1
|
Rehan IF, Elnagar A, Zigo F, Sayed-Ahmed A, Yamada S. Biomimetic strategies for the deputization of proteoglycan functions. Front Cell Dev Biol 2024; 12:1391769. [PMID: 39170918 PMCID: PMC11337302 DOI: 10.3389/fcell.2024.1391769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024] Open
Abstract
Proteoglycans (PGs), which have glycosaminoglycan chains attached to their protein cores, are essential for maintaining the morphology and function of healthy body tissues. Extracellular PGs perform various functions, classified into the following four categories: i) the modulation of tissue mechanical properties; ii) the regulation and protection of the extracellular matrix; iii) protein sequestration; and iv) the regulation of cell signaling. The depletion of PGs may significantly impair tissue function, encompassing compromised mechanical characteristics and unregulated inflammatory responses. Since PGs play critical roles in the function of healthy tissues and their synthesis is complex, the development of PG mimetic molecules that recapitulate PG functions for tissue engineering and therapeutic applications has attracted the interest of researchers for more than 20 years. These approaches have ranged from semisynthetic graft copolymers to recombinant PG domains produced by cells that have undergone genetic modifications. This review discusses some essential extracellular PG functions and approaches to mimicking these functions.
Collapse
Affiliation(s)
- Ibrahim F. Rehan
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Menoufia University, Shebin Alkom, Egypt
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - Asmaa Elnagar
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - František Zigo
- Department of Animal Nutrition and Husbandry, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Ahmed Sayed-Ahmed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Menoufia University, Shebin Alkom, Egypt
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| |
Collapse
|
2
|
Mousavi SH, Jalili-Nik M, Soukhtanloo M, Soltani A, Abbasinezhad-Moud F, Mollazadeh H, Shakeri F, Bibak B, Sahebkar A, Afshari AR. Auraptene inhibits migration, invasion and metastatic behavior of human malignant glioblastoma cells: An in vitro and in silico study. AVICENNA JOURNAL OF PHYTOMEDICINE 2024; 14:349-364. [PMID: 39086858 PMCID: PMC11287035 DOI: 10.22038/ajp.2023.23586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/30/2023] [Indexed: 08/02/2024]
Abstract
Objective The present work examined the anti-metastatic effects of auraptene and their underlying mechanisms of action in U87 Glioblastoma multiforme (GBM) cells. Materials and Methods To test the hypothesis, cell culture, Matrigel invasion assay, scratch wound healing assay, gelatin zymography assay, qRT-PCR, and western blot experiments were conducted. Results At sublethal concentrations of 12.5 and 25 µg/ml, auraptene exhibited a significant reduction in cell invasion and migration of U87 cells, as assessed using scratch wound healing and Transwell tests, respectively. The qRT-PCR and zymography experiments demonstrated a significant decrease in both mRNA expression and activities of MMP-2 and MMP-9 following auraptene treatment. Western blot analysis also showed that MMP-2 protein level and phosphorylation of metastasis-related proteins (p-JNK and p-mTOR) decreased in auraptene-treated cells. Molecular docking studies consistently demonstrated that auraptene exhibits a significant affinity towards MMP-2/-9, the ATP binding site of mTOR and JNK1/2/3. Conclusion Auraptene inhibited the migration and invasion of GBM cells. This inhibitory effect was induced by modulating specific mechanisms, including suppressing MMPs, JNK, and mTOR activities.
Collapse
Affiliation(s)
- Seyed Hadi Mousavi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Jalili-Nik
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Soltani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Abbasinezhad-Moud
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R. Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
3
|
Wang K, Zhou M, Zhang Y, Jin Y, Xue Y, Mao D, Rui Y. Fibromodulin facilitates the osteogenic effect of Masquelet's induced membrane by inhibiting the TGF-β/SMAD signaling pathway. Biomater Sci 2024; 12:1898-1913. [PMID: 38426394 DOI: 10.1039/d3bm01665j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Masquelet's induced membrane (IM) technique is a promising treatment strategy for the repair of substantial bone defects. The formation of an IM around polymethylmethacrylate bone cement plays a crucial role in this technique. Several studies have indicated that IMs have bioactivity because they contain abundant blood vessels, a variety of cells, and biological factors. The bioactivity of an IM increases during the initial stages of formation, thereby facilitating bone regeneration and remodeling. Nevertheless, the precise mechanisms underlying the enhancement of IM bioactivity and the promotion of bone regeneration necessitate further investigation. In this study, we successfully developed a Masquelet IM model of critical femur defects in rats. By employing proteomics analysis and biological detection techniques, we identified fibromodulin (FMOD) as a pivotal factor contributing to angiogenesis and the enhanced bioactivity of the IM. A significant increase in angiogenesis and the expression of bioactive factors in the IM was also observed with the upregulation of FMOD expression. Furthermore, this effect is mediated through the inhibition of the transforming growth factor beta (TGF-β)/SMAD signaling pathway. We also demonstrated that administering recombinant human FMOD enhanced osteogenesis in rat bone marrow mesenchymal stem cells and angiogenesis in human umbilical vein endothelial cells in vitro. Furthermore, the negative regulatory effect of the TGF-β signaling pathway was verified. In conclusion, this study provides a novel theoretical basis for the application of IMs in bone-defect reconstruction and explores possible new mechanisms that may play an important role in promoting the bioactivity and osteogenic potential of IMs.
