1
|
Rahimi-Moghaddam A, Ghorbanmehr N, Gharbi S, Nili F, Korsching E. Interplay of miR-542, miR-126, miR-143 and miR-26b with PI3K-Akt is a Diagnostic Signal and Putative Regulatory Target in HPV-Positive Cervical Cancer. Biochem Genet 2024:10.1007/s10528-024-10837-y. [PMID: 38849709 DOI: 10.1007/s10528-024-10837-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/09/2024] [Indexed: 06/09/2024]
Abstract
Human papillomavirus accounts for 99.7% of all cervical cancer cases worldwide. The viral oncoproteins alter normal cell signaling and gene expression, resulting in loss of cell cycle control and cancer development. Also, microRNAs (miRNAs) have been reported to play a critical role in cervical carcinogenesis. Especially these are not only appropriate targets for therapeutic intervention in cervical cancer but also early diagnostic signals. The given study tries to improve the sparse knowledge on miRNAs and their role in this physiological context. Deregulated miRNAs were identified by analyzing the raw data of the well-founded GSE20592 dataset including 16 tumor/normal pairs of human cervical tissue samples. The dataset was quantified by a conservative strategy based on HTSeq and Salmon, followed by target prediction via TargetScan and miRDB. The comprehensive pathway analysis of all factors was performed using DAVID. The theoretical results were subject of a stringent experimental validation in a well-characterized clinical cohort of 30 tumor/normal pairs of cervical samples. The top 31 miRNAs and their 140 primary target genes were closely intertwined with the PI3K-Akt signaling pathway. MiR-21-3p and miR-1-3p showed a prominent regulatory role while miR-542, miR-126, miR-143, and miR-26b are directly targeting both PI3K and AKT. This study provides insights into the regulation of PI3K-Akt signaling as an important inducer of cervical cancer and identified miR-542, miR-126, miR-143, and miR-26b as promising inhibitors of the PI3K-Akt action.
Collapse
Affiliation(s)
- Akram Rahimi-Moghaddam
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Nassim Ghorbanmehr
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Sedigheh Gharbi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Fatemeh Nili
- Department of Pathology, Imam Khomeini-Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Eberhard Korsching
- Cancer and Complex Systems Research Group, Medical Faculty, University of Muenster, Muenster, Germany
| |
Collapse
|
2
|
Singh R, Ha SE, Park HS, Debnath S, Cho H, Baek G, Yu TY, Ro S. Sustained Effectiveness and Safety of Therapeutic miR-10a/b in Alleviating Diabetes and Gastrointestinal Dysmotility without Inducing Cancer or Inflammation in Murine Liver and Colon. Int J Mol Sci 2024; 25:2266. [PMID: 38396943 PMCID: PMC10888952 DOI: 10.3390/ijms25042266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
microRNAs (miRNAs) are key regulators of both physiological and pathophysiological mechanisms in diabetes and gastrointestinal (GI) dysmotility. Our previous studies have demonstrated the therapeutic potential of miR-10a-5p mimic and miR-10b-5p mimic (miR-10a/b mimics) in rescuing diabetes and GI dysmotility in murine models of diabetes. In this study, we elucidated the safety profile of a long-term treatment with miR-10a/b mimics in diabetic mice. Male C57BL/6 mice were fed a high-fat, high-sucrose diet (HFHSD) to induce diabetes and treated by five subcutaneous injections of miR-10a/b mimics for a 5 month period. We examined the long-term effects of the miRNA mimics on diabetes and GI dysmotility, including an assessment of potential risks for cancer and inflammation in the liver and colon using biomarkers. HFHSD-induced diabetic mice subcutaneously injected with miR-10a/b mimics on a monthly basis for 5 consecutive months exhibited a marked reduction in fasting blood glucose levels with restoration of insulin and significant weight loss, improved glucose and insulin intolerance, and restored GI transit time. In addition, the miR-10a/b mimic-treated diabetic mice showed no indication of risk for cancer development or inflammation induction in the liver, colon, and blood for 5 months post-injections. This longitudinal study demonstrates that miR-10a/b mimics, when subcutaneously administered in diabetic mice, effectively alleviate diabetes and GI dysmotility for 5 months with no discernible risk for cancer or inflammation in the liver and colon. The sustained efficacy and favorable safety profiles position miR-10a/b mimics as promising candidates in miRNA-based therapeutics for diabetes and GI dysmotility.
Collapse
Affiliation(s)
- Rajan Singh
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA; (R.S.); (S.E.H.); (H.S.P.); (S.D.); (H.C.); (G.B.); (T.Y.Y.)
| | - Se Eun Ha
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA; (R.S.); (S.E.H.); (H.S.P.); (S.D.); (H.C.); (G.B.); (T.Y.Y.)
| | - Han Sung Park
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA; (R.S.); (S.E.H.); (H.S.P.); (S.D.); (H.C.); (G.B.); (T.Y.Y.)
| | - Sushmita Debnath
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA; (R.S.); (S.E.H.); (H.S.P.); (S.D.); (H.C.); (G.B.); (T.Y.Y.)
| | - Hayeong Cho
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA; (R.S.); (S.E.H.); (H.S.P.); (S.D.); (H.C.); (G.B.); (T.Y.Y.)
| | - Gain Baek
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA; (R.S.); (S.E.H.); (H.S.P.); (S.D.); (H.C.); (G.B.); (T.Y.Y.)
| | - Tae Yang Yu
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA; (R.S.); (S.E.H.); (H.S.P.); (S.D.); (H.C.); (G.B.); (T.Y.Y.)
| | - Seungil Ro
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA; (R.S.); (S.E.H.); (H.S.P.); (S.D.); (H.C.); (G.B.); (T.Y.Y.)
