 29381101 DOI: 10.1080/21691401.2018.1433187] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tumor invasion is considered a major promoter in the initiation of tumor metastasis, which is supposed to cause most cancer-related deaths. In the present study, octreotide (OCT)-modified daunorubicin plus dihydroartemisinin liposomes were developed and characterized. Evaluations were undertaken on breast cancer MDA-MB-435S cells and MDA-MB-435S xenografts nude mice. The liposomes were ∼100 nm in size with a narrow polydispersity index. In vitro results showed that the OCT-modified daunorubicin plus dihydroartemisinin liposomes could enhance cytotoxicity and cellular uptake by OCT-SSTRs (somatostatin receptors)-mediated active targeting, block on tumor cell wound healing and migration by incorporating dihydroartemisinin. The action mechanism might be related to regulations on E-cadherin, α5β1-integrin, TGF-β1, VEGF and MMP2/9 in breast cancer cells. In vivo, the liposomes displayed a prolonged circulating time, more accumulation in tumor location, and a robust overall antitumor efficacy with no obvious toxicity at the test dose in MDA-MB-435S xenograft mice. In conclusion, the OCT-modified daunorubicin plus dihydroartemisinin liposomes could prevent breast cancer invasion, hence providing a possible strategy for treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Rui-Jun Ju
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China
| | - Lan Cheng
- b School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Xiao-Ming Peng
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China
| | - Teng Wang
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China
| | - Cui-Qing Li
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China
| | - Xiao-Li Song
- b School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Shuang Liu
- b School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Jian-Ping Chao
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China
| | - Xue-Tao Li
- b School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| |
Collapse
|
9
|
Zheng S, Shen H, Jia Q, Jing C, Lin J, Zhang M, Zhang X, Zhang B, Liu Y. S100A6 promotes proliferation of intrahepatic cholangiocarcinoma cells via the activation of the p38/MAPK pathway. Future Oncol 2017; 13:2053-2063. [PMID: 28984474 DOI: 10.2217/fon-2017-0199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: We explored the expression of S100A6 and its role in intrahepatic cholangiocarcinoma (ICC). Methods: The expression of S100A6 in ICC samples was detected by immunohistochemistry. In vitro experiments, we silenced and overexpressed S100A6 to investigate its role in cell functions. Results: The expression of S100A6 was markedly increased in ICC tissues and cell lines. S100A6 overexpression was an independent risk factor for patients’ survival. Silencing S100A6 resulted in a suppression of proliferation and p38/MAPK activity, while overexpressing S100A6 caused a promotion of proliferation and p38/MAPK. Discussion: S100A6 participated in the proliferation of ICC cells and correlated with a more aggressive behavior of ICC. Conclusion: S100A6 may serve as a novel prognostic marker and a potential therapeutic target for ICC patients.
Collapse
Affiliation(s)
- Susu Zheng
- Department of Hepatic Oncology, Liver Cancer Institute & Zhongshan Hospital, Fudan University, Shanghai 20032, PR China
| | - Hujia Shen
- Department of Hepatic Oncology, Liver Cancer Institute & Zhongshan Hospital, Fudan University, Shanghai 20032, PR China
| | - Qingan Jia
- Department of Hepatic Oncology, Liver Cancer Institute & Zhongshan Hospital, Fudan University, Shanghai 20032, PR China
| | - Chuyu Jing
- Department of Hepatic Oncology, Liver Cancer Institute & Zhongshan Hospital, Fudan University, Shanghai 20032, PR China
| | - Jiajia Lin
- Department of Hepatic Oncology, Liver Cancer Institute & Zhongshan Hospital, Fudan University, Shanghai 20032, PR China
| | - Meixia Zhang
- Department of Hepatic Oncology, Liver Cancer Institute & Zhongshan Hospital, Fudan University, Shanghai 20032, PR China
| | - Xiaolei Zhang