Collapse
Affiliation(s)
- Kai Wang
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214062, China.
- Suzhou Medical College of Soochow University, Suzhou, 215031, China
| | - Ming Zhou
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214062, China.
- Suzhou Medical College of Soochow University, Suzhou, 215031, China
| | - Yuanshu Zhang
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214062, China.
| | - Yesheng Jin
- Suzhou Medical College of Soochow University, Suzhou, 215031, China
| | - Yuan Xue
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214062, China.
| | - Dong Mao
- Orthopaedic Institute, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| | - Yongjun Rui
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214062, China.
| |
Collapse
|
4
|
Yu TY, Zhang G, Chai XX, Ren L, Yin DC, Zhang CY. Recent progress on the effect of extracellular matrix on occurrence and progression of breast cancer. Life Sci 2023; 332:122084. [PMID: 37716504 DOI: 10.1016/j.lfs.2023.122084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Breast cancer (BC) metastasis is an enormous challenge targeting BC therapy. The extracellular matrix (ECM), the principal component of the BC metastasis niche, is the pivotal driver of breast tumor development, whose biochemical and biophysical characteristics have attracted widespread attention. Here, we review the biological effects of ECM constituents and the influence of ECM stiffness on BC metastasis and drug resistance. We provide an overview of the relative signal transduction mechanisms, existing metastasis models, and targeted drug strategies centered around ECM stiffness. It will shed light on exploring more underlying targets and developing specific drugs aimed at ECM utilizing biomimetic platforms, which are promising for breast cancer treatment.
Collapse
Affiliation(s)
- Tong-Yao Yu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China
| | - Ge Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China
| | - Xiao-Xia Chai
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China
| | - Li Ren
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China; Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, Zhejiang, PR China
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China.
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China.
| |
Collapse
|
5
|
Abstract
Fibromodulin (FMOD) is an archetypal member of the class II small leucine-rich proteoglycan family. By directly binding to extracellular matrix structural components, such as collagen and lysyl oxidase, FMOD regulates collagen cross-linking, packing, assembly, and fibril architecture via a multivalent interaction. Meanwhile, as a pluripotent molecule, FMOD acts as a ligand of various cytokines and growth factors, especially those belonging to the transforming growth factor (TGF) β superfamily, by interacting with the corresponding signaling molecules involved in cell adhesion, spreading, proliferation, migration, invasion, differentiation, and metastasis. Consequently, FMOD exhibits promigratory, proangiogenic, anti-inflammatory, and antifibrogenic properties and plays essential roles in cell fate determination and maturation, progenitor cell recruitment, and tissue regeneration. The multifunctional nature of FMOD thus enables it to be a promising therapeutic agent for a broad repertoire of diseases, including but not limited to arthritis, temporomandibular joint disorders, caries, and fibrotic diseases among different organs, as well as to be a regenerative medicine candidate for skin, muscle, and tendon injuries. Moreover, FMOD is also considered a marker for tumor diagnosis and prognosis prediction and a potential target for cancer treatment. Furthermore, FMOD itself is sufficient to reprogram somatic cells into a multipotent state, creating a safe and efficient cell source for various tissue reconstructions and thus opening a new avenue for regenerative medicine. This review focuses on the recent preclinical efforts bringing FMOD research and therapies to the forefront. In addition, a contemporary understanding of the mechanism underlying FMOD's function, particularly its interaction with TGFβ superfamily members, is also discussed at the molecular level to aid the discovery of novel FMOD-based treatments.
Collapse
Affiliation(s)
- Z. Zheng
- David Geffen School of Medicine,
University of California, Los Angeles, CA, USA
- School of Dentistry, University of
California, Los Angeles, CA, USA
| | - H.S. Granado
- Department of Orthodontics, School of
Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - C. Li
- Department of Orthodontics, School of
Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
6
|
Kizhakkeppurath Kumaran A, Sahu A, Singh A, Aynikkattil Ravindran N, Sekhar Chatterjee N, Mathew S, Verma S. Proteoglycans in breast cancer, identification and characterization by LC-MS/MS assisted proteomics approach: A review. Proteomics Clin Appl 2023:e2200046. [PMID: 36598116 DOI: 10.1002/prca.202200046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 11/24/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
PURPOSE Proteoglycans (PGs) are negatively charged macromolecules containing a core protein and single or several glycosaminoglycan chains attached by covalent bond. They are distributed in all tissues, including extracellular matrix (ECM), cell surface, and basement membrane. They are involved in major pathways and cell signalling cascades which modulate several vital physiological functions of the body. They have also emerged as a target molecule for cancer treatment and as possible biomarkers for early cancer detection. Among cancers, breast cancer is a highly invasive and heterogenous type and has become the major cause of mortality especially among women. So, this review revisits the studies on PGs characterization in breast cancer using LC-MS/MS-based proteomics approach, which will be further helpful for identification of potential PGs-based biomarkers or therapeutic targets. EXPERIMENTAL DESIGN There is a lack of comprehensive knowledge on the use of LC-MS/MS-based proteomics approaches to identify and characterize PGs in breast cancer. RESULTS LC-MS/MS assisted PGs characterization in breast cancer revealed the vital PGs in breast cancer invasion and progression. In addition, comprehensive profiling and characterization of PGs in breast cancer are efficiently carried out by this approach. CONCLUSIONS Proteomics techniques including LC-MS/MS-based identification of proteoglycans is effectively carried out in breast cancer research. Identification of expression at different stages of breast cancer is a major challenge, and LC-MS/MS-based profiling of PGs can boost novel strategies to treat breast cancer, which involve targeting PGs, and also aid early diagnosis using PGs as biomarkers.
