1
|
Kavishahi NN, Rezaee A, Jalalian S. The Impact of miRNAs on the Efficacy of Tamoxifen in Breast Cancer Treatment: A Systematic Review. Clin Breast Cancer 2024; 24:341-350. [PMID: 38413339 DOI: 10.1016/j.clbc.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/29/2024]
Abstract
Seventy percent of breast cancer patients have an active estrogen receptor. Tamoxifen interferes with estrogen's ability to bind to cancer cells. The most challenging aspect of tamoxifen, however, is that breast cancer cells become resistant to its effects. Some studies have shown that alterations in miRNA expression contribute significantly to drug resistance in breast cancer. Therefore, the present systematic review aims to investigate miRNAs that significantly influence the response to tamoxifen treatment. The present study follows the PRISMA instructions. The Web of Science, PubMed, and Scopus databases were searched to retrieve English articles. The searches were conducted up to September 11, 2022. The search strategy included the terms "Tamoxifen", "Breast Neoplasm", and "MicroRNA". The inclusion criteria of this study are English, original, and experimental studies investigating miRNAs that are effective in the treatment efficacy of tamoxifen. A total of 565 articles were retrieved. After screening, 75 studies met our inclusion criteria. This systematic review study examined 105 miRNAs, of which 44 have a positive effect, and 47 miRNAs inhibit tamoxifen function. Fourteen miRNAs have a controversial effect, ie, some studies show positive and negative effects. The study of miRNAs affecting tamoxifen function in breast cancer patients may facilitate the identification of individuals at higher risk of disease recurrence. Conversely, it can potentially utilize appropriate interventions to defeat drug resistance effectively.
Collapse
Affiliation(s)
- Nima Nikbin Kavishahi
- Department of Medical Genetics, Student Research Committee, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sara Jalalian
- Medical Doctor Student, Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
2
|
To KKW, Huang Z, Zhang H, Ashby CR, Fu L. Utilizing non-coding RNA-mediated regulation of ATP binding cassette (ABC) transporters to overcome multidrug resistance to cancer chemotherapy. Drug Resist Updat 2024; 73:101058. [PMID: 38277757 DOI: 10.1016/j.drup.2024.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/27/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Multidrug resistance (MDR) is one of the primary factors that produces treatment failure in patients receiving cancer chemotherapy. MDR is a complex multifactorial phenomenon, characterized by a decrease or abrogation of the efficacy of a wide spectrum of anticancer drugs that are structurally and mechanistically distinct. The overexpression of the ATP-binding cassette (ABC) transporters, notably ABCG2 and ABCB1, are one of the primary mediators of MDR in cancer cells, which promotes the efflux of certain chemotherapeutic drugs from cancer cells, thereby decreasing or abolishing their therapeutic efficacy. A number of studies have suggested that non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), play a pivotal role in mediating the upregulation of ABC transporters in certain MDR cancer cells. This review will provide updated information about the induction of ABC transporters due to the aberrant regulation of ncRNAs in cancer cells. We will also discuss the measurement and biological profile of circulating ncRNAs in various body fluids as potential biomarkers for predicting the response of cancer patients to chemotherapy. Sequence variations, such as alternative polyadenylation of mRNA and single nucleotide polymorphism (SNPs) at miRNA target sites, which may indicate the interaction of miRNA-mediated gene regulation with genetic variations to modulate the MDR phenotype, will be reviewed. Finally, we will highlight novel strategies that could be used to modulate ncRNAs and circumvent ABC transporter-mediated MDR.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Zoufang Huang
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Hang Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
3
|
Gupta M, Walters B, Katsara O, Granados Blanco K, Geter P, Schneider R. eIF2Bδ blocks the integrated stress response and maintains eIF2B activity and cancer metastasis by overexpression in breast cancer stem cells. Proc Natl Acad Sci U S A 2023; 120:e2207898120. [PMID: 37014850 PMCID: PMC10104532 DOI: 10.1073/pnas.2207898120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 03/08/2023] [Indexed: 04/05/2023] Open
Abstract
Breast cancer (BC) metastasis involves cancer stem cells (CSCs) and their regulation by micro-RNAs (miRs), but miR targeting of the translation machinery in CSCs is poorly explored. We therefore screened miR expression levels in a range of BC cell lines, comparing non-CSCs to CSCs, and focused on miRs that target translation and protein synthesis factors. We describe a unique translation regulatory axis enacted by reduced expression of miR-183 in breast CSCs, which we show targets the eIF2Bδ subunit of guanine nucleotide exchange factor eIF2B, a regulator of protein synthesis and the integrated stress response (ISR) pathway. We report that reduced expression of miR-183 greatly increases eIF2Bδ protein levels, preventing strong induction of the ISR and eIF2α phosphorylation, by preferential interaction with P-eIF2α. eIF2Bδ overexpression is essential for BC cell invasion, metastasis, maintenance of metastases, and breast CSC expansion in animal models. Increased expression of eIF2Bδ, a site of action of the drug ISRIB that also prevents ISR signaling, is essential for breast CSC maintenance and metastatic capacity.