- RosVivo Therapeutics, Applied Research Facility, 1664 N. Virginia St., Reno, NV 89557, USA
| |
Collapse
|
3
|
Jordan-Alejandre E, Campos-Parra AD, Castro-López DL, Silva-Cázares MB. Potential miRNA Use as a Biomarker: From Breast Cancer Diagnosis to Metastasis. Cells 2023; 12:cells12040525. [PMID: 36831192 PMCID: PMC9954167 DOI: 10.3390/cells12040525] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Breast cancer is the most common cancer in women. Despite advances in diagnosis and prognosis, distal metastases occur in these patients in up to 15% of cases within 3 years of diagnosis. The main organs in which BC metastasises are the bones, lungs, liver, and brain. Unfortunately, 90% of metastatic patients will die, making this an incurable disease. Researchers are therefore seeking biomarkers for diagnosis and metastasis in different organs. Optimally, such biomarkers should be easy to detect using, preferably, non-invasive methods, such as using miRNA molecules, which are small molecules of about 22 nt that have as their main function the post-transcriptional regulation of genes. Furthermore, due to their uncomplicated detection and reproducibility in the laboratory, they are a tool of complementary interest for diagnosis, prognosis, and treatment. With this in mind, in this review, we focus on describing the most current studies that propose using miRNA independently as a potential biomarker for the diagnosis and prediction of brain, lung, liver, and bone metastases, as well as to open a window of opportunity to deepen this area of study to eventually use miRNAs molecules in clinical practice for the benefit of BC patients.
Collapse
Affiliation(s)
- Euclides Jordan-Alejandre
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México 03100, Mexico
| | - Alma D. Campos-Parra
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, Mexico
| | - Dora Luz Castro-López
- Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78290, Mexico
| | - Macrina Beatriz Silva-Cázares
- Coordinación Académica Región Altiplano, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78760, Mexico
- Correspondence:
| |
Collapse
|
4
|
Recent Updates on the Role of the MicroRNA-10 Family in Gynecological Malignancies. JOURNAL OF ONCOLOGY 2022; 2022:1544648. [PMID: 36578791 PMCID: PMC9792234 DOI: 10.1155/2022/1544648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
The ever-increasing morbidity associated with gynecological malignancies constantly endangers the physical and psychological health of women. Since a long time, there has been an urgent need for a deeper understanding of the tumorigenesis and the development of gynecological cancer to identify new molecular markers for early diagnosis and metastatic disease prognosis and for the development of therapeutic targets. MicroRNAs are crucial cellular regulators. The microRNA-10 (miR-10) family has been found to play an integral role in the evolution of numerous cancer types. A comprehensive understanding of current studies on miR-10 could provide better insights into future research and clinical applications in related fields. This article reviews the latest research on the role of the miR-10 family in gynecological malignancies and the relevant molecular mechanism, mainly focusing on endometrial, cervical, and ovarian cancers.
Collapse
|
5
|
Elgeshy KM, Abdel Wahab AHA. The Role, Significance, and Association of MicroRNA-10a/b in Physiology of Cancer. Microrna 2022; 11:118-138. [PMID: 35616665 DOI: 10.2174/2211536611666220523104408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate the translation of mRNA and protein, mainly at the posttranscriptional level. Global expression profiling of miRNAs has demonstrated a broad spectrum of aberrations that correlated with several diseases, and miRNA- 10a and miRNA-10b were the first examined miRNAs to be involved in abnormal activities upon dysregulation, including many types of cancers and progressive diseases. It is expected that the same miRNAs behave inconsistently within different types of cancer. This review aims to provide a set of information about our updated understanding of miRNA-10a and miRNA-10b and their clinical significance, molecular targets, current research gaps, and possible future applications of such potent regulators.
Collapse
Affiliation(s)
- Khaled M Elgeshy
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo, Egypt
| | | |
Collapse
|
6
|
Lu X, Song X, Hao X, Liu X, Zhang X, Yuan N, Ma H, Zhang Z. MiR-186-3p attenuates tumorigenesis of cervical cancer by targeting IGF1. World J Surg Oncol 2021; 19:207. [PMID: 34253194 PMCID: PMC8276452 DOI: 10.1186/s12957-021-02317-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Background Mounting evidence in the cancer literature suggests that microRNAs (miRNAs) influence the progression of human cancer cells by targeting protein-coding genes. How insulin-like growth factor 1(IGF1) and miR-186-3p contribute to the development of cervical cancer (CC) remains unclear. This study examined the regulatory roles of miR-186-3p and IGF1 in CC development. Methods Gene expression levels were determined by qRT-PCR. Proliferation, migration, and apoptosis of CC and normal cells were determined by MTT, Transwell, and caspase-3 activity assays, respectively. Dual-luciferase reporter activity and RNA pull-down assays were performed to identify the target gene of miR-186-3p. Results IGF1 was the target of miR-186-3p. The expression of miR-186-3p inhibited cell proliferation and migration abilities of CC cell lines, but induced the apoptosis rate of CC cells. IGF1 could restore the inhibitory effects of miR-186-3p on the proliferation, migration, and apoptosis abilities of CC cells. Experimental results revealed that miR-186-3p could inhibit IGF1 expression, thereby reducing the viability of CC cells. Conclusions The data suggest that targeting of IGF1 by miR-186-3p could be crucial in regulating the progression of CC.