Collapse
Affiliation(s)
| | - Ankita Sahu
- Tumor Biology Lab, ICMR-National Institute of Pathology, New Delhi, India
| | - Astha Singh
- Tumor Biology Lab, ICMR-National Institute of Pathology, New Delhi, India
| | - Nisha Aynikkattil Ravindran
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Thrissur, India
| | | | - Suseela Mathew
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Kochi, India
| | - Saurabh Verma
- Tumor Biology Lab, ICMR-National Institute of Pathology, New Delhi, India
| |
Collapse
|
7
|
A novel ADC targeting cell surface fibromodulin in a mouse model of triple-negative breast cancer. Breast Cancer 2022; 29:1121-1132. [PMID: 35982394 DOI: 10.1007/s12282-022-01393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/25/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Triple-negative breast cancers (TNBCs) are highly aggressive and metastatic. To date, finding efficacious targeted therapy molecules might be the only window of hope to cure cancer. Fibromodulin (FMOD), is ectopically highly expressed on the surface of Chronic Lymphocytic Leukemia (CLL) and bladder carcinoma cells; thus, it could be a promising molecule for targeted therapy of cancer. The objective of this study was to evaluate cell surface expression of FMOD in two TNBC cell lines and develop an antibody-drug conjugate (ADC) to target FMOD positive TNBC in vitro and in vivo. MATERIALS AND METHODS Two TNBC-derived cell lines 4T1 and MDA-MB-231 were used in this study. The specific binding of anti-FMOD monoclonal antibody (mAb) was evaluated by flow cytometry and its internalization was verified using phAb amine reactive dye. A microtubulin inhibitor Mertansine (DM1) was used for conjugation to anti-FMOD mAb. The binding efficacy of FMOD-ADC was assessed by immunocytochemistry technique. The anti-FMOD mAb and FMOD-ADC apoptosis induction were measured using Annexin V-FITC and flow cytometry. Tumor growth inhibition of anti-FMOD mAb and FMOD-ADC was evaluated using BALB/c mice injected with 4T1 cells. RESULTS Our results indicate that both anti-FMOD mAb and FMOD-ADC recognize cell surface FMOD molecules. FMOD-ADC could induce apoptosis in 4T1 and MDA-MB-231 cells in vitro. In vivo tumor growth inhibition was observed using FMOD-ADC in 4T1 inoculated BALB/c mice. CONCLUSION Our results suggests high cell surface FMOD expression could be a novel bio-marker TNBCs. Furthermore, FMOD-ADC could be a promising candidate for targeting TNBCs.
Collapse
|
8
|
Wiechec E, Magan M, Matic N, Ansell-Schultz A, Kankainen M, Monni O, Johansson AC, Roberg K. Cancer-Associated Fibroblasts Modulate Transcriptional Signatures Involved in Proliferation, Differentiation and Metastasis in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13133361. [PMID: 34283070 PMCID: PMC8269044 DOI: 10.3390/cancers13133361] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/21/2021] [Accepted: 06/30/2021] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cancer-associated fibroblasts (CAFs) are the major cellular component of the tumor microenvironment and have been shown to stimulate tumor growth, epithelial-to-mesenchymal transition (EMT), invasion, and radio-resistance. Radio-resistance leading to disease relapse is one of the major challenges in long-term survival and outcome in head and neck squamous cell carcinoma (HNSCC). Therefore, it is essential to search for predictive markers and new targets for treatment using clinically relevant in vitro tumor models. We show that CAFs alter the expression of HNSCC tumor cell genes, many of which are associated with proliferation, differentiation, and metastasis. Moreover, the expression pattern of selected CAF-regulated genes differed between HNSCC tumor tissue and the adjacent non-tumoral tissue. Two CAF-regulated genes, MMP9 and FMOD, were found to be associated with overall survival (OS) in patients treated with radiotherapy. Abstract Cancer-associated fibroblasts (CAFs) are known to increase tumor growth and to stimulate invasion and metastasis. Increasing evidence suggests that CAFs mediate response to various treatments. HNSCC cell lines were co-cultured with their patient-matched CAFs in 2D and 3D in vitro models, and the tumor cell gene expression profiles were investigated by cDNA microarray and qRT-PCR. The mRNA expression of eight candidate genes was examined in tumor biopsies from 32 HNSCC patients and in five biopsies from normal oral tissue. Differences in overall survival (OS) were tested with Kaplan–Meier long-rank analysis. Thirteen protein coding genes were found to be differentially expressed in tumor cells co-cultured with CAFs in 2D and 81 in 3D when compared to tumor cells cultured without CAFs. Six of these genes were upregulated both in 2D and 3D (POSTN, GREM1, BGN, COL1A2, COL6A3, and COL1A1). Moreover, two genes upregulated in 3D, MMP9 and FMOD, were significantly associated with the OS. In conclusion, we demonstrated in vitro that CAF-derived signals alter the tumor cell expression of multiple genes, several of which are associated with differentiation, epithelial-to-mesenchymal transition (EMT) phenotype, and metastasis. Moreover, six of the most highly upregulated genes were found to be overexpressed in tumor tissue compared to normal tissue.
