1
|
Golara A, Kozłowski M, Cymbaluk-Płoska A. The Role of Circulating Tumor DNA in Ovarian Cancer. Cancers (Basel) 2024; 16:3117. [PMID: 39335089 PMCID: PMC11430586 DOI: 10.3390/cancers16183117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Ovarian cancer is the deadliest of all gynecological diseases because its diagnosis and treatment still pose many problems. Surgical excision, hormone therapy, radiation, chemotherapy, or targeted therapy for eradicating the main tumor and halting the spread of metastases are among the treatment options available to individuals with ovarian cancer, depending on the disease's stage. Tumor DNA that circulates in a patient's bodily fluids has been studied recently as a possible novel biomarker for a number of cancers, as well as a means of quantifying tumor size and evaluating the efficacy of cancer therapy. The most significant alterations that we could find in the ctDNA of ovarian cancer patients-such as chromosomal instability, somatic mutations, and methylation-are discussed in this review. Additionally, we talk about the utility of ctDNA in diagnosis, prognosis, and therapy response prediction for these patients.
Collapse
Affiliation(s)
- Anna Golara
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Mateusz Kozłowski
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | | |
Collapse
|
2
|
Trevisi E, Sessa C, Colombo I. Clinical relevance of circulating tumor DNA in ovarian cancer: current issues and future opportunities. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:627-640. [PMID: 38966171 PMCID: PMC11220313 DOI: 10.37349/etat.2024.00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 03/13/2024] [Indexed: 07/06/2024] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecologic malignancy worldwide. Due to the lack of effective screening and early detection strategies, many patients with OC are diagnosed with advanced disease, where treatment is rarely curative. Moreover, OC is characterized by high intratumor heterogeneity, which represents a major barrier to the development of effective treatments. Conventional tumor biopsy and blood-based biomarkers, such as cancer antigen 125 (CA125), have different limitations. Liquid biopsy has recently emerged as an attractive and promising area of investigation in oncology, due to its minimally invasive, safe, comprehensive, and real-time dynamic nature. Preliminary evidence suggests a potential role of liquid biopsy to refine OC management, by improving screening, early diagnosis, assessment of response to treatment, detection, and profiling of drug resistance. The current knowledge and the potential clinical value of liquid biopsy in OC is discussed in this review to provide an overview of the clinical settings in which its use might support and improve diagnosis and treatment.
Collapse
Affiliation(s)
- Elena Trevisi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland
| | - Cristiana Sessa
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland
| | - Ilaria Colombo
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland
| |
Collapse
|
3
|
Duan C, Yan Z, Wu C, Zhou X, Bao W. DNA methylation characteristics associated with chemotherapy resistance in epithelial ovarian cancer. Heliyon 2024; 10:e27212. [PMID: 38468944 PMCID: PMC10926131 DOI: 10.1016/j.heliyon.2024.e27212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Objective The high mortality rate of epithelial ovarian cancer (EOC) is often attributed to the frequent development of chemoresistance. DNA methylation is a predictive biomarker for chemoresistance. Methods This study utilized DNA methylation profiles and relevant information from GEO and TCGA to identify different methylated CpG sites (DMCs) between chemoresistant and chemosensitive patients. Subsequently, we constructed chemoresistance risk models with DMCs. The genes corresponding to candidate DMCs in chemoresistance risk models were further analyzed to identify different methylated gene symbols (DMGs) associated with chemoresistance. The DMGs that showed a strong correlation with the corresponding DMCs were analyzed through immunohistochemistry. Results Compared to chemosensitive EOC patients, chemoresistant patients showed 423 hypermethylated CpGs and 1445 hypomethylated CpGs. The chemoresistance risk models based on DMCs have shown the improved predictive ability for chemoresistance in EOC (AUC = 65.0-76.2%). The methylations of cg25510164, cg13154880, cg15362155 and cg08665359 were strongly associated with decreased risk of chemoresistance. Conversely, the methylation of cg08872590 and cg14739437 significantly increased the risk. We identified 13 DMGs, from 47 DMCs corresponding genes, between chemosensitive and chemoresistant samples. Among the DMGs, the expression levels of DDR2 and OPCML exhibited strong correlations with the corresponding DMCs. DDR2 and OPCML both showed enhanced expression in chemoresistant ovarian microarray tissue. Conclusions Hypomethylated CpGs may play a significant role in DNA methylation associated with chemoresistance in EOC. The epigenetic modification of DDR2 could have important implications for the development of chemoresistance. Our study provides valuable insights for future research on DNA methylation in the chemoresistance of EOC.
Collapse
Affiliation(s)
| | | | - Cailiang Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Xuexin Zhou
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Wei Bao
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| |
Collapse
|
4
|
Wilczyński J, Paradowska E, Wilczyński M. High-Grade Serous Ovarian Cancer-A Risk Factor Puzzle and Screening Fugitive. Biomedicines 2024; 12:229. [PMID: 38275400 PMCID: PMC10813374 DOI: 10.3390/biomedicines12010229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the most lethal tumor of the female genital tract. Despite extensive studies and the identification of some precursor lesions like serous tubal intraepithelial cancer (STIC) or the deviated mutational status of the patients (BRCA germinal mutation), the pathophysiology of HGSOC and the existence of particular risk factors is still a puzzle. Moreover, a lack of screening programs results in delayed diagnosis, which is accompanied by a secondary chemo-resistance of the tumor and usually results in a high recurrence rate after the primary therapy. Therefore, there is an urgent need to identify the substantial risk factors for both predisposed and low-risk populations of women, as well as to create an economically and clinically justified screening program. This paper reviews the classic and novel risk factors for HGSOC and methods of diagnosis and prediction, including serum biomarkers, the liquid biopsy of circulating tumor cells or circulating tumor DNA, epigenetic markers, exosomes, and genomic and proteomic biomarkers. The novel future complex approach to ovarian cancer diagnosis should be devised based on these findings, and the general outcome of such an approach is proposed and discussed in the paper.