Collapse
Affiliation(s)
- Xiurong Lu
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, No. 36, Changqing Road, Zhangjiakou, 075000, Hebei, China.
| | - Xiao Song
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, No. 36, Changqing Road, Zhangjiakou, 075000, Hebei, China
| | - Xiaohui Hao
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, No. 36, Changqing Road, Zhangjiakou, 075000, Hebei, China
| | - Xiaoyu Liu
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, No. 36, Changqing Road, Zhangjiakou, 075000, Hebei, China
| | - Xianyu Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, No. 36, Changqing Road, Zhangjiakou, 075000, Hebei, China
| | - Na Yuan
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, No. 36, Changqing Road, Zhangjiakou, 075000, Hebei, China
| | - Huan Ma
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, No. 36, Changqing Road, Zhangjiakou, 075000, Hebei, China
| | - Zhilin Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, No. 36, Changqing Road, Zhangjiakou, 075000, Hebei, China
| |
Collapse
|
7
|
Lack of Conserved miRNA Deregulation in HPV-Induced Squamous Cell Carcinomas. Biomolecules 2021; 11:biom11050764. [PMID: 34065237 PMCID: PMC8160722 DOI: 10.3390/biom11050764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 12/26/2022] Open
Abstract
Squamous cell carcinomas (SCCs) in the anogenital and head and neck regions are associated with high-risk types of human papillomaviruses (HR-HPV). Deregulation of miRNA expression is an important contributor to carcinogenesis. This study aimed to pinpoint commonly and uniquely deregulated miRNAs in cervical, anal, vulvar, and tonsillar tumors of viral or non-viral etiology, searching for a common set of deregulated miRNAs linked to HPV-induced carcinogenesis. RNA was extracted from tumors and nonmalignant tissues from the same locations. The miRNA expression level was determined by next-generation sequencing. Differential expression of miRNAs was calculated, and the patterns of miRNA deregulation were compared between tumors. The total of deregulated miRNAs varied between tumors of different locations by two orders of magnitude, ranging from 1 to 282. The deregulated miRNA pool was largely tumor-specific. In tumors of the same location, a low proportion of miRNAs were exclusively deregulated and no deregulated miRNA was shared by all four types of HPV-positive tumors. The most significant overlap of deregulated miRNAs was found between tumors which differed in location and HPV status (HPV-positive cervical tumors vs. HPV-negative vulvar tumors). Our results imply that HPV infection does not elicit a conserved miRNA deregulation in SCCs.
Collapse
|
8
|
Role of miRNAs in cervical cancer: A comprehensive novel approach from pathogenesis to therapy. J Gynecol Obstet Hum Reprod 2021; 50:102159. [PMID: 33965650 DOI: 10.1016/j.jogoh.2021.102159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/04/2021] [Accepted: 04/30/2021] [Indexed: 11/20/2022]
Abstract
Human papillomaviruses (HPV) infection is a major causative agent and strongly associated with the development of cervical cancer. Understanding the mechanisms of HPV-induced cervical cancer is extremely useful in therapeutic strategies for primary prevention (HPV vaccines) and secondary prevention (screening and diagnosis of precancerous lesions). However, due to the lack of proper implementation of screening programs in developing countries, cervical cancer is usually diagnosed at advanced stages that result in poor treatment responses. Nearly half of the patients will experience disease recurrence within two years post treatment. Therefore, it is vital to identify new tools for early diagnosis, prognosis, and treatment prediction. MicroRNAs (miRNAs) are small non-coding RNAs, implicated in posttranscriptional regulation of gene expression. Growing evidence has shown that abnormal miRNA expression is associated with cervical cancer progression, metastasis, and influences treatment outcomes. In this review, we provide comprehensive information about miRNA and their potential utility in cervical cancer diagnosis, prognosis, and clinical management to improve patient outcomes.