Collapse
Affiliation(s)
- Emilia Wiechec
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (E.W.); (M.M.); (N.M.); (A.A.-S.); (A.-C.J.)
| | - Mustafa Magan
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (E.W.); (M.M.); (N.M.); (A.A.-S.); (A.-C.J.)
| | - Natasa Matic
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (E.W.); (M.M.); (N.M.); (A.A.-S.); (A.-C.J.)
- Department of Otorhinolaryngology in Linköping, Anesthetics, Operations and Specialty Surgery Center, Region Östergötland, 58185 Linköping, Sweden
| | - Anna Ansell-Schultz
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (E.W.); (M.M.); (N.M.); (A.A.-S.); (A.-C.J.)
| | - Matti Kankainen
- Translational Immunology Research Program and Department of Clinical Chemistry, University of Helsinki, 00290 Helsinki, Finland;
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki University Hospital, 00029 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland;
| | - Outi Monni
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland;
- Applied Tumor Genomics Research Program and Department of Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Ann-Charlotte Johansson
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (E.W.); (M.M.); (N.M.); (A.A.-S.); (A.-C.J.)
| | - Karin Roberg
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; (E.W.); (M.M.); (N.M.); (A.A.-S.); (A.-C.J.)
- Department of Otorhinolaryngology in Linköping, Anesthetics, Operations and Specialty Surgery Center, Region Östergötland, 58185 Linköping, Sweden
- Correspondence: ; Tel.: +46-10-1031534
| |
Collapse
|
9
|
Zeng-Brouwers J, Pandey S, Trebicka J, Wygrecka M, Schaefer L. Communications via the Small Leucine-rich Proteoglycans: Molecular Specificity in Inflammation and Autoimmune Diseases. J Histochem Cytochem 2020; 68:887-906. [PMID: 32623933 PMCID: PMC7708667 DOI: 10.1369/0022155420930303] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammation is a highly regulated biological response of the immune system that is triggered by assaulting pathogens or endogenous alarmins. It is now well established that some soluble extracellular matrix constituents, such as small leucine-rich proteoglycans (SLRPs), can act as danger signals and trigger aseptic inflammation by interacting with innate immune receptors. SLRP inflammatory signaling cascade goes far beyond its canonical function. By choosing specific innate immune receptors, coreceptors, and adaptor molecules, SLRPs promote a switch between pro- and anti-inflammatory signaling, thereby determining disease resolution or chronification. Moreover, by orchestrating signaling through various receptors, SLRPs fine-tune inflammation and, despite their structural homology, regulate inflammatory processes in a molecule-specific manner. Hence, the overarching theme of this review is to highlight the molecular and functional specificity of biglycan-, decorin-, lumican-, and fibromodulin-mediated signaling in inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Jinyang Zeng-Brouwers
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Sony Pandey
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Jonel Trebicka
- Translational Hepatology, Department of Internal Medicine I, University Clinic Frankfurt, Frankfurt, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
- German Center for Lung Research, Giessen, Germany
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
10
|
Clegg J, Koch MK, Thompson EW, Haupt LM, Kalita-de Croft P, Bray LJ. Three-Dimensional Models as a New Frontier for Studying the Role of Proteoglycans in the Normal and Malignant Breast Microenvironment. Front Cell Dev Biol 2020; 8:569454. [PMID: 33163489 PMCID: PMC7581852 DOI: 10.3389/fcell.2020.569454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/15/2020] [Indexed: 12/24/2022] Open
Abstract
The extracellular matrix (ECM) provides cues to direct mammogenesis, tumourigenesis and metastatic processes. Over the past several decades, two-dimensional (2D) culture models have been invaluable in furthering our understanding of the tumor microenvironment (TME), however, they still do not accurately emulate the associated biological complexities. In contrast, three-dimensional (3D) culture models provide a more physiologically relevant platform to study relevant physicochemical signals, stromal-epithelial cell interactions, vascular and immune components, and cell-ECM interactions in the human breast microenvironment. A common thread that may weave these multiple interactions are the proteoglycans (PGs), a prominent family of molecules in breast tissue. This review will discuss how these PGs contribute to the breast cancer TME and provide a summary of the traditional and emerging technologies that have been utilized to better understand the role of PGs during malignant transformation. Furthermore, this review will emphasize the differences that PGs exhibit between normal tissues and tumor ECM, providing a rationale for the investigation of underexplored roles of PGs in breast cancer progression using state-of-the-art 3D culture models.