Collapse
Affiliation(s)
- Jacek Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland;
| | - Miłosz Wilczyński
- Department of Surgical, Endoscopic and Gynecological Oncology, Polish Mother’s Health Center—Research Institute, 281/289 Rzgowska Str., 93-338 Lodz, Poland;
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| |
Collapse
|
5
|
Gao Y, Zhou N, Liu J. Ovarian Cancer Diagnosis and Prognosis Based on Cell-Free DNA Methylation. Cancer Control 2024; 31:10732748241255548. [PMID: 38764160 PMCID: PMC11104031 DOI: 10.1177/10732748241255548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024] Open
Abstract
Background: Ovarian cancer stands as the deadliest malignant tumor within the female reproductive tract. As a result of the absence of effective diagnostic and monitoring markers, 75% of ovarian cancer cases are diagnosed at a late stage, leading to a mere 50% survival rate within five years. The advancement of molecular biology is essential for accurate diagnosis and treatment of ovarian cancer. Methods: A review of several randomized clinical trials, focusing on the ovarian cancer, was undertaken. The advancement of molecular biology and diagnostic methods related to accurate diagnosis and treatment of ovarian cancer were examined. Results: Liquid biopsy is an innovative method of detecting malignant tumors that has gained increasing attention over the past few years. Cell-free DNA assay-based liquid biopsies show potential in delineating tumor status heterogeneity and tracking tumor recurrence. DNA methylation influences a multitude of biological functions and diseases, especially during the initial phases of cancer. The cell-free DNA methylation profiling system has emerged as a sensitive and non-invasive technique for identifying and detecting the biological origins of cancer. It holds promise as a biomarker, enabling early screening, recurrence monitoring, and prognostic evaluation of cancer. Conclusions: This review evaluates recent advancements and challenges associated with cell-free DNA methylation analysis for the diagnosis, prognosis monitoring, and assessment of therapeutic responses in the management of ovarian cancers, aiming to offer guidance for precise diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Yajuan Gao
- Department of Gynecology and Obstetrics, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Nanyang Zhou
- Department of Traditional Chinese Medicine, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Jie Liu
- Department of Gynecology and Obstetrics, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| |
Collapse
|
6
|
Zhang H, Wang L, Wu H. Liquid biopsy in ovarian cancer in China and the world: current status and future perspectives. Front Oncol 2023; 13:1276085. [PMID: 38169730 PMCID: PMC10758434 DOI: 10.3389/fonc.2023.1276085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024] Open
Abstract
Ovarian cancer (OC) is the eighth most common cancer in women, but the mild, non-specific clinical presentation in early stages often prevents diagnosis until progression to advanced-stage disease, contributing to the high mortality associated with OC. While serum cancer antigen 125 (CA-125) has been successfully used as a blood-borne marker and is routinely monitored in patients with OC, CA-125 testing has limitations in sensitivity and specificity and does not provide direct information on important molecular characteristics that can guide treatment decisions, such as homologous recombination repair deficiency. We comprehensively review the literature surrounding methods based on liquid biopsies, which may provide improvements in sensitivity, specificity, and provide valuable additional information to enable early diagnosis, monitoring of recurrence/progression/therapeutic response, and accurate prognostication for patients with OC, highlighting applications of this research in China.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lingxia Wang
- MRL Global Medical Affairs, MSD China, Shanghai, China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Brincat MR, Mira AR, Lawrence A. Current and Emerging Strategies for Tubo-Ovarian Cancer Diagnostics. Diagnostics (Basel) 2023; 13:3331. [PMID: 37958227 PMCID: PMC10647517 DOI: 10.3390/diagnostics13213331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Tubo-ovarian cancer is the most lethal gynaecological cancer. More than 75% of patients are diagnosed at an advanced stage, which is associated with poorer overall survival. Symptoms at presentation are vague and non-specific, contributing to late diagnosis. Multimodal risk models have improved the diagnostic accuracy of adnexal mass assessment based on patient risk factors, coupled with findings on imaging and serum-based biomarker tests. Newly developed ultrasonographic assessment algorithms have standardised documentation and enable stratification of care between local hospitals and cancer centres. So far, no screening test has proven to reduce ovarian cancer mortality in the general population. This review is an update on the evidence behind ovarian cancer diagnostic strategies.
Collapse
Affiliation(s)
- Mark R. Brincat
- Department of Gynaecological Oncology, Royal London Hospital, Barts Health NHS Trust, London E1 1FR, UK
| | - Ana Rita Mira
- Department of Gynaecological Oncology, Royal London Hospital, Barts Health NHS Trust, London E1 1FR, UK
- Hospital Garcia de Orta, 2805-267 Almada, Portugal
| | - Alexandra Lawrence
- Department of Gynaecological Oncology, Royal London Hospital, Barts Health NHS Trust, London E1 1FR, UK
| |
Collapse
|
8
|
Xia T, Fang C, Chen Y. Advances in application of circulating tumor DNA in ovarian cancer. Funct Integr Genomics 2023; 23:250. [PMID: 37479960 DOI: 10.1007/s10142-023-01181-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Ovarian cancer is the third most common gynecologic cancer worldwide and has the highest mortality rate among gynecologic cancers. Identifying timely and effective biomarkers at different stages of the disease is the key to improve the prognosis of ovarian cancer patients. Circulating tumor DNA (ctDNA) is a fragment of free DNA produced by tumor cells in the blood. Current techniques for detecting ctDNA mainly include quantitative polymerase chain reaction (PCR), targeted next-generation sequencing (NGS), and non-targeted NGS (such as whole exon or whole genome sequencing). As a non-invasive liquid biopsy technique, ctDNA has a good application prospect in the ovarian cancer diagnosis, monitoring of treatment response and efficacy evaluation, detection of reverse mutation and related medication guidance, and prognosis evaluation. This article reviews the advances in application of ctDNA in ovarian cancer.
Collapse
Affiliation(s)
- Ting Xia
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Chenyan Fang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Yaqing Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
9
|
Terp SK, Stoico MP, Dybkær K, Pedersen IS. Early diagnosis of ovarian cancer based on methylation profiles in peripheral blood cell-free DNA: a systematic review. Clin Epigenetics 2023; 15:24. [PMID: 36788585 PMCID: PMC9926627 DOI: 10.1186/s13148-023-01440-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/05/2023] [Indexed: 02/16/2023] Open
Abstract
Patients diagnosed with epithelial ovarian cancer (OC) have a 5-year survival rate of 49%. For early-stage disease, the 5-year survival rate is above 90%. However, advanced-stage disease accounts for most cases as patients with early stages often are asymptomatic or present with unspecific symptoms, highlighting the need for diagnostic tools for early diagnosis. Liquid biopsy is a minimal invasive blood-based approach that utilizes circulating tumor DNA (ctDNA) shed from tumor cells for real-time detection of tumor genetics and epigenetics. Increased DNA methylation of promoter regions is an early event during tumorigenesis, and the methylation can be detected in ctDNA, accentuating the promise of methylated ctDNA as a biomarker for OC diagnosis. Many studies have investigated multiple methylation biomarkers in ctDNA from plasma or serum for discriminating OC patients from patients with benign diseases of the ovaries and/or healthy females. This systematic review summarizes and evaluates the performance of the currently investigated DNA methylation biomarkers in blood-derived ctDNA for early diagnosis of OC. PubMed's MEDLINE and Elsevier's Embase were systematically searched, and essential results such as methylation frequency of OC cases and controls, performance measures, as well as preanalytical factors were extracted. Overall, 29 studies met the inclusion criteria for this systematic review. The most common method used for methylation analysis was methylation-specific PCR, with half of the studies using plasma and the other half using serum. RASSF1A, BRCA1, and OPCML were the most investigated gene-specific methylation biomarkers, with OPCML having the best performance measures. Generally, methylation panels performed better than single gene-specific methylation biomarkers, with one methylation panel of 103,456 distinct regions and 1,116,720 CpGs having better performance in both training and validation cohorts. However, the evidence is still limited, and the promising methylation panels, as well as gene-specific methylation biomarkers highlighted in this review, need validation in large, prospective cohorts with early-stage asymptomatic OC patients to assess the true diagnostic value in a clinical setting.
Collapse
Affiliation(s)
- Simone Karlsson Terp
- Department of Molecular Diagnostics, Aalborg University Hospital, 9000, Aalborg, Denmark.