- Department of Pathology, Zhongshan hospital, Fudan University, Shanghai 20032, PR China
| | - Boheng Zhang
- Department of Hepatic Oncology, Liver Cancer Institute & Zhongshan Hospital, Fudan University, Shanghai 20032, PR China
| | - Yinkun Liu
- Department of Hepatic Oncology, Liver Cancer Institute & Zhongshan Hospital, Fudan University, Shanghai 20032, PR China
| |
Collapse
|
10
|
Castañón E, Soltermann A, López I, Román M, Ecay M, Collantes M, Redrado M, Baraibar I, López-Picazo JM, Rolfo C, Vidal-Vanaclocha F, Raez L, Weder W, Calvo A, Gil-Bazo I. The inhibitor of differentiation-1 (Id1) enables lung cancer liver colonization through activation of an EMT program in tumor cells and establishment of the pre-metastatic niche. Cancer Lett 2017; 402:43-51. [PMID: 28549790 DOI: 10.1016/j.canlet.2017.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/13/2017] [Accepted: 05/16/2017] [Indexed: 01/29/2023]
Abstract
Id1 promotes carcinogenesis and metastasis, and predicts prognosis of non-small cell lung cancer (NSCLC)-adenocarcionoma patients. We hypothesized that Id1 may play a critical role in lung cancer colonization of the liver by affecting both tumor cells and the microenvironment. Depleted levels of Id1 in LLC (Lewis lung carcinoma cells, LLC shId1) significantly reduced cell proliferation and migration in vitro. Genetic loss of Id1 in the host tissue (Id1-/- mice) impaired liver colonization and increased survival of Id1-/- animals. Histologically, the presence of Id1 in tumor cells of liver metastasis was responsible for liver colonization. Microarray analysis comparing liver tumor nodules from Id1+/+ mice and Id1-/- mice injected with LLC control cells revealed that Id1 loss reduces the levels of EMT-related proteins, such as vimentin. In tissue microarrays containing 532 NSCLC patients' samples, we found that Id1 significantly correlated with vimentin and other EMT-related proteins. Id1 loss decreased the levels of vimentin, integrinβ1, TGFβ1 and snail, both in vitro and in vivo. Therefore, Id1 enables both LLC and the host microenvironment for an effective liver colonization, and may represent a novel therapeutic target to avoid NSCLC liver metastasis.
Collapse
Affiliation(s)
- Eduardo Castañón
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain; Program of Solid Tumors and Biomarkers, Center for Applied Medical Research, Pamplona, Spain
| | - Alex Soltermann
- Institut für Klinische Pathologie, Universitätsspital Zürich, Zürich, Switzerland
| | - Inés López
- Program of Solid Tumors and Biomarkers, Center for Applied Medical Research, Pamplona, Spain
| | - Marta Román
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain; Program of Solid Tumors and Biomarkers, Center for Applied Medical Research, Pamplona, Spain
| | - Margarita Ecay
- Program of Solid Tumors and Biomarkers, Center for Applied Medical Research, Pamplona, Spain
| | - María Collantes
- Program of Solid Tumors and Biomarkers, Center for Applied Medical Research, Pamplona, Spain
| | - Miriam Redrado
- Program of Solid Tumors and Biomarkers, Center for Applied Medical Research, Pamplona, Spain
| | - Iosune Baraibar
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain; Program of Solid Tumors and Biomarkers, Center for Applied Medical Research, Pamplona, Spain
| | | | - Christian Rolfo
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital, Edegem, Belgium
| | - Fernando Vidal-Vanaclocha
- Valencia Institute of Pathology (IVP), Catholic University of Valencia School of Medicine and Odontology, Valencia, Spain
| | - Luis Raez
- Memorial Cancer Institute, Memorial Health Care System, Florida International University, Miami, FL, USA
| | - Walter Weder
- Klinik für Thoraxchirurgie, Universitätsspital Zürich, Zürich, Switzerland
| | - Alfonso Calvo
- Program of Solid Tumors and Biomarkers, Center for Applied Medical Research, Pamplona, Spain
| | - Ignacio Gil-Bazo
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain; Program of Solid Tumors and Biomarkers, Center for Applied Medical Research, Pamplona, Spain; Health Research Institute of Navarra (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain.
| |
Collapse
|