1
|
Induced resistance to ifosfamide in osteosarcoma cells suggests a more aggressive tumor profile. Biochem Biophys Rep 2022; 32:101357. [PMID: 36213144 PMCID: PMC9535421 DOI: 10.1016/j.bbrep.2022.101357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022] Open
Abstract
Aims Osteosarcoma (OS) is the most common primary malignant bone sarcoma among children and adolescents. Treatment is based on neo-adjuvant and adjuvant chemotherapy, using the standard drugs cisplatin, methotrexate, doxorubicin, and ifosfamide (IFO). Due to the high capacity of tumor resistance, the current work aimed to analyze genes related to cycle control and cell differentiation in OS cells sensitive to and with induced resistance to IFO. This was to assess whether the differentiated expression of these genes may affect resistance to the drug IFO used in OS treatment, and thus establish possible biomarkers of disease progression. Materials and methods In this work, the treatment-sensitive OS U2OS lineage was used, and the same lineage was submitted to the process of induction of IFO resistance. These cells were evaluated by MTT, migration and proliferation assays and submitted to gene expression analysis. Key findings The results demonstrate that after induction of resistance to IFO, resistant U2OS cells show a more aggressive tumor behavior, with greater capacity for cell migration, proliferation, and invasion compared to sensitive cells. Gene analysis indicates that resistance-induced cells have differentiated expression of the genes EPB41L3, GADD45A, IER3, OXCT1, UBE2L6, UBE2A ALPL, and EFNB2. Our results suggest new perspectives on possible resistance biomarkers, especially the genes EFNB2 and EPB41L3, given that these genes have rarely been studied their expression linked to osteosarcoma. They show how the resistance induction model can be useful for studies on tumor cell behavior. The U2OS cell line with induced resistance demonstrated greater capacity for cell migration and proliferation. With the resistance induction to Ifosfamide, the EPB41L3, IER3, OXCT1 and EFNB2 genes were differently expressed. EPB41L3, IER3, OXCT1 genes have potential to develop new tests in the search for biomarkers to detect aggressive tumors.
Collapse
|
2
|
Cen R, Wang L, He Y, Yue C, Tan Y, Li L, Lei X. Dermal Fibroblast Migration and Proliferation Upon Wounding or Lipopolysaccharide Exposure is Mediated by Stathmin. Front Pharmacol 2022; 12:781282. [PMID: 35153746 PMCID: PMC8831846 DOI: 10.3389/fphar.2021.781282] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
The dermal fibroblast is a crucial executor involved in wound healing, and lipopolysaccharide is a key factor in initiating the migration and proliferation of the dermal fibroblasts, followed by wound healing. However, the underlying molecular mechanism is still unknown. In this study, we demonstrated that stathmin increased concomitantly with p38/MAPK pathway activation by lipopolysaccharide stimulation of the human dermal fibroblast (HDF), which induced microtubule (MT) depolymerization followed by increased HDF migration and proliferation. In contrast, the application of taxol, the small interfering RNA transfection of stathmin, or the application of the p38/MAPK inhibitor SB203580 suppressed MT depolymerization and HDF migration and proliferation. Additionally, the overexpression of a MKK6(Glu) mutant, which constitutively activated p38/MAPK, resulted in MT depolymerization and, subsequently, promoted HDF migration and proliferation. Our data reveal a crucial role of stathmin in HDF migration and proliferation. These findings will provide new targets and strategies for clinical interventions in wound healing.
Collapse
Affiliation(s)
| | | | | | | | | | - Lingfei Li
- *Correspondence: Lingfei Li, ; Xia Lei, .
| | - Xia Lei
- *Correspondence: Lingfei Li, ; Xia Lei, .
| |
Collapse
|
3
|
Wahiduzzaman M, Ota A, Hosokawa Y. Novel Mechanistic Insights into the Anti-cancer Mode of Arsenic Trioxide. Curr Cancer Drug Targets 2021; 20:115-129. [PMID: 31736446 DOI: 10.2174/1568009619666191021122006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/23/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022]
Abstract
Arsenic, a naturally-occurring toxic element, and a traditionally-used drug, has received a great deal of attention worldwide due to its curative anti-cancer properties in patients with acute promyelocytic leukemia. Among the arsenicals, arsenic trioxide has been most widely used as an anti-cancer drug. Recent advances in cancer therapeutics have led to a paradigm shift away from traditional cytotoxic drugs towards the targeting of proteins closely associated with driving the cancer phenotype. Due to the diverse anti-cancer effects of ATO on different types of malignancies, numerous studies have made efforts to uncover the mechanisms of ATO-induced tumor suppression. From in vitro cellular models to studies in clinical settings, ATO has been extensively studied. The outcomes of these studies have opened doors to establishing improved molecular-targeted therapies for cancer treatment. The efficacy of ATO has been augmented by combination with other drugs. In this review, we discuss recent arsenic-based cancer therapies and summarize the novel underlying molecular mechanisms of the anti-cancer effects of ATO.