- Department of Clinical Medicine, Aalborg University, 9000, Aalborg, Denmark.
| | - Malene Pontoppidan Stoico
- Department of Molecular Diagnostics, Aalborg University Hospital, 9000, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, 9000, Aalborg, Denmark
| | - Karen Dybkær
- Department of Clinical Medicine, Aalborg University, 9000, Aalborg, Denmark
- Department of Hematology, Aalborg University Hospital, 9000, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, 9000, Aalborg, Denmark
| | - Inge Søkilde Pedersen
- Department of Molecular Diagnostics, Aalborg University Hospital, 9000, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, 9000, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, 9000, Aalborg, Denmark
| |
Collapse
|
10
|
Balla A, Bhak J, Biró O. The application of circulating tumor cell and cell-free DNA liquid biopsies in ovarian cancer. Mol Cell Probes 2022; 66:101871. [PMID: 36283501 DOI: 10.1016/j.mcp.2022.101871] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Ovarian cancer is the deadliest gynecological cancer. 70% of the cases are diagnosed at late stages with already developed metastases due to the absence of easily noticeable symptoms. Early-stage ovarian cancer has a good prognosis with a 5-year survival rate reaching 95%, hence the identification of effective biomarkers for early diagnosis is important. Advances in liquid biopsy-based methods can have a significant impact not just on the development of an efficient screening strategy, but also in clinical decision-making with additional molecular profiling and genetic alterations linked to therapy resistance. Despite the well-known advantages of liquid biopsy, there are still challenges that need to be addressed before its routine use in clinical practice. Various liquid biopsy-based biomarkers have been investigated in ovarian cancer; however, in this review, we are concentrating on the current use of cell-free DNA (cfDNA) and circulating tumor cells (CTCs) in disease management, focusing on their emerging importance in clinical practice. We also discuss the technical aspects of these workflows. The analysis of cfDNA is often chosen for the detection of mutations, copy number aberrations, and DNA methylation changes, whereas CTC analysis provides a unique opportunity to study whole cells, thus allowing DNA, RNA, and protein-based molecular profiling as well as in vivo studies. Combined solutions which merge the strengths of cfDNA and CTC approaches should be developed to maximize the potential of liquid biopsy technology.
Collapse
Affiliation(s)
- Abigél Balla
- Clinomics Europe Ltd., Budapest, Hungary; Semmelweis University, Károly Rácz Doctoral School of Clinical Medicine, Budapest, Hungary
| | - Jong Bhak
- Clinomics Inc. UNIST, Ulsan, 44916, Republic of Korea
| | | |
Collapse
|
11
|
Punzón-Jiménez P, Lago V, Domingo S, Simón C, Mas A. Molecular Management of High-Grade Serous Ovarian Carcinoma. Int J Mol Sci 2022; 23:13777. [PMID: 36430255 PMCID: PMC9692799 DOI: 10.3390/ijms232213777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) represents the most common form of epithelial ovarian carcinoma. The absence of specific symptoms leads to late-stage diagnosis, making HGSOC one of the gynecological cancers with the worst prognosis. The cellular origin of HGSOC and the role of reproductive hormones, genetic traits (such as alterations in P53 and DNA-repair mechanisms), chromosomal instability, or dysregulation of crucial signaling pathways have been considered when evaluating prognosis and response to therapy in HGSOC patients. However, the detection of HGSOC is still based on traditional methods such as carbohydrate antigen 125 (CA125) detection and ultrasound, and the combined use of these methods has yet to support significant reductions in overall mortality rates. The current paradigm for HGSOC management has moved towards early diagnosis via the non-invasive detection of molecular markers through liquid biopsies. This review presents an integrated view of the relevant cellular and molecular aspects involved in the etiopathogenesis of HGSOC and brings together studies that consider new horizons for the possible early detection of this gynecological cancer.
Collapse
Affiliation(s)
- Paula Punzón-Jiménez
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
| | - Victor Lago
- Department of Gynecologic Oncology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Department of Obstetrics and Gynecology, CEU Cardenal Herrera University, 46115 Valencia, Spain
| | - Santiago Domingo
- Department of Gynecologic Oncology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, 46010 Valencia, Spain
| | - Carlos Simón
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Universidad de Valencia, 46010 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA 02215, USA
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aymara Mas
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
| |
Collapse
|
12
|
Precision gynecologic oncology: circulating cell free DNA epigenomic analysis, artificial intelligence and the accurate detection of ovarian cancer. Sci Rep 2022; 12:18625. [PMID: 36329159 PMCID: PMC9633647 DOI: 10.1038/s41598-022-23149-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecologic cancer due primarily to its asymptomatic nature and late stage at diagnosis. The development of non-invasive markers is an urgent priority. We report the accurate detection of epithelial OC using Artificial Intelligence (AI) and genome-wide epigenetic analysis of circulating cell free tumor DNA (cfTDNA). In a prospective study, we performed genome-wide DNA methylation profiling of cytosine (CpG) markers. Both conventional logistic regression and six AI platforms were used for OC detection. Further, we performed Gene Set Enrichment Analysis (GSEA) analysis to elucidate the molecular pathogenesis of OC. A total of 179,238 CpGs were significantly differentially methylated (FDR p-value < 0.05) genome-wide in OC. High OC diagnostic accuracies were achieved. Conventional logistic regression achieved an area under the ROC curve (AUC) [95% CI] 0.99 [± 0.1] with 95% sensitivity and 100% specificity. Multiple AI platforms each achieved high diagnostic accuracies (AUC = 0.99-1.00). For example, for Deep Learning (DL)/AI AUC = 1.00, sensitivity = 100% and 88% specificity. In terms of OC pathogenesis: GSEA analysis identified 'Adipogenesis' and 'retinoblastoma gene in cancer' as the top perturbed molecular pathway in OC. This finding of epigenomic dysregulation of molecular pathways that have been previously linked to cancer adds biological plausibility to our results.
Collapse
|
13
|
Liberto JM, Chen SY, Shih IM, Wang TH, Wang TL, Pisanic TR. Current and Emerging Methods for Ovarian Cancer Screening and Diagnostics: A Comprehensive Review. Cancers (Basel) 2022; 14:2885. [PMID: 35740550 PMCID: PMC9221480 DOI: 10.3390/cancers14122885] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
With a 5-year survival rate of less than 50%, ovarian high-grade serous carcinoma (HGSC) is one of the most highly aggressive gynecological malignancies affecting women today. The high mortality rate of HGSC is largely attributable to delays in diagnosis, as most patients remain undiagnosed until the late stages of -disease. There are currently no recommended screening tests for ovarian cancer and there thus remains an urgent need for new diagnostic methods, particularly those that can detect the disease at early stages when clinical intervention remains effective. While diagnostics for ovarian cancer share many of the same technical hurdles as for other cancer types, the low prevalence of the disease in the general population, coupled with a notable lack of sensitive and specific biomarkers, have made the development of a clinically useful screening strategy particularly challenging. Here, we present a detailed review of the overall landscape of ovarian cancer diagnostics, with emphasis on emerging methods that employ novel protein, genetic, epigenetic and imaging-based biomarkers and/or advanced diagnostic technologies for the noninvasive detection of HGSC, particularly in women at high risk due to germline mutations such as BRCA1/2. Lastly, we discuss the translational potential of these approaches for achieving a clinically implementable solution for screening and diagnostics of early-stage ovarian cancer as a means of ultimately improving patient outcomes in both the general and high-risk populations.
Collapse
Affiliation(s)
- Juliane M. Liberto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (J.M.L.); (I.-M.S.); (T.-L.W.)
| | - Sheng-Yin Chen
- School of Medicine, Chang Gung University, 33302 Taoyuan, Taiwan;
| | - Ie-Ming Shih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (J.M.L.); (I.-M.S.); (T.-L.W.)
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| | - Tza-Huei Wang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tian-Li Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (J.M.L.); (I.-M.S.); (T.-L.W.)