Collapse
|
9
|
Galvão-Lima LJ, Morais AHF, Valentim RAM, Barreto EJSS. miRNAs as biomarkers for early cancer detection and their application in the development of new diagnostic tools. Biomed Eng Online 2021; 20:21. [PMID: 33593374 PMCID: PMC7885381 DOI: 10.1186/s12938-021-00857-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Over the last decades, microRNAs (miRNAs) have emerged as important molecules associated with the regulation of gene expression in humans and other organisms, expanding the strategies available to diagnose and handle several diseases. This paper presents a systematic review of literature of miRNAs related to cancer development and explores the main techniques used to quantify these molecules and their limitations as screening strategy. The bibliographic research was conducted using the online databases, PubMed, Google Scholar, Web of Science, and Science Direct searching the terms "microRNA detection", "miRNA detection", "miRNA and prostate cancer", "miRNA and cervical cancer", "miRNA and cervix cancer", "miRNA and breast cancer", and "miRNA and early cancer diagnosis". Along the systematic review over 26,000 published papers were reported, and 252 papers were returned after applying the inclusion and exclusion criteria, which were considered during this review. The aim of this study is to identify potential miRNAs related to cancer development that may be useful for early cancer diagnosis, notably in the breast, prostate, and cervical cancers. In addition, we suggest a preliminary top 20 miRNA panel according to their relevance during the respective cancer development. Considering the progressive number of new cancer cases every year worldwide, the development of new diagnostic tools is critical to refine the accuracy of screening tests, improving the life expectancy and allowing a better prognosis for the affected patients.
Collapse
Affiliation(s)
- Leonardo J. Galvão-Lima
- Advanced Nucleus of Technological Innovation (NAVI), Federal Institute of Rio Grande do Norte (IFRN), Avenue Senador Salgado Filho 1559, Natal, RN 59015-000 Brazil
| | - Antonio H. F. Morais
- Advanced Nucleus of Technological Innovation (NAVI), Federal Institute of Rio Grande do Norte (IFRN), Avenue Senador Salgado Filho 1559, Natal, RN 59015-000 Brazil
| | - Ricardo A. M. Valentim
- Laboratory of Technological Innovation in Health (LAIS), Hospital Universitário Onofre Lopes (HUOL), Federal University of Rio Grande do Norte (UFRN), Campus Lagoa Nova, Natal, RN Brazil
| | - Elio J. S. S. Barreto
- Division of Oncology and Hematology, Hospital Universitário Onofre Lopes (HUOL), Federal University of Rio Grande do Norte (UFRN), Campus Lagoa Nova, Natal, RN Brazil
| |
Collapse
|
10
|
Grzywa TM, Klicka K, Włodarski PK. Regulators at Every Step-How microRNAs Drive Tumor Cell Invasiveness and Metastasis. Cancers (Basel) 2020; 12:E3709. [PMID: 33321819 PMCID: PMC7763175 DOI: 10.3390/cancers12123709] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor cell invasiveness and metastasis are the main causes of mortality in cancer. Tumor progression is composed of many steps, including primary tumor growth, local invasion, intravasation, survival in the circulation, pre-metastatic niche formation, and metastasis. All these steps are strictly controlled by microRNAs (miRNAs), small non-coding RNA that regulate gene expression at the post-transcriptional level. miRNAs can act as oncomiRs that promote tumor cell invasion and metastasis or as tumor suppressor miRNAs that inhibit tumor progression. These miRNAs regulate the actin cytoskeleton, the expression of extracellular matrix (ECM) receptors including integrins and ECM-remodeling enzymes comprising matrix metalloproteinases (MMPs), and regulate epithelial-mesenchymal transition (EMT), hence modulating cell migration and invasiveness. Moreover, miRNAs regulate angiogenesis, the formation of a pre-metastatic niche, and metastasis. Thus, miRNAs are biomarkers of metastases as well as promising targets of therapy. In this review, we comprehensively describe the role of various miRNAs in tumor cell migration, invasion, and metastasis.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Paweł K. Włodarski
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
| |
Collapse
|
11
|
Regulators at Every Step—How microRNAs Drive Tumor Cell Invasiveness and Metastasis. Cancers (Basel) 2020. [DOI: 10.3390/cancers12123709
expr 991289423 + 939431153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Tumor cell invasiveness and metastasis are the main causes of mortality in cancer. Tumor progression is composed of many steps, including primary tumor growth, local invasion, intravasation, survival in the circulation, pre-metastatic niche formation, and metastasis. All these steps are strictly controlled by microRNAs (miRNAs), small non-coding RNA that regulate gene expression at the post-transcriptional level. miRNAs can act as oncomiRs that promote tumor cell invasion and metastasis or as tumor suppressor miRNAs that inhibit tumor progression. These miRNAs regulate the actin cytoskeleton, the expression of extracellular matrix (ECM) receptors including integrins and ECM-remodeling enzymes comprising matrix metalloproteinases (MMPs), and regulate epithelial–mesenchymal transition (EMT), hence modulating cell migration and invasiveness. Moreover, miRNAs regulate angiogenesis, the formation of a pre-metastatic niche, and metastasis. Thus, miRNAs are biomarkers of metastases as well as promising targets of therapy. In this review, we comprehensively describe the role of various miRNAs in tumor cell migration, invasion, and metastasis.