Collapse
Affiliation(s)
- Julien Clegg
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Maria K Koch
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia
| | - Larisa M Haupt
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,Centre for Genomics and Personalized Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Priyakshi Kalita-de Croft
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Herston, QLD, Australia
| | - Laura J Bray
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia.,Faculty of Science and Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Yin H, Cui C, Han S, Chen Y, Zhao J, He H, Li D, Zhu Q. Fibromodulin Modulates Chicken Skeletal Muscle Development via the Transforming Growth Factor-β Signaling Pathway. Animals (Basel) 2020; 10:ani10091477. [PMID: 32842630 PMCID: PMC7552301 DOI: 10.3390/ani10091477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Fibromodulin (Fmod) plays critical roles in skeletal muscle development and maintenance, but the roles of Fmod in skeletal muscle atrophy and development in chickens are unclear. Here, we demonstrate that Fmod plays important roles in the differentiation and atrophy of chicken skeletal muscle by regulating the transforming growth factor-β signaling pathway. These results suggest that Fmod plays important roles in skeletal muscle growth and development in chickens. Abstract Fibromodulin (Fmod), which is an extracellular matrix protein, belongs to the extracellular matrix small-leucine-rich proteoglycan family. Fmod is abundantly expressed in muscles and connective tissues and is involved in biological regulation processes, including cell apoptosis, cell adhesion, and modulation of cytokine activity. Fmod is the main regulator of myostatin, which controls the development of muscle cells, but its regulatory path is unknown. Chicken models are ideal for studying embryonic skeletal muscle development; therefore, to investigate the mechanism of Fmod in muscle development, Fmod-silenced and Fmod-overexpressed chicken myoblasts were constructed. The results showed that Fmod plays a positive role in differentiation by detecting the expression of myogenic differentiation markers, immunofluorescence of MyHC protein, and myotube formation in myoblasts. Fmod regulates expression of atrophy-related genes to alleviate muscle atrophy, which was confirmed by histological analysis of breast muscles in Fmod-modulated chicks in vivo. Additionally, genes differentially expressed between Fmod knockdown and normal myoblasts were enriched in the signaling pathway of transforming growth factor β (TGF-β). Both Fmod-silenced and Fmod-overexpressed myoblasts regulated the expression of TGFBR1 and p-Smad3. Thus, Fmod can promote differentiation but not proliferation of myoblasts by regulating the TGF-β signaling pathway, which may serve a function in muscular atrophy.
Collapse
|
12
|
Impact of Decorin on the Physical Function and Prognosis of Patients with Hepatocellular Carcinoma. J Clin Med 2020; 9:jcm9040936. [PMID: 32231160 PMCID: PMC7230715 DOI: 10.3390/jcm9040936] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022] Open
Abstract
The outcome of patients with hepatocellular carcinoma (HCC) is still poor. Decorin is a small leucine-rich proteoglycan, which exerts antiproliferative and antiangiogenic properties in vitro. We aimed to investigate the associations of decorin with physical function and prognosis in patients with HCC. We enrolled 65 patients with HCC treated with transcatheter arterial chemoembolization (median age, 75 years; female/male, 25/40). Serum decorin levels were measured using enzyme-linked immunosorbent assays; patients were classified into the High or Low decorin groups by median levels. Associations of decorin with physical function and prognosis were evaluated by multivariate correlation and Cox regression analyses, respectively. Age and skeletal muscle indices were not significantly different between the High and Low decorin groups. In the High decorin group, the 6-min walking distance was significantly longer than the Low decorin group and was significantly correlated with serum decorin levels (r = 0.2927, p = 0.0353). In multivariate analysis, the High decorin group was independently associated with overall survival (hazard ratio 2.808, 95% confidence interval 1.016–8.018, p = 0.0498). In the High decorin group, overall survival rate was significantly higher than in the Low decorin group (median 732 days vs. 463 days, p = 0.010). In conclusion, decorin may be associated with physical function and prognosis in patients with HCC.