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA;
| | - Thomas R. Pisanic
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
14
|
Zhu JW, Charkhchi P, Akbari MR. Potential clinical utility of liquid biopsies in ovarian cancer. Mol Cancer 2022; 21:114. [PMID: 35545786 PMCID: PMC9092780 DOI: 10.1186/s12943-022-01588-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is the most lethal gynecologic malignancy worldwide. One of the main challenges in the management of OC is the late clinical presentation of disease that results in poor survival. Conventional tissue biopsy methods and serological biomarkers such as CA-125 have limited clinical applications. Liquid biopsy is a novel sampling method that analyzes distinctive tumour components released into the peripheral circulation, including circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), cell-free RNA (cfRNA), tumour-educated platelets (TEPs) and exosomes. Increasing evidence suggests that liquid biopsy could enhance the clinical management of OC by improving early diagnosis, predicting prognosis, detecting recurrence, and monitoring response to treatment. Capturing the unique tumour genetic landscape can also guide treatment decisions and the selection of appropriate targeted therapies. Key advantages of liquid biopsy include its non-invasive nature and feasibility, which allow for serial sampling and longitudinal monitoring of dynamic tumour changes over time. In this review, we outline the evidence for the clinical utility of each liquid biopsy component and review the advantages and current limitations of applying liquid biopsy in managing ovarian cancer. We also highlight future directions considering the current challenges and explore areas where more studies are warranted to elucidate its emerging clinical potential.
Collapse
Affiliation(s)
- Jie Wei Zhu
- Women's College Research Institute, Women's College Hospital, University of Toronto, 76 Grenville St, Toronto, ON, M5S 1B2, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Parsa Charkhchi
- Women's College Research Institute, Women's College Hospital, University of Toronto, 76 Grenville St, Toronto, ON, M5S 1B2, Canada
| | - Mohammad R Akbari
- Women's College Research Institute, Women's College Hospital, University of Toronto, 76 Grenville St, Toronto, ON, M5S 1B2, Canada.
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
15
|
Yang F, Tang J, Zhao Z, Zhao C, Xiang Y. Circulating tumor DNA: a noninvasive biomarker for tracking ovarian cancer. Reprod Biol Endocrinol 2021; 19:178. [PMID: 34861867 PMCID: PMC8641226 DOI: 10.1186/s12958-021-00860-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/11/2021] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer is the fifth leading cause of cancer-related mortality in women worldwide. Despite the development of technologies over decades to improve the diagnosis and treatment of patients with ovarian cancer, the survival rate remains dismal, mainly because most patients are diagnosed at a late stage. Traditional treatment methods and biomarkers such as cancer antigen-125 as a cancer screening tool lack specificity and cannot offer personalized combinatorial therapy schemes. Circulating tumor DNA (ctDNA) is a promising biomarker for ovarian cancer and can be detected using a noninvasive liquid biopsy. A wide variety of ctDNA applications are being elucidated in multiple studies for tracking ovarian carcinoma during diagnostic and prognostic evaluations of patients and are being integrated into clinical trials to evaluate the disease. Furthermore, ctDNA analysis may be used in combination with multiple "omic" techniques to analyze proteins, epigenetics, RNA, nucleosomes, exosomes, and associated immune markers to promote early detection. However, several technical and biological hurdles impede the application of ctDNA analysis. Certain intrinsic features of ctDNA that may enhance its utility as a biomarker are problematic for its detection, including ctDNA lengths, copy number variations, and methylation. Before the development of ctDNA assays for integration in the clinic, such issues are required to be resolved since these assays have substantial potential as a test for cancer screening. This review focuses on studies concerning the potential clinical applications of ctDNA in ovarian cancer diagnosis and discusses our perspective on the clinical research aimed to treat this daunting form of cancer.
Collapse
Affiliation(s)
- Fang Yang
- Department of Physiology, Basic Medical College, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jun Tang
- Department of Physiology, Basic Medical College, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Zihao Zhao
- Department of Physiology, Basic Medical College, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Chunling Zhao
- Department of Physiology, Basic Medical College, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yuancai Xiang
- Department of Biochemistry and Molecular Biology, Basic Medical College, Southwest Medical University, Luzhou, Sichuan Province, China.
| |
Collapse
|
16
|
Liu CL, Yuan RH, Mao TL. The Molecular Landscape Influencing Prognoses of Epithelial Ovarian Cancer. Biomolecules 2021; 11:998. [PMID: 34356623 PMCID: PMC8301761 DOI: 10.3390/biom11070998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/26/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the major increasing lethal malignancies of the gynecological tract, mostly due to delayed diagnosis and chemoresistance, as well as its very heterogeneous genetic makeup. Application of high-throughput molecular technologies, gene expression microarrays, and powerful preclinical models has provided a deeper understanding of the molecular characteristics of EOC. Therefore, molecular markers have become a potent tool in EOC management, including prediction of aggressiveness, prognosis, and recurrence, and identification of novel therapeutic targets. In addition, biomarkers derived from genomic/epigenomic alterations (e.g., gene mutations, copy number aberrations, and DNA methylation) enable targeted treatment of affected signaling pathways in advanced EOC, thereby improving the effectiveness of traditional treatments. This review outlines the molecular landscape and discusses the impacts of biomarkers on the detection, diagnosis, surveillance, and therapeutic targets of EOC. These findings focus on the necessity to translate these potential biomarkers into clinical practice.
Collapse
Affiliation(s)
- Chao-Lien Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Ray-Hwang Yuan
- Department of Surgery, National Taiwan University Hospital, Taipei 10002, Taiwan;
- Department of Surgery, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Tsui-Lien Mao
- Department of Pathology, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
- Department of Pathology, National Taiwan University Hospital, Taipei 10002, Taiwan
| |
Collapse
|
17
|
In Silico screening of circulating tumor DNA, circulating microRNAs, and long non-coding RNAs as diagnostic molecular biomarkers in ovarian cancer: A comprehensive meta-analysis. PLoS One 2021; 16:e0250717. [PMID: 33901236 PMCID: PMC8075214 DOI: 10.1371/journal.pone.0250717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is a leading cause of death in gynecological malignancies worldwide. Multitudinous studies have suggested the potential of circulating tumor DNA (ctDNA), circulating microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) as novel diagnostic molecular biomarkers for OC. Here, we include three updated meta-analysis methods using different molecular biomarkers to evaluate their discriminative value in OC diagnosis. METHODS We conducted three meta-analyses after searching different databases, and 23 eligible articles, including 8 concerning ctDNA, 11 concerning miRNAs, and 4 concerning lncRNAs, were found. Further, we pooled data concerning the sensitivity, specificity, and other indicators of accuracy for ctDNA/miRNAs/lncRNAs in the diagnosis of OC. The heterogeneity was further explored by meta-regressions and subgroup analyses, and Deeks' funnel plots were used to measure the publication bias of these three meta-analyses. RESULTS In all, this meta-analysis included 1732 OC patients and 3958 controls. The sensitivity of ctDNA for OC diagnosis was superior to that of lncRNA and miRNA (84% vs. 81% vs. 78%). Moreover, the specificity and area under the receiver-operating characteristic (ROC) curve (AUC) of ctDNA were 91% and 94%, which were significantly higher than those of miRNA and lncRNAs (78% and 85%; 78% and 86%, respectively). No significant difference was observed among the two meta-analyses of ctDNA and lncRNA (P > 0.05) with regard to publication bias, while the meta-analysis of miRNA observed a significantly small publication bias (P < 0.05). CONCLUSION ctDNA/miRNAs/lncRNAs may be promising molecular biomarkers for OC diagnosis. Further large-scale studies are needed to verify the potential applicability of ctDNA/miRNAs/lncRNAs molecular signatures alone or in combination as diagnostic molecular biomarkers for OC.