Collapse
Affiliation(s)
- Malavika Gupta
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
| | - Beth A. Walters
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
| | - Olga Katsara
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
| | - Karol Granados Blanco
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
| | - Phillip A. Geter
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
| | - Robert J. Schneider
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- New York University Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY10016
| |
Collapse
|
4
|
Zhou Y, Sun L, Zhang Y, Chen K. Micro ribonucleic acid-448 regulates zinc finger e-box binding homeobox 1 to inhibit the growth of breast cancer cells and increase their sensitivity to chemotherapy. Clinics (Sao Paulo) 2022; 77:100089. [PMID: 35905576 PMCID: PMC9335378 DOI: 10.1016/j.clinsp.2022.100089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/02/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the effect of Zinc Finger E-box Binding Homeobox 1 (ZEB1) regulation by Micro Ribonucleic acid (miR)-448 on Breast Cancer (BC) cells and their sensitivity to chemotherapy. METHODS miR-448 and ZEB1 mRNA levels in BC and normal tissues were detected by qPCR, and ZEB1 protein was detected by Western Blotting (WB). The correlation between miR-448 and tumor metastasis, clinical staging, and ZEB1 expression was analyzed. MCF-7 cells were transfected or co-transfected with the miR-448 mimic, oe-ZEB1, or their negative controls. Changes in miR-448 and ZEB1 expression were detected by qPCR and WB. Cell proliferation was determined by CCK-8 assays, invasion changes were analyzed by Transwell assays, and apoptosis was detected by flow cytometry. RESULTS miR-448 expression in BC tissues was lower than that in normal tissues, while ZEB1 expression was increased in the former. ZEB1 expression was lower in BC patients with lymph node metastasis than in those without. In patients with clinical stage I-III BC, miR-448 expression decreased with an increase in tumor stage, which was negatively correlated with ZEB1 expression. Upregulation of miR-448 expression can suppress MCF-7 cell proliferation and invasion and promote apoptosis. Upregulation of ZEB1 expression in cells overexpressing miR-448 can partially reverse the inhibition of BC cell growth induced by miR-448. miR-448 can enhance the sensitivity of cells toward paclitaxel and 5-fluorouracil. CONCLUSIONS miR-448 suppresses cell proliferation and invasion and promotes apoptosis by targeting ZEB1. Moreover, it can increase the sensitivity of cells toward paclitaxel and 5-fluorouracil.
Collapse
Affiliation(s)
- Yizhou Zhou
- Department of Oncology, the First Affiliated Hospital of Soochow University, Soochow, Jiangsu, China
| | - Li Sun
- Department of Oncology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Yangmei Zhang
- Department of Oncology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Kai Chen
- Department of Oncology, the First Affiliated Hospital of Soochow University, Soochow, Jiangsu, China.
| |
Collapse
|
5
|
Garrido-Cano I, Pattanayak B, Adam-Artigues A, Lameirinhas A, Torres-Ruiz S, Tormo E, Cervera R, Eroles P. MicroRNAs as a clue to overcome breast cancer treatment resistance. Cancer Metastasis Rev 2021; 41:77-105. [PMID: 34524579 PMCID: PMC8924146 DOI: 10.1007/s10555-021-09992-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/02/2021] [Indexed: 12/31/2022]
Abstract
Breast cancer is the most frequent cancer in women worldwide. Despite the improvement in diagnosis and treatments, the rates of cancer relapse and resistance to therapies remain higher than desirable. Alterations in microRNAs have been linked to changes in critical processes related to cancer development and progression. Their involvement in resistance or sensitivity to breast cancer treatments has been documented by different in vivo and in vitro experiments. The most significant microRNAs implicated in modulating resistance to breast cancer therapies are summarized in this review. Resistance to therapy has been linked to cellular processes such as cell cycle, apoptosis, epithelial-to-mesenchymal transition, stemness phenotype, or receptor signaling pathways, and the role of microRNAs in their regulation has already been described. The modulation of specific microRNAs may modify treatment response and improve survival rates and cancer patients' quality of life. As a result, a greater understanding of microRNAs, their targets, and the signaling pathways through which they act is needed. This information could be useful to design new therapeutic strategies, to reduce resistance to the available treatments, and to open the door to possible new clinical approaches.