Collapse
|
13
|
Walimbe T, Panitch A. Proteoglycans in Biomedicine: Resurgence of an Underexploited Class of ECM Molecules. Front Pharmacol 2020; 10:1661. [PMID: 32082161 PMCID: PMC7000921 DOI: 10.3389/fphar.2019.01661] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/18/2019] [Indexed: 01/02/2023] Open
Abstract
Proteoglycans have emerged as biomacromolecules with important roles in matrix remodeling, homeostasis, and signaling in the past two decades. Due to their negatively charged glycosaminoglycan chains as well as distinct core protein structures, they interact with a variety of molecules, including matrix proteins, growth factors, cytokines and chemokines, pathogens, and enzymes. This led to the dawn of glycan therapies in the 20th century, but this research was quickly overshadowed by readily available DNA and protein-based therapies. The recent development of recombinant technology and advances in our understanding of proteoglycan function have led to a resurgence of these molecules as potential therapeutics. This review focuses on the recent preclinical efforts that are bringing proteoglycan research and therapies back to the forefront. Examples of studies using proteoglycan cores and mimetics have also been included to give the readers a perspective on the wide-ranging and extensive applications of these versatile molecules. Collectively, these advances are opening new avenues for targeting diseases at a molecular level, and providing avenues for the development of new and exciting treatments in regenerative medicine.
Collapse
Affiliation(s)
- Tanaya Walimbe
- Laboratory of Engineered Therapeutics, Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Alyssa Panitch
- Laboratory of Engineered Therapeutics, Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| |
Collapse
|
14
|
Khan FU, Owusu-Tieku NYG, Dai X, Liu K, Wu Y, Tsai HI, Chen H, Sun C, Huang L. Wnt/β-Catenin Pathway-Regulated Fibromodulin Expression Is Crucial for Breast Cancer Metastasis and Inhibited by Aspirin. Front Pharmacol 2019; 10:1308. [PMID: 31824307 PMCID: PMC6886402 DOI: 10.3389/fphar.2019.01308] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 10/15/2019] [Indexed: 01/08/2023] Open
Abstract
Emerging evidence suggests that fibromodulin (FMOD), an extracellular matrix protein, is associated with cancer, and yet little is known about the regulation of FMOD expression and its role in cancer metastasis. Aspirin, a classic anti-inflammatory drug, has been indicated to offer anticancer benefits, but its action targets and mechanisms remain obscure. In the present study using cell lines, animal model and database analysis, we show that FMOD is crucial for breast cancer cell migration and invasion (BCCMI) via activation of ERK; expression of FMOD is regulated positively by the Wnt/β-catenin pathway, wherein the β-catenin/TCF4/LEF1 complex binds the FMOD promoter to transcribe FMOD. Aspirin inhibits BCCMI by attenuating Wnt/β-catenin signaling and suppressing FMOD expression via inhibiting deacetylation of β-catenin by histone deacetylase 6 (HDAC6) leading to β-catenin phosphorylation and cytoplasmic degradation. Moreover, expression of the transcriptional complex components β-catenin/TCF4/LEF1 is upregulated by the Wnt/β-catenin pathway, constituting positive feedback loops that amplify its signal output. Our findings identify a critical role of FMOD in cancer metastasis, reveal a mechanism regulating FMOD transcription and impacting tumor metastasis, uncover action targets and mechanism for the anticancer activity of Aspirin, and expand the understanding of the Wnt/β-catenin pathway and tumor metastasis, which are valuable for development of cancer therapeutics.
Collapse
Affiliation(s)
- Fahim Ullah Khan
- School of Life Sciences, Tsinghua University, Beijing, China.,Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Chemical Oncogenomics, State Key Laboratory of Health Sciences and Technology (prep), Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Nana Yaa Gyaama Owusu-Tieku
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen, China
| | - Xiaoyong Dai
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen, China
| | - Kewei Liu
- School of Life Sciences, Tsinghua University, Beijing, China.,Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Chemical Oncogenomics, State Key Laboratory of Health Sciences and Technology (prep), Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Yanping Wu
- School of Life Sciences, Tsinghua University, Beijing, China.,Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Chemical Oncogenomics, State Key Laboratory of Health Sciences and Technology (prep), Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Hsiang-I Tsai
- School of Life Sciences, Tsinghua University, Beijing, China.,Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Chemical Oncogenomics, State Key Laboratory of Health Sciences and Technology (prep), Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Hongbo Chen
- School of Life Sciences, Tsinghua University, Beijing, China.,Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Chemical Oncogenomics, State Key Laboratory of Health Sciences and Technology (prep), Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Chunhui Sun
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen, China
| | - Laiqiang Huang
- School of Life Sciences, Tsinghua University, Beijing, China.,Shenzhen Key Laboratory of Gene and Antibody Therapy, Center for Biotechnology and Biomedicine, State Key Laboratory of Chemical Oncogenomics, State Key Laboratory of Health Sciences and Technology (prep), Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.,Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Shenzhen, China
| |
Collapse
|
15
|
Pourhanifeh MH, Mohammadi R, Noruzi S, Hosseini SA, Fanoudi S, Mohamadi Y, Hashemzehi M, Asemi Z, Mirzaei HR, Salarinia R, Mirzaei H. The role of fibromodulin in cancer pathogenesis: implications for diagnosis and therapy. Cancer Cell Int 2019; 19:157. [PMID: 31198406 PMCID: PMC6558739 DOI: 10.1186/s12935-019-0870-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/27/2019] [Indexed: 01/09/2023] Open
Abstract
Fibromodulin (FMOD) is known as one of very important extracellular matrix small leucine-rich proteoglycans. This small leucine-rich proteoglycan has critical roles in the extracellular matrix organization and necessary for repairing of tissue in many organs. Given that the major task of FMOD is the modulation of collagen fibrillogenesis. However, recently observed that FMOD plays very important roles in the modulation of a variety of pivotal biological processes including angiogenesis, regulation of TGF-β activity, and differentiation of human fibroblasts into pluripotent cells, inflammatory mechanisms, apoptosis and metastatic related phenotypes. Besides these roles, FMOD has been considered as a new tumor-related antigen in some malignancies such as lymphoma, leukemia, and leiomyoma. Taken together, these findings proposed that FMOD could be introduced as diagnostic and therapeutic biomarkers in treatment of various cancers. Herein, for first time, we highlighted the various roles of FMOD in the cancerous conditions. Moreover, we summarized the diagnostic and therapeutic applications of FMOD in cancer therapy.