Collapse
|
18
|
Thusgaard CF, Korsholm M, Koldby KM, Kruse TA, Thomassen M, Jochumsen KM. Epithelial ovarian cancer and the use of circulating tumor DNA: A systematic review. Gynecol Oncol 2021; 161:884-895. [PMID: 33892886 DOI: 10.1016/j.ygyno.2021.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE One way to improve the survival rate of epithelial Ovarian Cancer (EOC) is by identifying effective biomarkers useful at different stages and time points of the disease. A potential biomarker is circulating tumor DNA (ctDNA) in plasma or serum. In this systematic review, we provide an overview of applications of ctDNA in EOC to discuss the direction of future research in this field. METHODS We performed a systematic search in Pubmed, Embase, and Scopus to identify relevant clinical studies eligible for inclusion. Furthermore, the references in the identified studies and relevant reviews were assessed to identify additional studies. The PRISMA guideline was employed to perform the systematic review, and data from the studies were extracted using piloted data extraction forms. RESULTS A total of 36 observational studies were included. The concordance between tumor and ctDNA was assessed in 19 studies, early diagnosis in 1, diagnosis in 23, monitoring of treatment response in 7, detection of reversion mutations in 3, prognosis in 9, but no studies assessed early detection of recurrence. Data from the studies were reported descriptively. The studies had a large variation in the methods used for ctDNA analysis and limited sample sizes of 10-126 patients. Overall, the studies show that ctDNA is a potential biomarker for EOC useful in several settings during assessment and treatment of these patients. CONCLUSIONS Although the identified studies are limited in number and their methods for ctDNA analysis vary, it is clear that ctDNA as a biomarker for EOC is promising for several applications in diagnostics, monitoring of treatment response, and prognostics. However, more studies are needed to establish the ideal methods and settings for the clinical use of ctDNA in EOC.
Collapse
Affiliation(s)
- Christine Fribert Thusgaard
- Department of Gynecology and Obstetrics, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark; Research Unit of Gynecology and Obstetrics, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Kløvervænget 10, 10(th) floor, 5000 Odense C, Denmark.
| | - Malene Korsholm
- Research Unit for ORL - Head & Neck Surgery and Audiology, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark.
| | - Kristina Magaard Koldby
- Department of Clinical Genetics, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense C, Denmark; Clinical Genome Center, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Winsløws Vej 4, 5000 Odense C, Denmark.
| | - Torben A Kruse
- Department of Clinical Genetics, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense C, Denmark; Clinical Genome Center, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Winsløws Vej 4, 5000 Odense C, Denmark.
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, J.B. Winsløws Vej 4, 5000 Odense C, Denmark; Clinical Genome Center, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Winsløws Vej 4, 5000 Odense C, Denmark.
| | - Kirsten Marie Jochumsen
- Department of Gynecology and Obstetrics, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark; Research Unit of Gynecology and Obstetrics, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Kløvervænget 10, 10(th) floor, 5000 Odense C, Denmark.
| |
Collapse
|
19
|
Can Circulating Cell-Free DNA or Circulating Tumor DNA Be a Promising Marker in Ovarian Cancer? JOURNAL OF ONCOLOGY 2021; 2021:6627241. [PMID: 33936202 PMCID: PMC8062166 DOI: 10.1155/2021/6627241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 12/29/2022]
Abstract
In recent years, the studies on ovarian cancer have made great progress, but the morbidity and mortality of patients with ovarian cancer are still very high. Due to the lack of effective early screening and detecting tools, 70% of ovarian cancer patients are diagnosed at an advanced stage. The overall survival rate of ovarian cancer patients treated with surgical combined with chemotherapy has not been significantly improved, and they usually relapse or resist chemotherapy. Therefore, a novel tumor marker is beneficial for the diagnosis and prognosis of patients with ovarian cancer. As the index of "liquid biopsy," circulating cell-free DNA/circulating tumor DNA (cfDNA/ctDNA) has attracted a lot of attention. It has more remarkable advantages than traditional methods and gives a wide range of clinical applications in kinds of solid tumors. This review attempts to illuminate the important value of cfDNA/ctDNA in ovarian cancer, including diagnosis, monitoring, and prognosis. Meanwhile, we will present future directions and challenges for detection of cfDNA/ctDNA.
Collapse
|
20
|
Shao Y, Kong J, Xu H, Wu X, Cao Y, Li W, Han J, Li D, Xie K, Wu J. OPCML Methylation and the Risk of Ovarian Cancer: A Meta and Bioinformatics Analysis. Front Cell Dev Biol 2021; 9:570898. [PMID: 33777925 PMCID: PMC7990783 DOI: 10.3389/fcell.2021.570898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The association of opioid binding protein cell adhesion molecule-like (OPCML) gene methylation with ovarian cancer risk remains unclear. Methods: We identified eligible studies by searching the PubMed, Web of Science, ScienceDirect, and Wanfang databases. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were used to determine the association of OPCML methylation with ovarian cancer risk. Meta-regression and subgroup analysis were used to assess the sources of heterogeneity. Additionally, we analyzed the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets to validate our findings. Results: Our study included 476 ovarian cancer patients and 385 controls from eight eligible studies. The pooled OR was 33.47 (95% CI = 12.43-90.16) in the cancer group vs. the control group under the random-effects model. The association was still significant in subgroups according to sample type, control type, methods, and sample sizes (all P < 0.05). Sensitivity analysis showed that the finding was robust. No publication bias was observed in Begg's (P = 0.458) and Egger's tests (P = 0.261). We further found that OPCML methylation was related to III/IV (OR = 4.20, 95% CI = 1.59-11.14) and poorly differentiated grade (OR = 4.37; 95% CI = 1.14-16.78). Based on GSE146552 and GSE155760, we validated that three CpG sites (cg16639665, cg23236270, cg15964611) in OPCML promoter region were significantly higher in cancer tissues compared to normal tissues. However, we did not observe the associations of OPCML methylation with clinicopathological parameters and overall survival based on TCGA ovarian cancer data. Conclusion: Our findings support that OPCML methylation is associated with an increased risk of ovarian cancer.