Collapse
|
12
|
Fang Z, Wang X, Wu J, Xiao R, Liu J. High serum extracellular vesicle miR-10b expression predicts poor prognosis in patients with acute myeloid leukemia. Cancer Biomark 2020; 27:1-9. [PMID: 31594209 DOI: 10.3233/cbm-190211] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Increasing evidence have demonstrated that serum extracellular vesicle microRNAs (EV-miRNAs) are promising noninvasive biomarkers for various cancer types. OBJECTIVE In this study, we aimed to investigate and evaluate the potential clinical significance of serum EV-miR-10b for acute myeloid leukemia (AML). METHODS Blood samples were collected from a cohort of 95 de novo AML patients and 80 healthy individuals. Of all AML patients, 51 patients were considered as cytogenetic normal AML (CN-AML). Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) was performed to measure the expression levels of serum EV-miR-10b. RESULTS The extracellular vesicles we extracted from the serum samples were positive for EV/exosome markers including TSG101, CD63, Flotillin-1 and CD9. The expression levels of serum EV-miR-10b were significantly higher in AML/CN-AML patients than healthy controls. In addition, serum EV-miR-10b expression was strongly correlated with aggressive clinical characteristics. Moreover, receiver operating characteristic analysis showed serum EV-miR-10b yielded an area under the curve of 0.875, with 77.89% specificity and 82.50% sensitivity in identifying AML patients from normal controls. Furthermore, AML patients with higher serum EV-miR-10b expression had significantly shorter survival and serum EV-miR-10b was demonstrated to be an independent prognostic marker for overall survival in AML. CONCLUSIONS Taken together, serum EV-miR-10b might serve as a promising biomarker for predicting the prognosis of AML.
Collapse
|
13
|
Nahand JS, Taghizadeh-Boroujeni S, Karimzadeh M, Borran S, Pourhanifeh MH, Moghoofei M, Bokharaei-Salim F, Karampoor S, Jafari A, Asemi Z, Tbibzadeh A, Namdar A, Mirzaei H. microRNAs: New prognostic, diagnostic, and therapeutic biomarkers in cervical cancer. J Cell Physiol 2019; 234:17064-17099. [PMID: 30891784 DOI: 10.1002/jcp.28457] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
Abstract
Cervical cancer is as a kind of cancer beginning from the cervix. Given that cervical cancer could be observed in women who infected with papillomavirus, regular oral contraceptives, and multiple pregnancies. Early detection of cervical cancer is one of the most important aspects of the therapy of this malignancy. Despite several efforts, finding and developing new biomarkers for cervical cancer diagnosis are required. Among various prognostic, diagnostic, and therapeutic biomarkers, miRNA have been emerged as powerful biomarkers for detection, treatment, and monitoring of response to therapy in cervical cancer. Here, we summarized various miRNAs as an employable platform for prognostic, diagnostic, and therapeutic biomarkers in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sima Taghizadeh-Boroujeni
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Brujen, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sarina Borran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Jafari
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Tbibzadeh
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Afshin Namdar
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
14
|
The role of miRNAs in the invasion and metastasis of cervical cancer. Biosci Rep 2019; 39:BSR20181377. [PMID: 30833362 PMCID: PMC6418402 DOI: 10.1042/bsr20181377] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 02/18/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer (CC) with early metastasis of the primary tumor results in poor prognosis and poor therapeutic outcomes. MicroRNAs (miRNAs) are small, noncoding RNA molecules that play a substantial role in regulating gene expression post-transcriptionally and influence the development and progression of tumors. Numerous studies have discovered that miRNAs play significant roles in the invasion and metastasis of CC by affecting specific pathways, including Notch, Wnt/β-catenin, and phosphoinositide-3 kinase (PI3K)-Akt pathways. miRNAs also effectively modulate the process of epithelial–mesenchymal transition. Many studies provide new insights into the role of miRNAs and the pathogenesis of metastatic CC. In this review, we will offer an overview and update of our present understanding of the potential roles of miRNAs in metastatic CC.
Collapse
|
15
|
Zhao XP, Liu FF, Hu WC, Younis MR, Wang C, Xia XH. Biomimetic Nanochannel-Ionchannel Hybrid for Ultrasensitive and Label-Free Detection of MicroRNA in Cells. Anal Chem 2019; 91:3582-3589. [PMID: 30758184 DOI: 10.1021/acs.analchem.8b05536] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A biomimetic nanochannel-ionchannel hybrid coupled with electrochemical detector was developed for label-free and ultrasensitive detection of microRNA (miRNA) in cells. Probe single stranded DNA (ssDNA) was first immobilized on the outer surface of the nanochannel-ionchannel hybrid membrane, which can hybridize with the target miRNA in cells. Due to the unique mass transfer property of the hybrid, the DNA-miRNA hybridization kinetics can be sensitively monitored in real-time using the electrochemical technique. More importantly, due to the super small size of the ionchannels, the DNA probe immobilization and hybridization process can be carried out on the outer surface of the ionchannel side, which can effectively avoid the blockage and damage of channels and thus considerably enhance the reproducibility and accuracy of the method. Using this strategy, the miRNA ranging from 0.1 fM to 0.1 μM can be facilely detected with a low detection limit of 15.4 aM, which is much lower than most reported work. The present strategy provides a sensitive and label-free miRNA detection platform, which will be of great significance in biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Xiao-Ping Zhao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Key Laboratory of Biomedical Functional Materials, School of Science , China Pharmaceutical University , Nanjing , 211198 , China