Collapse
Affiliation(s)
- Mohammad Hossein Pourhanifeh
- 1Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Rezvan Mohammadi
- 2Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Somaye Noruzi
- 2Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyede Atefe Hosseini
- 2Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sahar Fanoudi
- 3Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yousef Mohamadi
- 4Department of Anatomy, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Milad Hashemzehi
- Iranshahr University of Medical Sciences, Iranshahr, Iran.,6Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zatollah Asemi
- 1Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Mirzaei
- 7Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Salarinia
- 2Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamed Mirzaei
- 1Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
16
|
Farahi L, Ghaemimanesh F, Milani S, Razavi SM, Bayat AA, Rabbani H, Akhondi MM. Monoclonal and Polyclonal Antibodies Specific to Human Fibromodulin. IRANIAN JOURNAL OF BIOTECHNOLOGY 2019; 17:e2277. [PMID: 31457049 PMCID: PMC6697857 DOI: 10.21859/ijb.2277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background The unique expression of fibromodulin (FMOD) in patients with chronic lymphocytic leukemia (CLL) has been previously reported. Detecting FMOD in CLL patients using specific anti-FMOD mAbs might provide a promising method in detection, monitoring, and prognosis of CLL. Objectives In this study, we aimed for producing specific antibodies against FMOD to facilitate further cohort study of CLL, thus addressing FMOD as a potential target of detection. Materials and Methods Human FMOD gene (1087 bp) was extracted from genome of the CLL patients, and was cloned into the expression vector of pET-22b (+). The recombinant FMOD protein (rFMOD) was expressed in Escherichia coli. The purified rFMOD protein was used as an immunogen in rabbit and mice. Hybridoma technology was used to develop the monoclonal antibodies (mAbs). Polyclonal antibody (pAb) was purified from the rabbit sera using affinity column. The reactivity of anti-FMOD antibodies was assessed in ELISA, immunocytochemistry (ICC) and Western blot. Results ICC results showed that the anti-FMOD antibodies specifically detected FMOD in CLL PBMCs and cell lines. The developed anti-FMOD pAb detected FMOD in CLL lysates, compared to healthy PBMCs, in Western blot and ELISA. Conclusions The developed anti-FMOD mAbs, and pAb specifically detect FMOD in CLL samples and might be used as research tools for further investigations in CLL.
Collapse
Affiliation(s)
- Lia Farahi
- Monoclonal Antibody Research Center, Avicenna Research Institute (ACECR), Tehran, Iran
| | - Fatemeh Ghaemimanesh
- Monoclonal Antibody Research Center, Avicenna Research Institute (ACECR), Tehran, Iran
| | - Saeideh Milani
- Monoclonal Antibody Research Center, Avicenna Research Institute (ACECR), Tehran, Iran
| | - Seyed Mohsen Razavi
- Clinic of Hematology and Oncology, Firoozgar Hospital, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Ahmad Bayat
- Monoclonal Antibody Research Center, Avicenna Research Institute (ACECR), Tehran, Iran
| | - Hodjattallah Rabbani
- Monoclonal Antibody Research Center, Avicenna Research Institute (ACECR), Tehran, Iran
| | | |
Collapse
|
17
|
Yu Q, Xin K, Miao Y, Li Z, Fu S, Hu S, Zhang Q, Zhou S. Anti-tumor responses to hypofractionated radiation in mice grafted with triple negative breast cancer is associated with decorin induction in peritumoral muscles. Acta Biochim Biophys Sin (Shanghai) 2018; 50:1150-1157. [PMID: 30124739 DOI: 10.1093/abbs/gmy094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Indexed: 01/11/2023] Open
Abstract
Triple negative breast cancer (TNBC) is the most lethal one for all types of breast cancer. Though radiotherapy is an efficient treatment, long-term survival rate of TNBC patients is still suboptimal. Hyprofractionated radiotherapy, an improved radiotherapy, has made an inspiring result in clinic. However, the mechanism underlying TNBC treated with hyprofractionated radiotherapy is not clear. Decorin (DCN) is a small poteoglycan of matrix which has an inhibitory effect on the breast cancer and is secreted by muscle under certain conditions. In this study, we demonstrated that peritumoral muscles secrete more DCN at higher dose irradiation than that at conventional irradiation dose in TNBC tumor-bearing mice. Thus, it indicates that DCN secreted from peritumoral muscle may be one of the reasons why hyprofractionated radiotherapy could inhibit the growth of TNBC more effectively. Moreover, we also indicated that the up-regulated DCN attenuated lung metastasis of TNBC. In conclusion, we demonstrated that hypofractionated radiation promotes the secretion of DCN in peritumoral muscle, thus enhancing the inhibitory effect on TNBC, which might help to optimize the strategy of radiotherapy for TNBC patients in the future.