Collapse
Affiliation(s)
- Yang Shao
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China.,The First People's Hospital of Zhangjiagang City, The Zhangjiagang Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing Kong
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Hanzi Xu
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoli Wu
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - YuePeng Cao
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Weijian Li
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Han
- Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Dake Li
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Kaipeng Xie
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Jiangping Wu
- Nanjing Maternity and Child Health Care Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Circulating Cell-Free DNA Methylation Profiles in the Early Detection of Ovarian Cancer: A Scoping Review of the Literature. Cancers (Basel) 2021; 13:cancers13040838. [PMID: 33671298 PMCID: PMC7923044 DOI: 10.3390/cancers13040838] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary There are limited non-invasive methods for detecting epithelial ovarian cancer despite early detection and treatment dramatically increasing survival. As alterations in serum or plasma cell-free (cf)DNA methylation occur early in cancer development, they are promising biomarkers for ovarian cancer. Our literature review includes 18 studies depicting a wide array of gene targets and techniques. The data suggest a good performance of these cfDNA methylation tests, with accuracies up to 91% in detecting ovarian cancer in serum or plasma. Abstract Epithelial ovarian cancer is the most lethal gynecologic malignancy and has few reliable non-invasive tests for early detection or diagnosis. Recent advances in genomic techniques have bolstered the utility of cell-free DNA (cfDNA) evaluation from peripheral blood as a viable cancer biomarker. For multiple reasons, comparing alterations in DNA methylation is particularly advantageous over other molecular assays. We performed a literature review for studies exploring cfDNA methylation in serum and plasma for the early diagnosis of ovarian cancer. The data suggest that serum/plasma cfDNA methylation tests have strong diagnostic accuracies for ovarian cancer (median 85%, range 40–91%). Moreover, there is improved diagnostic performance if multiple genes are used and if the assays are designed to compare detection of ovarian cancer with benign pelvic masses. We further highlight the vast array of possible gene targets and techniques, and a need to include more earlier-stage ovarian cancer samples in test development. Overall, we show the promise of cfDNA methylation analysis in the development of a viable diagnostic biomarker for ovarian cancer.
Collapse
|
22
|
Li S, Huang W, Li Y, Chen B, Li D. A Study of hTERT Promoter Methylation in Circulating Tumour DNAs of Patients with Ovarian Magnificent Tumour. Onco Targets Ther 2020; 13:12317-12323. [PMID: 33293825 PMCID: PMC7719343 DOI: 10.2147/ott.s274743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/24/2020] [Indexed: 02/01/2023] Open
Abstract
Objective Human telomerase reverse transcriptase (hTERT), a crucial enzyme for telomere maintenance, has been associated with the development of ovarian cancer (OC). The purpose of this study was to investigate the difference of methylation rates of hTERT promoter in tumour tissues and plasma samples of patients with ovarian magnificent tumour and those with ovarian benign tumour, as well as in plasma samples of healthy women. This study further aimed to establish a possible association between increased methylation rate of hTERT promoter and circulating tumour DNAs (ctDNA) amongst patients with ovarian magnificent tumour. Methods Tumour tissue samples and plasma samples were separately obtained from 17 patients with ovarian magnificent tumour (experiment group, group A) and from 15 patients with ovarian benign tumour (control group, group B). Another 15 plasma samples were acquired from healthy women (control group, group C). Promoter methylation was assessed by methylation-specific PCR (MSP). Statistical analysis was conducted using SPSS 22.0. Results Methylation of hTERT was observed in 76.5% of tumour tissue samples and in 70.6% of plasma samples from patients with ovarian magnificent tumour. It was also observed in 26.7% of tumour tissue samples and 20% of plasma samples from patients with ovarian benign tumour, and in 13.3% of plasma samples from healthy women. Comparing between plasmas and tissues, the respective rates of consistency, sensitivity and specificity were 70.59%, 76.9% and 50% in group A, and 80%, 50% and 90.9% in group B. Hence, the associations of hTERT methylation with ctDNAs (p=0.001) and tumour tissue samples (p=0.012) amongst patients with ovarian magnificent tumour were established. Conclusion An increased methylation of hTERT promoter is related to ctDNAs and tumour tissues of patients with ovarian magnificent tumour.
Collapse
Affiliation(s)
- Songyi Li
- Department of Gynecology, Hangzhou Women's Hospital, Hangzhou 310008, People's Republic of China
| | - Wei Huang
- Department of Gynecology, Hangzhou Women's Hospital, Hangzhou 310008, People's Republic of China
| | - Yinghua Li
- Department of Gynecology, Hangzhou Women's Hospital, Hangzhou 310008, People's Republic of China
| | - Beibei Chen
- Department of Gynecology, Hangzhou Women's Hospital, Hangzhou 310008, People's Republic of China
| | - Dingheng Li
- Department of Gynecology, Hangzhou Women's Hospital, Hangzhou 310008, People's Republic of China
| |
Collapse
|
23
|
Miccio L, Cimmino F, Kurelac I, Villone MM, Bianco V, Memmolo P, Merola F, Mugnano M, Capasso M, Iolascon A, Maffettone PL, Ferraro P. Perspectives on liquid biopsy for label‐free detection of “circulating tumor cells” through intelligent lab‐on‐chips. VIEW 2020. [DOI: 10.1002/viw.20200034] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Lisa Miccio
- CNR‐ISASI Institute of Applied Sciences and Intelligent Systems E. Caianiello Pozzuoli Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems Joint Research Center CNR ‐ Università degli Studi di Napoli “Federico II” Napoli Italy
| | | | - Ivana Kurelac
- Dipartimento di Scienze Mediche e Chirurgiche Università di Bologna Bologna Italy
- Centro di Ricerca Biomedica Applicata (CRBA) Università di Bologna Bologna Italy
| | - Massimiliano M. Villone
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale Università degli Studi di Napoli “Federico II” Napoli Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems Joint Research Center CNR ‐ Università degli Studi di Napoli “Federico II” Napoli Italy
| | - Vittorio Bianco
- CNR‐ISASI Institute of Applied Sciences and Intelligent Systems E. Caianiello Pozzuoli Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems Joint Research Center CNR ‐ Università degli Studi di Napoli “Federico II” Napoli Italy
| | - Pasquale Memmolo
- CNR‐ISASI Institute of Applied Sciences and Intelligent Systems E. Caianiello Pozzuoli Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems Joint Research Center CNR ‐ Università degli Studi di Napoli “Federico II” Napoli Italy
| | - Francesco Merola
- CNR‐ISASI Institute of Applied Sciences and Intelligent Systems E. Caianiello Pozzuoli Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems Joint Research Center CNR ‐ Università degli Studi di Napoli “Federico II” Napoli Italy
| | - Martina Mugnano
- CNR‐ISASI Institute of Applied Sciences and Intelligent Systems E. Caianiello Pozzuoli Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems Joint Research Center CNR ‐ Università degli Studi di Napoli “Federico II” Napoli Italy
| | - Mario Capasso
- CEINGE Biotecnologie Avanzate Naples Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche Università degli Studi di Napoli Federico II Naples Italy
| | - Achille Iolascon
- CEINGE Biotecnologie Avanzate Naples Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche Università degli Studi di Napoli Federico II Naples Italy
| | - Pier Luca Maffettone
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale Università degli Studi di Napoli “Federico II” Napoli Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems Joint Research Center CNR ‐ Università degli Studi di Napoli “Federico II” Napoli Italy
| | - Pietro Ferraro
- CNR‐ISASI Institute of Applied Sciences and Intelligent Systems E. Caianiello Pozzuoli Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems Joint Research Center CNR ‐ Università degli Studi di Napoli “Federico II” Napoli Italy
| |
Collapse
|
24
|
Dong X, Zheng T, Zhang Z, Bai X, Li H, Zhang J. [Luteolin reverses OPCML methylation to inhibit proliferation of breast cancer MDA-MB-231 cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:550-555. [PMID: 32895125 DOI: 10.12122/j.issn.1673-4254.2020.04.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To observe the effect of luteolin on the proliferation and expression of OPCML in breast cancer cell line MDA-MB-231. METHODS Cultured MDA-MB-231 cells were treated with luteolin at the concentrations of 5, 10 and 20 μmol/L for 24 or 48 h. MTT assay was used to detect cell proliferation and flow cytometry was used to detect the cell apoptosis. The expressions of OPCML mRNA and protein were detected using real-time quantitative PCR and Western blotting, respectively. OPCML gene methylation in the promoter region was detected using methylation-specific PCR (MSP), and the activity of methylase in the cells was analyzed. RESULTS MTT assay showed that treatment with luteolin at 5, 10 and 20 μmol/L for 24 h concentration-dependently decreased the viability of MDA-MB-231 cells (P < 0.05). Flow cytometry also showed that luteolin at different concentrations could induce apoptosis of MDA-MB-231 cells (P < 0.05). Luteolin dose-dependently induced the expression of OPCML mRNA and protein in MDA-MB-231 cells (P < 0.05), down-regulated the methylation status in the promoter region of OPCML gene, up-regulated the level of non-methylated OPCML, and reduced the activity of methylase in the cells (P < 0.05). CONCLUSIONS Luteolin inhibits the proliferation of MDA-MB-231 breast cancer cells probably by upregulating OPCML expression and its demethylation.