| | - Fei-Fei Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Key Laboratory of Biomedical Functional Materials, School of Science , China Pharmaceutical University , Nanjing , 211198 , China
| | - Wen-Chao Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Key Laboratory of Biomedical Functional Materials, School of Science , China Pharmaceutical University , Nanjing , 211198 , China
| | - Muhammad Rizwan Younis
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China
| | - Chen Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Key Laboratory of Biomedical Functional Materials, School of Science , China Pharmaceutical University , Nanjing , 211198 , China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China
| |
Collapse
|
16
|
Li M, Huo X, Davuljigari CB, Dai Q, Xu X. MicroRNAs and their role in environmental chemical carcinogenesis. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:225-247. [PMID: 30171477 DOI: 10.1007/s10653-018-0179-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 08/23/2018] [Indexed: 02/05/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, noncoding RNA species that play crucial roles across many biological processes and in the pathogenesis of major diseases, including cancer. Recent studies suggest that the expression of miRNA is altered by certain environmental chemicals, including metals, organic pollutants, cigarette smoke, pesticides and carcinogenic drugs. In addition, extensive studies have indicated the existence and importance of miRNA in different cancers, suggesting that cancer-related miRNAs could serve as potential markers for chemically induced cancers. The altered expression of miRNA was considered to be a vital pathogenic role in xenobiotic-induced cancer development. However, the significance of miRNA in the etiology of cancer and the exact mechanisms by which environmental factors alter miRNA expression remain relatively unexplored. Hence, understanding the interaction of miRNAs with environmental chemicals will provide important information on mechanisms underlying the pathogenesis of chemically induced cancers, and effectively diagnose and treat human cancers resulting from chronic or acute carcinogen exposure. This study presents the current evidence that the miRNA deregulation induced by various chemical carcinogens, different cancers caused by environmental carcinogens and the potentially related genes in the onset or progression of cancer. For each carcinogen, the specifically expressed miRNA may be considered as the early biomarkers of the cancer process. In this review, we also summarize various target genes of the altered miRNA, oncogenes or anti-oncogenes, and the existing evidence regarding the gene regulation mechanisms of cancer caused by environmentally induced miRNA alteration. The future perspective of miRNA may become attractive targets for the diagnosis and treatment of carcinogen-induced cancer.
Collapse
Affiliation(s)
- Minghui Li
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511486, Guangdong, China
| | - Chand Basha Davuljigari
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Qingyuan Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511486, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China.
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
17
|
WITHDRAWN: MiR-876-5p regulates proliferation, migration and apoptosis of cervical cancer cells through targeting KPNA4. Pathol Res Pract 2018. [DOI: 10.1016/j.prp.2018.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Zhang Y, Wang LJ, Yang HQ, Wang R, Wu HJ. MicroRNA-10b expression predicts long-term survival in patients with solid tumor. J Cell Physiol 2018; 234:1248-1256. [PMID: 30191959 DOI: 10.1002/jcp.27138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 07/09/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND Numerous studies have evaluated the significance of the microRNA-10b (miR-10b) in the development and progression of many cancers. Their findings revealed that increased expression of miR-10b is associated with unfavorable prognosis in patients with cancer. RESULTS A total of 1,834 patients from 19 studies were included in this study. A significantly shorter overall survival was observed in patients with increased expression of miR-10b (hazard ratio [HR] = 1.99, 95% confidence interval [CI]: 1.51-2.61). Statistical significance was also observed in subgroup meta-analysis stratified by the cancer type, cutoff value, analysis type, and sample size. Also, patients with a high expression level of miR-10b had a poorer disease-free survival rate (HR = 1.18, 95% CI: 1.05-1.33). In addition, the pooled odds ratios (ORs) showed that increased miR-10b was also associated with positive lymph node metastasis (OR = 2.09, 95% CI: 1.45-3.03), distant metastasis (OR = 2.40, 95% CI: 1.57-3.67), tumor size (OR = 3.86, 95% CI: 2.25-6.64), and poor clinical stage (OR = 5.02, 95% CI: 3.37-7.47). MATERIALS AND METHODS A systematic literature search was conducted on a number of electronic databases, including PubMed, Embase, Web of Science, China National Knowledge Infrastructure, Springer, Google Scholar, and Gene expression omnibus. We retrieved the relevant articles to examine the association between the miR-10b expression levels and patients' prognosis. The meta-analysis was conducted using the RevMan 5.2 software and Stata SE12.0 software. CONCLUSIONS High miR-10b expression was correlated with poor clinical outcome, which indicated the potential clinical use of miR-10b as a molecular biomarker for cancer, particularly in assessing prognosis for patients with cancers. Further studies should be performed to verify the clinical utility of miR-10b in human solid tumors.