Collapse
Affiliation(s)
- Qi Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kedao Xin
- Department of Radiation Oncology, Suzhou Science and Technology Town Hospital, Suzhou, China
- Department of Radiation Oncology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yu Miao
- Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Zhaobin Li
- Department of Radiation Oncology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Shen Fu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shudong Hu
- Department of Radiology, The Affiliated of Renmin Hospital, Jiangsu University, Zhenjiang, China
| | - Qing Zhang
- Department of Radiation Oncology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Shumin Zhou
- Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
18
|
Sainio AO, Järveläinen HT. Decorin-mediated oncosuppression - a potential future adjuvant therapy for human epithelial cancers. Br J Pharmacol 2018; 176:5-15. [PMID: 29488209 PMCID: PMC6284329 DOI: 10.1111/bph.14180] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/24/2022] Open
Abstract
Currently, the multifaceted role of the extracellular matrix (ECM) in tumourigenesis has been realized. One ECM macromolecule exhibiting potent oncosuppressive actions in tumourigenesis is decorin, the prototype of the small leucine-rich proteoglycan gene family. The actions of decorin include its ability to function as an endogenous pan-receptor tyrosine kinase inhibitor, a regulator of both autophagy and mitophagy, as well as a modulator of the immune system. In this review, we will discuss these topics in more detail. We also provide a summary of preclinical studies exploring the value of decorin-mediated oncosuppression, as a potential future adjuvant therapy for epithelial cancers. LINKED ARTICLES: This article is part of a themed section on Translating the Matrix. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.1/issuetoc.
Collapse
Affiliation(s)
- Annele Orvokki Sainio
- Institute of Biomedicine, Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Hannu Tapio Järveläinen
- Institute of Biomedicine, Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.,Department of Internal Medicine, Satakunta Central Hospital, Sairaalantie 3, 28500, Pori, Finland
| |
Collapse
|
19
|
Chen C, Feng ZY, Jiang GQ, Gu YL, Jin K, Chu DM. TGF-β1 gene silencing can enhances the sensitivity of breast cancer to cisplatin partially by restraining the occurrence of EMT. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:10751-10758. [PMID: 31966418 PMCID: PMC6965821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/17/2017] [Indexed: 06/10/2023]
Abstract
Breast cancer is one of the most common gynecological malignant tumors, the main reason of treatment failure is distant metastasis and local recurrence. TGF-β1 as a versatile polypeptide molecule plays an important role in inducing EMT to promote tumor invasion and metastasis. This study aims to investigate the effect of TGF-β1 on cisplatin (DDP) inhibiting the proliferation, migration and invasion of breast cancer and its correlation with EMT. TGF-β1 siRNA were transfected into MCF-7 cells. The cell morphology, proliferation, migration and invasion ability changes were detected by inverted microscope, clone formation assay, cell adhesion assay and Transwell Chamber Invasion. The expression of E-cadherin, vimentin, α-SMA were detected by Western blot. The results showed that TGF-β1 siRNA were transfected into MCF-7 cells successfully (P<0.05). The inhibitory activity of cisplatin on cell proliferation, migration and invasion of breast cancer were significantly enhanced after TGF-β1 siRNA transfection (P<0.05). The expression of E-cadherin was up-regulated, and vimentin and α-SMA were down-regulated with TGF-β1 siRNA transfection (P<0.05). Therefore, we concluded that TGF-β1 gene silencing can enhance the sensitivity of breast cancer to cisplatin on proliferation, migration and invasion partially by restraining the occurrence of EMT.
Collapse
Affiliation(s)
- Chao Chen
- Department of General Surgery, Changshu No.2 People’s HospitalChangshu, China
| | - Zhen-Yu Feng
- Department of General Surgery, The Second Hospital of Suzhou UniversitySuzhou, China
| | - Guo-Qin Jiang
- Department of General Surgery, The Second Hospital of Suzhou UniversitySuzhou, China
| | - Yan-Lin Gu
- Department of General Surgery, The Second Hospital of Suzhou UniversitySuzhou, China
| | - Ke Jin
- Department of General Surgery, Changshu No.2 People’s HospitalChangshu, China
| | - Dong-Ming Chu
- Department of General Surgery, Changshu Dong-Ming HospitalChangshu, China
| |
Collapse
|