Collapse
Affiliation(s)
- Xinmin Dong
- Department of Oncology, Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, 010010, China
| | - Ti Zheng
- Medical Departmentn, Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, 010010, China
| | - Ziying Zhang
- Department of Basic Medicine, School of Pharmacology of Inner Mongolia Medical University, Hohhot 010110, China
| | - Xiling Bai
- Department of Interventional Riadiology, Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot 010010, China
| | - Hua Li
- Department of Oncology, Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, 010010, China
| | - Jian Zhang
- Department of Radiotherapy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| |
Collapse
|
25
|
Asante DB, Calapre L, Ziman M, Meniawy TM, Gray ES. Liquid biopsy in ovarian cancer using circulating tumor DNA and cells: Ready for prime time? Cancer Lett 2019; 468:59-71. [PMID: 31610267 DOI: 10.1016/j.canlet.2019.10.014] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/06/2019] [Indexed: 01/06/2023]
Abstract
Liquid biopsies hold the potential to inform cancer patient prognosis and to guide treatment decisions at the time when direct tumor biopsy may be impractical due to its invasive nature, inaccessibility and associated complications. Specifically, circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs) have shown promising results as companion diagnostic biomarkers for screening, prognostication and/or patient surveillance in many cancer types. In ovarian cancer (OC), CTC and ctDNA analysis allow comprehensive molecular profiling of the primary, metastatic and recurrent tumors. These biomarkers also correlate with overall tumor burden and thus, they provide minimally-invasive means for patient monitoring during clinical course to ascertain therapy response and timely treatment modification in the context of disease relapse. Here, we review recent reports of the potential clinical value of CTC and ctDNA in OC, expatiating on their use in diagnosis and prognosis. We critically appraise the current evidence, and discuss the issues that still need to be addressed before liquid biopsies can be implemented in routine clinical practice for OC management.
Collapse
Affiliation(s)
- Du-Bois Asante
- School of Medical and Health Sciences, Edith Cowan University, Australia
| | - Leslie Calapre
- School of Medical and Health Sciences, Edith Cowan University, Australia
| | - Melanie Ziman
- School of Medical and Health Sciences, Edith Cowan University, Australia; School of Biomedical Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Tarek M Meniawy
- School of Medical and Health Sciences, Edith Cowan University, Australia; School of Medicine, University of Western Australia, Crawley, Western Australia, Australia; Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Elin S Gray
- School of Medical and Health Sciences, Edith Cowan University, Australia.
| |
Collapse
|
26
|
Singh A, Gupta S, Sachan M. Epigenetic Biomarkers in the Management of Ovarian Cancer: Current Prospectives. Front Cell Dev Biol 2019; 7:182. [PMID: 31608277 PMCID: PMC6761254 DOI: 10.3389/fcell.2019.00182] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer (OC) causes significant morbidity and mortality as neither detection nor screening of OC is currently feasible at an early stage. Difficulty to promptly diagnose OC in its early stage remains challenging due to non-specific symptoms in the early-stage of the disease, their presentation at an advanced stage and poor survival. Therefore, improved detection methods are urgently needed. In this article, we summarize the potential clinical utility of epigenetic signatures like DNA methylation, histone modifications, and microRNA dysregulation, which play important role in ovarian carcinogenesis and discuss its application in development of diagnostic, prognostic, and predictive biomarkers. Molecular characterization of epigenetic modification (methylation) in circulating cell free tumor DNA in body fluids offers novel, non-invasive approach for identification of potential promising cancer biomarkers, which can be performed at multiple time points and probably better reflects the prevailing molecular profile of cancer. Current status of epigenetic research in diagnosis of early OC and its management are discussed here with main focus on potential diagnostic biomarkers in tissue and body fluids. Rapid and point of care diagnostic applications of DNA methylation in liquid biopsy has been precluded as a result of cumbersome sample preparation with complicated conventional methods of isolation. New technologies which allow rapid identification of methylation signatures directly from blood will facilitate sample-to answer solutions thereby enabling next-generation point of care molecular diagnostics. To date, not a single epigenetic biomarker which could accurately detect ovarian cancer at an early stage in either tissue or body fluid has been reported. Taken together, the methodological drawbacks, heterogeneity associated with ovarian cancer and non-validation of the clinical utility of reported potential biomarkers in larger ovarian cancer populations has impeded the transition of epigenetic biomarkers from lab to clinical settings. Until addressed, clinical implementation as a diagnostic measure is a far way to go.
Collapse
Affiliation(s)
- Alka Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George Medical University, Lucknow, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| |
Collapse
|
27
|
Birtley JR, Alomary M, Zanini E, Antony J, Maben Z, Weaver GC, Von Arx C, Mura M, Marinho AT, Lu H, Morecroft EVN, Karali E, Chayen NE, Tate EW, Jurewicz M, Stern LJ, Recchi C, Gabra H. Inactivating mutations and X-ray crystal structure of the tumor suppressor OPCML reveal cancer-associated functions. Nat Commun 2019; 10:3134. [PMID: 31316070 PMCID: PMC6637204 DOI: 10.1038/s41467-019-10966-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/06/2019] [Indexed: 11/28/2022] Open
Abstract
OPCML, a tumor suppressor gene, is frequently silenced epigenetically in ovarian and other cancers. Here we report, by analysis of databases of tumor sequences, the observation of OPCML somatic missense mutations from various tumor types and the impact of these mutations on OPCML function, by solving the X-ray crystal structure of this glycoprotein to 2.65 Å resolution. OPCML consists of an extended arrangement of three immunoglobulin-like domains and homodimerizes via a network of contacts between membrane-distal domains. We report the generation of a panel of OPCML variants with representative clinical mutations and demonstrate clear phenotypic effects in vitro and in vivo including changes to anchorage-independent growth, interaction with activated cognate receptor tyrosine kinases, cellular migration, invasion in vitro and tumor growth in vivo. Our results suggest that clinically occurring somatic missense mutations in OPCML have the potential to contribute to tumorigenesis in a variety of cancers.
Collapse
Affiliation(s)
- James R Birtley
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
- UCB Pharma, Bath Road, Slough, SL1 3WE, UK
| | - Mohammad Alomary
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Elisa Zanini
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Jane Antony
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Zachary Maben
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Grant C Weaver
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Claudia Von Arx
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Manuela Mura
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Aline T Marinho
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Haonan Lu
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Eloise V N Morecroft
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0NN, UK
- Department of Chemistry, Imperial College London, Wood Lane, London, W12 0BZ, UK
| | - Evdoxia Karali
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Naomi E Chayen
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Wood Lane, London, W12 0BZ, UK
| | - Mollie Jurewicz
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Lawrence J Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| | - Chiara Recchi
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| | - Hani Gabra
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0NN, UK.