Collapse
Affiliation(s)
- Yi Zhang
- Department of General Surgery, The First People's Hospital of Neijiang, Neijiang, Sichuan, China
| | - Li-Juan Wang
- Department of Nephrology, ShangRao People's Hospital, ShangRao, Jiangxi, China
| | - He-Quan Yang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Rong Wang
- Department of General Surgery, The First People's Hospital of Neijiang, Neijiang, Sichuan, China
| | - Hua-Jun Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
19
|
Botti G, De Chiara A, Di Bonito M, Cerrone M, Malzone MG, Collina F, Cantile M. Noncoding RNAs within the
HOX
gene network in tumor pathogenesis and progression. J Cell Physiol 2018; 234:395-413. [DOI: 10.1002/jcp.27036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Gerardo Botti
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Anna De Chiara
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Maurizio Di Bonito
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Margherita Cerrone
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Maria Gabriella Malzone
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Francesca Collina
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| | - Monica Cantile
- Department of Support for Oncological Pathways Diagnostic Area, Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale” Napoli Italy
| |
Collapse
|
20
|
Yoo B, Greninger P, Stein GT, Egan RK, McClanaghan J, Moore A, Benes CH, Medarova Z. Potent and selective effect of the mir-10b inhibitor MN-anti-mir10b in human cancer cells of diverse primary disease origin. PLoS One 2018; 13:e0201046. [PMID: 30028875 PMCID: PMC6054402 DOI: 10.1371/journal.pone.0201046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/07/2018] [Indexed: 01/02/2023] Open
Abstract
Since microRNAs (miRNAs, miRs) have been implicated in oncogenesis, many of them have been identified as therapeutic targets. Previously we have demonstrated that miRNA-10b acts as a master regulator of the viability of metastatic tumor cells and represents a target for therapeutic intervention. We designed and synthesized an inhibitor of miR-10b, termed MN-anti-miR10b. We showed that treatment with MN-anti-miR10b led to durable regression/elimination of established metastases in murine models of metastatic breast cancer. Since miRNA-10b has been associated with various metastatic and non-metastatic cancers, in the present study, we investigated the effect of MN-anti-miR10b in a panel of over 600 cell lines derived from a variety of human malignancies. We observed an effect on the viability of multiple cell lines within each cancer type and a mostly dichotomous response with cell lines either strongly responsive to MN-anti-miR10b or not at all even at maximum dose tested, suggesting a very high specificity of the effect. Genomic modeling of the drug response showed enrichment of genes associated with the proto-oncogene, c-Jun.
Collapse
Affiliation(s)
- Byunghee Yoo
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Patricia Greninger
- Center for Molecular Therapeutics, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Giovanna T. Stein
- Center for Molecular Therapeutics, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Regina K. Egan
- Center for Molecular Therapeutics, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Joseph McClanaghan
- Center for Molecular Therapeutics, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Anna Moore
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
- * E-mail: (ZM); (CHB); (AM)
| | - Cyril H. Benes
- Center for Molecular Therapeutics, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
- * E-mail: (ZM); (CHB); (AM)
| | - Zdravka Medarova
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
- * E-mail: (ZM); (CHB); (AM)
| |
Collapse
|
21
|
Li Y, Shen Z, Jiang H, Lai Z, Wang Z, Jiang K, Ye Y, Wang S. MicroRNA‑4284 promotes gastric cancer tumorigenicity by targeting ten-eleven translocation 1. Mol Med Rep 2018; 17:6569-6575. [PMID: 29512746 PMCID: PMC5928641 DOI: 10.3892/mmr.2018.8671] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/14/2018] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence has shown that abnormal expression of miR-4284 participates in the progression of several types of cancer. However, the expression and the role of miR-4284 in gastric cancer remain largely unknown. Therefore, in the present study the miR-4284 expression levels in gastric cancer tissues and cell lines, was examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and found that miR-4284 was significantly upregulated in 40 pairs of gastric cancer tissues and five gastric cancer cell lines compared to the corresponding normal tissues and GES-1 cell line. In addition, increased miR-4284 expression was positively associated with TNM stage (P=0.035), distal metastasis (P=0.022) and poor prognosis in gastric cancer patients. Furthermore, the overexpression of miR-4284 expression was shown to promote cell proliferation, clone formation, invasion and migration, while the suppression of miR-4284 expression induced opposite effects. Additionally, luciferase reporter assay was conducted and showed that ten-eleven translocation 1 (TET1), a tumor suppressor gene that regulating cell survival and metastasis, was a direct target of miR-4284. Upregulated miR-4284 decreased the mRNA and protein levels of TET1 in SGC-7901 cells and downregulated miR-4284 increased the mRNA and protein levels of TET1 in AGS cells. In addition, miR-4284 expression was negatively correlated with the TET1 expression in gastric cancer tissues. Moreover, inhibition of TET1 suppressed the effect of miR-4284 inhibitors on cell proliferation in AGS cells. Therefore, data demonstrated that miR-4284 could promote tumor cell growth, migration and invasion by directly targeting TET1 in gastric cancer, which may provide a potential therapeutic target for gastric cancer treatment.