Collapse
Affiliation(s)
| | | | | | - Ana Lameirinhas
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | | | - Eduardo Tormo
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain.,Center for Biomedical Network Research On Cancer, CIBERONC-ISCIII, 28029, Madrid, Spain
| | | | - Pilar Eroles
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain. .,Center for Biomedical Network Research On Cancer, CIBERONC-ISCIII, 28029, Madrid, Spain. .,Department of Physiology, University of Valencia, 46010, Valencia, Spain.
| |
Collapse
|
6
|
Jamialahmadi K, Zahedipour F, Karimi G. The role of microRNAs on doxorubicin drug resistance in breast cancer. J Pharm Pharmacol 2021; 73:997-1006. [PMID: 33942851 DOI: 10.1093/jpp/rgaa031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Resistance to chemotherapeutic drugs is a serious challenge for effective therapy of cancers. Doxorubicin is a drug which is typically used for breast cancer treatment. Several mechanisms are involved in resistance to doxorubicin including overexpression of ATP-binding cassette (ABC) transporters, altering apoptosis, autophagy and cell cycle arrest. In this review, we focus on the potential effects of microRNAs on doxorubicin resistance in breast cancer. METHODS Literature review focusing on the 'microRNAs and doxorubicin drug resistance in breast cancer' was conducted comprehensively. The search was performed in PubMed, Scopus, Google and Google Scholar databases and reference lists of relevant articles were also included. KEY FINDINGS MicroRNAs play essential role in resistance of breast cancer to doxorubicin by affecting several key cellular pathways, including overexpression of ABC transporters, altering apoptosis, autophagy and cell signaling pathways, cell cycle arrest, epithelial to mesenchymal transition (EMT) and cancer stem cells (CSCs). CONCLUSIONS Cancer treatment methods are moving from conventional therapies to targeted therapies such as using microRNAs. MiRNAs can act as regulatory molecules to overcome breast cancer doxorubicin resistance by controlling the expression levels of genes involved in different cellular pathways. Thus, exact elucidation of their role in different cellular processes can help overcome the breast cancer development and drug resistance.
Collapse
Affiliation(s)
- Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zahedipour
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Chen Y, Lin Y, Cui Z. Identification of adriamycin resistance genes in breast cancer based on microarray data analysis. Transl Cancer Res 2020; 9:7486-7494. [PMID: 35117349 PMCID: PMC8797850 DOI: 10.21037/tcr-19-2145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/05/2020] [Indexed: 11/06/2022]
Abstract
Background Breast cancer is a common malignant tumor with increasing incidence worldwide. This study aimed to investigate the molecular mechanisms of the adriamycin (ADR) resistance in breast cancer. Methods The GSE76540 dataset downloaded from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database was adopted for analysis. Differentially expressed genes (DEGs) in chemo-sensitive cases and chemo-resistant cases were identified using the GEO2R online tool respectively. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs were carried out by using the DAVID online tool. The protein-protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes (STRING) and visualized with Cytoscape software. The impact of key tumor genes on the survival and prognosis were described. Results A total of 1,481 DEGs were excavated, including 549 up-regulated genes and 932 down-regulated genes. According to the GO analysis, the DEGs were significantly enriched in: extracellular matrix organization, positive regulation of transcription from RNA polymerase II promoter, lung development, positive regulation of gene expression, axon guidance and so on. The results of KEGG pathway enrichment analysis showed that the most enriched DEGs can be detected in: pathways in cancer, PI3K/AKT signaling pathway, focal adhesion, Ras signaling pathway and so on. In the PPI network analysis, hub genes of CDH1, ESR1, SOX2, AR, GATA3, FOXA1, KRT19, CLDN7, AGR2, ESRP1, RAB25, CLDN4, IGF1R, CLDN3 and IRS1 were detected. Finally, there is a correlation filter out these hub genes in resistance of ADR. Conclusions Hub genes associated with ADR resistance were identified using bioinformatic techniques. The results of this study may contribute to the development of targeted therapy for breast cancer.