- Clinical Discovery Unit, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Cambridge, SG8 6HB, UK.
| |
Collapse
|
28
|
Cervena K, Vodicka P, Vymetalkova V. Diagnostic and prognostic impact of cell-free DNA in human cancers: Systematic review. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:100-129. [DOI: 10.1016/j.mrrev.2019.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023]
|
29
|
Wasenang W, Chaiyarit P, Proungvitaya S, Limpaiboon T. Serum cell-free DNA methylation of OPCML and HOXD9 as a biomarker that may aid in differential diagnosis between cholangiocarcinoma and other biliary diseases. Clin Epigenetics 2019; 11:39. [PMID: 30832707 PMCID: PMC6399934 DOI: 10.1186/s13148-019-0634-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a fatal cancer of the bile duct epithelial cell lining. The misdiagnosis of CCA and other biliary diseases may occur due to the similarity of clinical manifestations and blood tests resulting in inappropriate or delayed treatment. Thus, an accurate and less-invasive method for differentiating CCA from other biliary diseases is inevitable. METHODS We quantified methylation of OPCML, HOXA9, and HOXD9 in serum cell-free DNA (cfDNA) of CCA patients and other biliary diseases using methylation-sensitive high-resolution melting (MS-HRM). Their potency as differential biomarkers between CCA and other biliary diseases was also evaluated by using receiver operating characteristic (ROC) curves. RESULTS The significant difference of methylation levels of OPCML and HOXD9 was observed in serum cfDNA of CCA compared to other biliary diseases. Assessment of serum cfDNA methylation of OPCML and HOXD9 as differential biomarkers of CCA and other biliary diseases showed the area under curve (AUC) of 0.850 (0.759-0.941) for OPCML which sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy were 80.00%, 90.00%, 88.88%, 81.81%, and 85.00%, respectively. The AUC of HOXD9 was 0.789 (0.686-0.892) with sensitivity, specificity, PPV, NPV, and accuracy of 67.50%, 90.00%, 87.09%, 73.46%, and 78.75%, respectively. The combined marker between OPCML and HOXD9 showed sensitivity, specificity, PPV, and NPV of 62.50%, 100%, 100%, and 72.72%, respectively, which may be helpful to prevent a misdiagnosis between CCA and other biliary diseases. CONCLUSIONS Our findings suggest the application of serum cfDNA methylation of OPCML and HOXD9 for differential diagnosis of CCA and other biliary diseases due to its less invasiveness and clinically practical method which may benefit the patients by preventing the misdiagnosis of CCA and avoiding unnecessary surgical intervention.
Collapse
Affiliation(s)
- Wiphawan Wasenang
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Biomedical Sciences, Graduate School, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Ponlatham Chaiyarit
- Research Group of Chronic Inflammatory Oral Diseases and Systemic Diseases Associated with Oral Health, Department of Oral Diagnosis, Faculty of Dentistry, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Siriporn Proungvitaya
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Temduang Limpaiboon
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
30
|
Hentze JL, Høgdall CK, Høgdall EV. Methylation and ovarian cancer: Can DNA methylation be of diagnostic use? Mol Clin Oncol 2019; 10:323-330. [PMID: 30847169 DOI: 10.3892/mco.2019.1800] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022] Open
Abstract
Ovarian cancer is a silent killer and, due to late diagnosis and frequent chemo resistance in patients, the primary cause of fatality amongst the various types of gynecological cancer. The discovery of a specific and sensitive biomarker for ovarian cancer could improve early diagnosis, thereby saving lives. Biomarkers could also improve treatment, by predicting which patients will benefit from specific treatment strategies. DNA methylation is an epigenetic mechanism, and 'methylation imbalance' is characteristic of cancer. Previous research suggests that changes in DNA methylation can be used diagnostically, and that they may predict resistance to treatment. This paper gives an up-to-date overview of research investigating the potential of DNA methylation-based markers for diagnostics, prognostics, screening and prediction of drug resistance for ovarian cancer patients. DNA methylation cancer-biomarkers may be useful for cancer treatment, particularly since they are chemically stable and since cancer-associated changes in methylation typically precedes tumor growth. DNA methylation markers could improve diagnosis and treatment and might even be used for screening in the future. Furthermore, DNA methylation biomarkers could facilitate the development of precision medicine. However, at this point no biomarkers for ovarian cancer have a sufficient combination of sensitivity and specificity in a clinical setting. A reason for this is that most studies have focused on a single or a few methylation sites. More large screenings and genome-wide studies must be performed to increase the chance of identifying a DNA methylation marker which can identify ovarian cancer.
Collapse
Affiliation(s)
- Julie L Hentze
- Department of Pathology, Herlev Hospital, University of Copenhagen, 2730 Herlev, Denmark
| | - Claus K Høgdall
- Department of Gynecology, The Juliane Marie Centre, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Estrid V Høgdall
- Department of Pathology, Herlev Hospital, University of Copenhagen, 2730 Herlev, Denmark
| |
Collapse
|
31
|
Cheng X, Zhang L, Chen Y, Qing C. Circulating cell-free DNA and circulating tumor cells, the "liquid biopsies" in ovarian cancer. J Ovarian Res 2017; 10:75. [PMID: 29132396 PMCID: PMC5683341 DOI: 10.1186/s13048-017-0369-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022] Open
Abstract
Limited understanding of ovarian cancer (OC) genome portrait has hindered the therapeutic advances. The serial monitoring of tumor genotypes is becoming increasingly attainable with circulating cell-free DNA (cf-DNA) and circulating tumor cells (CTCs) emerging as “liquid biopsies”. They represent non-invasive biomarkers and are viable, as they can be isolated from human plasma, serum and other body fluids. Molecular characterization of circulating tumor DNA (ct-DNA) and CTCs offer unique potentials to better understand the biology of metastasis and resistance to therapies. The liquid biopsies may also give innovative insights into the process of rapid and accurate identification, resistant genetic alterations and a real time monitoring of treatment responses. In addition, liquid biopsies are shedding light on elucidating signal pathways involved in invasiveness and metastasis competence; but the detection and molecular characterization of ct-DNA and CTCs are still challenging, since they are rare, and the amount of available samples are very limited. This review will focus on the clinical potential of ct-DNA and CTCs in both the early and advanced diagnosis, prognosis, and in the identification of resistance mutations in OC.
Collapse
Affiliation(s)
- Xianliang Cheng
- School of Pharmaceutical Sciences & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 West Chun Rong Road, Cheng Gong, Kunming, Yunnan, 650500, People's Republic of China
| | - Lei Zhang
- School of Pharmaceutical Sciences & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 West Chun Rong Road, Cheng Gong, Kunming, Yunnan, 650500, People's Republic of China.,Department of Gynecologic Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Yajuan Chen
- School of Pharmaceutical Sciences & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 West Chun Rong Road, Cheng Gong, Kunming, Yunnan, 650500, People's Republic of China
| | - Chen Qing
- School of Pharmaceutical Sciences & Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, 1168 West Chun Rong Road, Cheng Gong, Kunming, Yunnan, 650500, People's Republic of China.
| |
Collapse
|