Collapse
Affiliation(s)
- Yansen Li
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Hongpeng Jiang
- Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Zhiyong Lai
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Zhu Wang
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Kewei Jiang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Shan Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, P.R. China
| |
Collapse
|
22
|
Yao Y, Luo J, Sun Q, Xu T, Sun S, Chen M, Lin X, Qian Q, Zhang Y, Cao L, Zhang P, Lin Y. HOXC13 promotes proliferation of lung adenocarcinoma via modulation of CCND1 and CCNE1. Am J Cancer Res 2017; 7:1820-1834. [PMID: 28979806 PMCID: PMC5622218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023] Open
Abstract
In this study, we confirmed that HOXC13 might be a potential oncogene in lung adenocarcinoma through an analysis of The Cancer Genome Atlas (TCGA) datasets. Further analysis revealed that the expression of HOXC13 was significantly higher in lung adenocarcinoma tissues than in adjacent normal tissues; importantly, its expression correlated with poor clinical characteristics and worse prognosis. In vitro experiments showed that HOXC13 expression generally increased in lung adenocarcinoma cell lines. Moreover, knockdown of HOXC13 inhibited lung adenocarcinoma cell proliferation, and induced G1-phase arrest via downregulation of CCND1 and CCNE1. Conversely, HOXC13 overexpression promoted lung adenocarcinoma cell proliferation, and decreased the percentage of cells in G1-phase via upregulation of CCND1 and CCNE1. We also found that miR-141 downregulated HOXC13, by directly targeting its 3'UTR, and inhibited proliferation of lung adenocarcinoma cells. Taken together, our results suggest that HOXC13, which is directly targeted by miR-141, is highly expressed in lung adenocarcinoma, and promotes proliferation of lung adenocarcinoma by modulating the expression of CCND1 and CCNE1.
Collapse
Affiliation(s)
- Yu Yao
- Department of Respiratory Medicine, Nanjing Chest Hospital, Medical School of Southeast UniversityNanjing, Jiangsu, China
- Medical School of Southeast UniversityNanjing, Jiangsu, China
| | - Jing Luo
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing UniversityNanjing, Jiangsu, China
| | - Qi Sun
- Department of Cardiothoracic Surgery, Jinling Hospital, Southern Medical UniversityNanjing, Jiangsu, China
| | - Ting Xu
- Department of Respiratory Medicine, Nanjing Chest Hospital, Medical School of Southeast UniversityNanjing, Jiangsu, China
| | - Siqing Sun
- Department of Respiratory Medicine, Nanjing Chest Hospital, Medical School of Southeast UniversityNanjing, Jiangsu, China
| | - Meili Chen
- Medical School of Southeast UniversityNanjing, Jiangsu, China
| | - Xin Lin
- Medical School of Southeast UniversityNanjing, Jiangsu, China
| | - Qiuping Qian
- Medical School of Southeast UniversityNanjing, Jiangsu, China
| | - Yu Zhang
- Medical School of Southeast UniversityNanjing, Jiangsu, China
| | - Lin Cao
- Medical School of Southeast UniversityNanjing, Jiangsu, China
| | - Po Zhang
- Medical School of Southeast UniversityNanjing, Jiangsu, China
| | - Yong Lin
- Department of Respiratory Medicine, Nanjing Chest Hospital, Medical School of Southeast UniversityNanjing, Jiangsu, China
| |
Collapse
|
23
|
Arai T, Okato A, Kojima S, Idichi T, Koshizuka K, Kurozumi A, Kato M, Yamazaki K, Ishida Y, Naya Y, Ichikawa T, Seki N. Regulation of spindle and kinetochore-associated protein 1 by antitumor miR-10a-5p in renal cell carcinoma. Cancer Sci 2017; 108:2088-2101. [PMID: 28746769 PMCID: PMC5623743 DOI: 10.1111/cas.13331] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/20/2017] [Accepted: 07/23/2017] [Indexed: 12/11/2022] Open
Abstract
Analysis of our original microRNA (miRNA) expression signature of patients with advanced renal cell carcinoma (RCC) showed that microRNA‐10a‐5p (miR‐10a‐5p) was significantly downregulated in RCC specimens. The aims of the present study were to investigate the antitumor roles of miR‐10a‐5p and the novel cancer networks regulated by this miRNA in RCC cells. Downregulation of miR‐10a‐5p was confirmed in RCC tissues and RCC tissues from patients treated with tyrosine kinase inhibitors (TKI). Ectopic expression of miR‐10a‐5p in RCC cell lines (786‐O and A498 cells) inhibited cancer cell migration and invasion. Spindle and kinetochore‐associated protein 1 (SKA1) was identified as an antitumor miR‐10a‐5p target by genome‐based approaches, and direct regulation was validated by luciferase reporter assays. Knockdown of SKA1 inhibited cancer cell migration and invasion in RCC cells. Overexpression of SKA1 was observed in RCC tissues and TKI‐treated RCC tissues. Moreover, analysis of The Cancer Genome Atlas database demonstrated that low expression of miR‐10a‐5p and high expression of SKA1 were significantly associated with overall survival in patients with RCC. These findings showed that downregulation of miR‐10a‐5p and overexpression of the SKA1 axis were highly involved in RCC pathogenesis and resistance to TKI treatment in RCC.
Collapse
Affiliation(s)
- Takayuki Arai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Atsushi Okato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Satoko Kojima
- Department of Urology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Tetsuya Idichi
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Keiichi Koshizuka
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Akira Kurozumi
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Mayuko Kato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kazuto Yamazaki
- Department of Pathology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Yasuo Ishida
- Department of Pathology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Yukio Naya
- Department of Urology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|