Collapse
Affiliation(s)
- Yan Chen
- Laboratory of Biochemistry and Molecular Biology Research, Fujian Provincial Key Laboratory of Tumor Biotherapy, Department of Clinical Laboratory, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Yingfeng Lin
- Laboratory of Biochemistry and Molecular Biology Research, Fujian Provincial Key Laboratory of Tumor Biotherapy, Department of Clinical Laboratory, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Zhaolei Cui
- Laboratory of Biochemistry and Molecular Biology Research, Fujian Provincial Key Laboratory of Tumor Biotherapy, Department of Clinical Laboratory, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| |
Collapse
|
8
|
The microRNA-424/503 cluster: A master regulator of tumorigenesis and tumor progression with paradoxical roles in cancer. Cancer Lett 2020; 494:58-72. [PMID: 32846190 DOI: 10.1016/j.canlet.2020.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 08/08/2020] [Accepted: 08/19/2020] [Indexed: 01/21/2023]
Abstract
MicroRNAs (miRNAs) are a group of non-coding RNAs that play a crucial role in post-transcriptional gene regulation and act as indispensable mediators in several critical biological processes, including tumorigenesis, tissue homeostasis, and regeneration. MiR-424 and miR-503 are intragenic miRNAs that are clustered on human chromosome Xq26.3. Previous studies have reported that both miRNAs are dysregulated and play crucial but paradoxical roles in tumor initiation and progression, involving different target genes and molecular pathways. Moreover, these two miRNAs are concomitantly expressed in several cancer cells, indicating a coordinating function as a cluster. In this review, the roles and regulatory mechanisms of miR-424, miR-503, and miR-424/503 cluster are summarized in different types of cancers.
Collapse
|
9
|
Mechanisms of tRNA-derived fragments and tRNA halves in cancer treatment resistance. Biomark Res 2020; 8:52. [PMID: 33072328 PMCID: PMC7559774 DOI: 10.1186/s40364-020-00233-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/02/2020] [Indexed: 12/22/2022] Open
Abstract
The tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs) are newly discovered noncoding RNAs in recent years. They are derived from specific cleavage of mature and pre-tRNAs and expressed in various cancers. They enhance cell proliferation and metastasis or inhibit cancer progression. Many studies have investigated their roles in the diagnosis, progression, metastasis, and prognosis of various cancers, but the mechanisms through which they are involved in resistance to cancer treatment are unclear. This review outlines the classification of tRFs and tiRNAs and their mechanisms in cancer drug resistance, thus providing new ideas for cancer treatment.
Collapse
|
10
|
Aberuyi N, Rahgozar S, Pourabutaleb E, Ghaedi K. Selective dysregulation of ABC transporters in methotrexate-resistant leukemia T-cells can confer cross-resistance to cytarabine, vincristine and dexamethasone, but not doxorubicin. Curr Res Transl Med 2020; 69:103269. [PMID: 33071214 DOI: 10.1016/j.retram.2020.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/15/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023]
Abstract
Pediatric acute lymphoblastic leukemia (pALL) includes 75 % of childhood leukemias, and methotrexate (MTX) is one of the most effective chemotherapy agents prescribed for pALL treatment. The aim of this study was to establish and characterize an MTX-resistant tumor cell model in order to study the mechanism contributing to drug sensitivity loss in pALL. Parental CCRF-CEM cells were treated with a gradual increasing concentration of MTX from 5 nM to 1.28 μM. The resistant subline was then characterized according to the cellular morphology, cellular growth curves and specific mRNA expression changes associated with drug resistance in ALL. Moreover, in vitro cytotoxicity assays were used to analyze cells relative responsiveness to a set of clinically used anti-ALL chemotherapy drugs. The morphological changes observed in the new R-CCRF-CEM/MVCD subline were associated with dysregulation of the EMT-related genes, Twist1 and CDH1. Cells demonstrated downregulation of ABCC1 and the overexpression of ABCA2, ABCA3, and ABCB1 membrane transporters. However, short treatment of the sensitive and parental cell line with MTX did not affect the expression profiles of the former ABC pumps. Moreover, R-CCRF-CEM/MVCD cells demonstrated cross-resistance to cytarabine (cytosine arabinoside, ara-C), vincristine, and dexamethasone, but not doxorubicin. The induced cross-resistance to specific chemotherapy drugs may possibly be attributed to selective dysregulation of the ABC transporters and EMT-related genes. These data may pave the way for the development of new cancer therapeutic strategies.
Collapse
Affiliation(s)
- Narges Aberuyi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Iran
| | - Soheila Rahgozar
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Iran.
| | - Elnaz Pourabutaleb
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Iran
| |
Collapse
|
11
|
Liu M, Gong C, Xu R, Chen Y, Wang X. MicroRNA-5195-3p enhances the chemosensitivity of triple-negative breast cancer to paclitaxel by downregulating EIF4A2. Cell Mol Biol Lett 2019; 24:47. [PMID: 31308851 PMCID: PMC6604428 DOI: 10.1186/s11658-019-0168-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/04/2019] [Indexed: 02/05/2023] Open
Abstract
Background Chemotherapy based on paclitaxel (PTX) is the standard treatment for a range of cancers, including triple-negative breast cancer (TNBC), but the increasing development of resistance has reduced/has negatively impacted its clinical utility. A previous study demonstrated that miR-5195-3p could suppress lung cancer cell growth. This study was designed to investigate whether miR-5195-3p attenuates chemoresistance to PTX by regulating target genes in TNBC cells. Methods The study used both PTX-resistant tumor tissues and PTX-resistant TNBC cell lines. The expression of miR-5195-3p was determined using quantitative real-time PCR. Cell viability, cell cycle distribution and apoptosis were analyzed using CCK-8 and flow cytometry assays. The target genes of miR-5195-3p were predicted with bioinformatics analysis and confirmed using the luciferase reporter assay. Results MiR-5195-3p expression was lower in PTX-resistant tumor tissues and PTX-resistant TNBC cell lines. Upregulation of miR-5195-3p enhanced the sensitivity of PTX-resistant TNBC cells to PTX treatment. EIF4A2 was confirmed as a potential target of miR-5195-3p. EIF4A2 knockdown imitated the effects of miR-5195-3p on chemosensitivity, while restoration of EIF4A2 rescued them. Conclusion These data demonstrate that miR-5195-3p might be a potential therapeutic target to reverse chemoresistance in TNBC through its targeting of EIF4A2.
Collapse
Affiliation(s)
- Mei Liu
- Department of Breast Surgery, West China Hospital of Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041 Sichuan Province China
| | - Can Gong
- Department of Breast Surgery, West China Hospital of Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041 Sichuan Province China
| | - Renyuan Xu
- Department of Breast Surgery, West China Hospital of Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041 Sichuan Province China
| | - Yu Chen
- Department of Breast Surgery, West China Hospital of Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041 Sichuan Province China
| | - Xiaodong Wang
- Department of Breast Surgery, West China Hospital of Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041 Sichuan Province China
| |
Collapse
|
12
|
Song YK, Wang Y, Wen YY, Zhao P, Bian ZJ. MicroRNA-22 Suppresses Breast Cancer Cell Growth and Increases Paclitaxel Sensitivity by Targeting NRAS. Technol Cancer Res Treat 2019; 17:1533033818809997. [PMID: 30384806 PMCID: PMC6259065 DOI: 10.1177/1533033818809997] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In recent study, microRNAs have various important functions in diverse biological
processes and progression of cancer. In human breast cancer, microRNA-22 has been reported
to be downregulated. However, molecular mechanism of microRNA-22 in breast cancer
progression and chemosensitivity has not been well studied. In our study, these results
demonstrated that microRNA-22 expression levels were significantly reduced in 40 pairs of
human breast cancer tissues when compared to normal tissues. Enforced expression of
microRNA-22 inhibited activity of cell proliferation and cell migration in breast cancer
cells. Furthermore, microRNA-22 targeted NRAS proto-oncogene, GTPase (NRAS) in breast
cancer cells. The expression levels of NRAS in human clinical specimens were higher in
breast cancer tissues when compared to normal tissues. Moreover, microRNA-22 sensitized
breast cancer cells to paclitaxel by regulation of NRAS. Our results then demonstrated
that microRNA-22 functioned as a tumor suppressor microRNA and indicated potential
application for the diagnosis and treatment of cancer in the future.
Collapse
Affiliation(s)
- Ying-Kui Song
- 1 Intensive Care Unit, Jining No. 1 People's Hospital, Jining, Shandong Province, People's Republic of China
| | - Yang Wang
- 2 Department of Breast and Thyroid, Jining No. 1 People's Hospital, Jining, Shandong Province, People's Republic of China
| | - Yi-Yang Wen
- 3 Department of Pathology, Jining No. 1 People's Hospital, Jining, Shandong Province, People's Republic of China
| | - Pei Zhao
- 2 Department of Breast and Thyroid, Jining No. 1 People's Hospital, Jining, Shandong Province, People's Republic of China
| | - Zhi-Jie Bian
- 2 Department of Breast and Thyroid, Jining No. 1 People's Hospital, Jining, Shandong Province, People's Republic of China
| |
Collapse
|
13
|
Hu D, Li M, Su J, Miao K, Qiu X. Dual-Targeting of miR-124-3p and ABCC4 Promotes Sensitivity to Adriamycin in Breast Cancer Cells. Genet Test Mol Biomarkers 2019; 23:156-165. [PMID: 30807260 DOI: 10.1089/gtmb.2018.0259] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
AIMS Increasing evidence links the abnormal expression of microRNAs and ATP-binding cassette subfamily C member 4 (ABCC4) with tumor development and progression, as well as with chemoresistance. Our aims were to determine the therapeutic potential of targeting both miR-124-3p and ABCC4 in breast cancer cells and to determine if duel targeting increased their sensitivity to chemotherapeutic drugs, in vitro. MATERIALS AND METHODS The expression of the ABCC4 protein and miR-124-3p were detected, respectively, by immunohistochemical staining and quantitative real-time polymerase chain reaction in breast cancer tumor tissue, MCF-7 and MCF-7-ADR cell lines. Suppression of ABCC4 expression and miR-124-3p overexpression were performed in MCF-7-ADR cell lines. Western blot assays were used to detect expression of ABCC4 and permeability glycoprotein 1/multi-drug resistance protein 1 (P-gp) in cells. Cell Counting Kit-8, flow cytometry, transwell, and scratch assays were conducted to detect cell proliferation, cell cycle, invasion, and migration of cells. RESULTS We found that ABCC4 protein expression was significantly increased, while the miR-124-3p level was significantly decreased in breast cancer tissue and cell lines. Tumor size and clinical tumor node metastasis stage were significantly correlated with elevated expression of ABCC4 and decreased expression of miR-124-3p. Interestingly, ABCC4 expression was significantly increased in MCF-7-ADR cells, while miR-124-3p level was significantly decreased compared with MCF-7 cells. The inhibition of ABCC4 and miR-124-3p overexpression both led to a significant decrease in cell proliferation, invasion, and migration of MCF-7-ADR cells, and combination of suppression of ABCC4 with miR-124-3p overexpression had a synergistic inhibitory effect. Our results further demonstrated that inhibition of ABCC4 expression and overexpression of miR-124-3p significantly enhanced the sensitivity to adriamycin (ADR) in MCF-7-ADR cells, and that simultaneous dual-targeting of miR-124-3p and ABCC4 had a stronger promotive effect on the sensitivity to ADR in MCF-7-ADR cells. Moreover, western blot analysis showed that miR-124-3p overexpression significantly inhibited P-gp expression in MCF-7-ADR cells. CONCLUSION Our data demonstrate that the combination of downregulation of ABCC4 with overexpression of miR-124-3p significantly increased sensitivity to ADR in MCF-7-ADR cells. This finding suggests that similar dual targeting may serve as a means to enhance therapies for drug-resistant breast cancers.
Collapse
Affiliation(s)
- Di Hu
- 1 Department of Breast Disease Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Mengquan Li
- 1 Department of Breast Disease Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Jing Su
- 1 Department of Breast Disease Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Keke Miao
- 1 Department of Breast Disease Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Xinguang Qiu
- 2 Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
14
|
Zhou Q, Song C, Liu X, Qin H, Miao L, Zhang X. Peptidylarginine deiminase 4 overexpression resensitizes MCF-7/ADR breast cancer cells to adriamycin via GSK3β/p53 activation. Cancer Manag Res 2019; 11:625-636. [PMID: 30666159 PMCID: PMC6331075 DOI: 10.2147/cmar.s191353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Adriamycin (ADR) is widely used in the clinical chemotherapy against breast cancer. But its efficacy is strongly limited due to the acquisition of multidrug resistance (MDR). Therefore, acquisition of the resistance to ADR is still a major cause of chemotherapy failure in breast cancer patients. Peptidylarginine deiminase IV (PAD4) is reported to target non-histone proteins for citrullination, regulate their substrate activities, and thereby play critical roles in maintaining cell phenotype in breast cancer cells. However, whether PAD4 is involved in the development of MDR in breast cancer is poorly understood. Materials and methods We examined the expression of PAD family members, including PAD4 in ADR-resistant MCF-7 cells compared with the parental control cells by real-time PCR and Western blotting analyses. Rescue of PAD4 expression in MCF-7/ADR cells was performed to assess whether PAD4 could restore the sensitivity of MCF-7/ADR cells to ADR treatment with cell counting kit-8, flow cytometry, TUNEL, nuclear and cytoplasmic extract preparations, and immunofluorescence staining analyses. Results Both PAD2 and PAD4 were significantly decreased in ADR-resistant cells. However, only PAD4 overexpression can increase the sensitivity of MCF-7/ADR cells to ADR treatment and decrease MDR1 gene expression. Overexpression of PAD4 in MCF-7/ADR cells inhibited cell proliferation by inducing cell apoptosis. Under ADR treatment, overexpression of PAD4 promoted nuclear accumulation of glycogen synthase kinase-3β and p53, which further activated proapoptotic gene expression and downregulated MDR1 expression. Moreover, PAD4 activity was required for activating proapoptotic gene transcripts. Conclusion We demonstrate the previously unappreciated role of PAD4 in reversing ADR resistance in MCF-7/ADR cells and help establish PAD4 as a candidate biomarker of prognosis and chemotherapy target for MDR in breast cancers.
Collapse
Affiliation(s)
- Qianqian Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China,
| | - Chao Song
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China,
| | - Xiaoqiu Liu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China.,Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - Hao Qin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China,
| | - Lixia Miao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China,
| | - Xuesen Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China,
| |
Collapse
|
15
|
Zeng H, Wang L, Wang J, Chen T, Li H, Zhang K, Chen J, Zhen S, Tuluhong D, Li J, Wang S. microRNA-129-5p suppresses Adriamycin resistance in breast cancer by targeting SOX2. Arch Biochem Biophys 2018; 651:52-60. [PMID: 29802821 DOI: 10.1016/j.abb.2018.05.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022]
Abstract
Adriamycin resistance is closely related to therapeutic efficacy in breast cancer patients and their prognosis. Increasing evidence has suggested that miRNA functions in Adriamycin resistance in various types of cancer. microRNA-129-5p (miR-129-5p) has been considered a tumor-suppressive miRNA in several cancers, but its potential role in Adriamycin resistance in breast cancer has not been fully elucidate. By qRT-PCR assay, we revealed that the expression of miR-129-5p was significantly decreased in breast cancer tissues and Adriamycin-resistant breast cancer cells (MDA-MB-231/ADR, MCF-7/ADR). CCK-8, colony formation, wound healing, Transwell invasion, and flow cytometric profiles were examined to determine the influence of miR-129-5p on Adriamycin-resistant breast cancer in vitro. The upregulation of miR-129-5p decreased the IC50 concentration of Adriamycin and invasion and promoted the apoptosis of MDA-MB-231/ADR cells in the presence of Adriamycin, whereas the upregulation of Sex-Determining Region Y-Box 2 (SOX2) reversed these effects. A luciferase reporter assay confirmed the binding of miR-129-5p to the 3'UTR of SOX2. Collectively, it was suggested that miR-129-5p suppresses Adriamycin resistance in breast cancer by directly targeting SOX2.
Collapse
Affiliation(s)
- Huijuan Zeng
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, PR China
| | - Lulu Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, PR China
| | - Jingjie Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, PR China
| | - Tao Chen
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, PR China
| | - Hanjun Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, PR China
| | - Kai Zhang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, PR China
| | - Jing Chen
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, PR China
| | - Shuang Zhen
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, PR China
| | - Dilihumaer Tuluhong
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, PR China
| | - Jieshou Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, PR China.
| | - Shaohua Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing, PR China.
| |
Collapse
|