Collapse
Affiliation(s)
- Md Wahiduzzaman
- Department of Biochemistry, School of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Akinobu Ota
- Department of Biochemistry, School of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, School of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| |
Collapse
|
4
|
Li S, Ren Q. Effects of Arsenic on wnt/β-catenin Signaling Pathway: A Systematic Review and Meta-analysis. Chem Res Toxicol 2020; 33:1458-1467. [PMID: 32307979 DOI: 10.1021/acs.chemrestox.0c00019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We aimed to systematically evaluate the regulatory effect of arsenic on wnt/β-catenin signaling pathway and to provide theoretical basis for revealing the mechanism of the relationship between arsenic and cell proliferation. The meta-analysis was carried out using Revman5.2 and Stata13.0 to describe the differences between groups with standard mean difference. We found in normal cells that the levels of wnt3a, β-catenin, glycogen synthase kinase-3β phosphorylated at serine 9 (p-GSK-3β(Ser9)), cyclinD1, proto-oncogene c-myc, and vascular endothelial growth factor (VEGF) in the arsenic intervention group were higher than those in the control group, and the level of glycogen synthase kinase-3β (GSK-3β) was lower than that in the control group (P < 0.05, respectively). Subgroup analysis showed that for a long time period (>24 h), the level of β-catenin in the arsenic intervention group was higher than that in the control group, and the level of GSK-3β of the same long-time period (>24 h) with low-dose (≤5 μM) intervention was lower than those in the control group (P < 0.05, respectively). In cancer cells, the levels of β-catenin, cyclinD1, c-myc, and VEGF in the arsenic intervention group were lower than those in the control group, while the level of GSK-3β in the arsenic intervention group was higher than that in the control group (P < 0.05, respectively). Subgroup analysis showed that the levels of β-catenin, cyclinD1, and c-myc in the high-dose (>5 μM) arsenic intervention group were lower than those in the control group, and the levels of β-catenin and cyclinD1 in the high-dose (>5 μM) arsenic intervention group were lower than those in the low-dose (≤5 μM) arsenic intervention group (P < 0.05, respectively). In addition, the regulation of arsenic on β-catenin was dose-dependent in the range of arsenic concentration from 0 to 7.5 μM. This study revealed that arsenic could upregulate wnt/β-catenin signaling pathway in normal cells and downregulate it in cancer cells, and its effect was affected by time and dose.
Collapse
Affiliation(s)
- Shugang Li
- Department of Child, Adolescent Health and Maternal Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Qingxin Ren
- Department of Public Health, College of Medicine, Shihezi University, Shihezi 832000, Xinjiang China
| |
Collapse
|
5
|
Shan W, Han F, Xu Y, Shi Y. Stathmin Regulates Spatiotemporal Variation in the Memory Loop in Single-Prolonged Stress Rats. J Mol Neurosci 2020; 70:576-589. [PMID: 31933182 DOI: 10.1007/s12031-019-01459-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/29/2019] [Indexed: 12/29/2022]
Abstract
Posttraumatic stress disorder (PTSD) is closely related to brain structures of the memory loop such as the hippocampus, amygdala, and medial prefrontal cortex (mPFC). The fear gene stathmin plays an important role in regulating fear memory. However, whether the fear gene stathmin is related to fear memory loop anomalies caused by PTSD is unclear. A single-prolonged stress (SPS) rat model of PTSD was constructed. Wistar rats were randomly divided into 5 groups: the control group, SPS 1-day group, SPS 4-day group, SPS 7-day group, and SPS 14-day group. Then, we measured the protein and mRNA expression of stathmin, p-stathmin (Ser16, Ser25, Ser38, and Ser63), β-tubulin, and MAP-1B in the hippocampus, amygdala, and mPFC in the 5 groups by immunohistochemistry, Western blotting, and qRT-PCR. The expression of the stathmin protein in the hippocampus, mPFC, and amygdala of the rat memory loop decreased gradually in the SPS 1-day group, the SPS 4-day group, and the SPS 7-day group, in which it was the lowest, and then increased. The trend of the expression of stathmin mRNA in the three areas of the memory loop was consistent with the trend of the expression of the stathmin protein. The trend of the protein expression of p-stathmin (Ser25 and Ser38) was opposite of that of stathmin; it reached a peak on the 7th day, and then decreased in the hippocampus. The protein expression of p-stathmin (Ser63) showed the same trend in the mPFC. The protein and mRNA expression of β-tubulin and MAP-1B was consistent with that of p-stathmin; it reached a peak on the 7th day, and then decreased in the rat hippocampus, mPFC, and amygdala. Stathmin in the memory loop, especially in the hippocampus, regulates microtubule structure through its phosphorylation at Ser25 and Ser38 and thereby participates in the mediation of fear memory abnormalities in PTSD.
Collapse
Affiliation(s)
- Wei Shan
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, 77, Puhe Road, Shengbei New District, Shenyang, 110001, People's Republic of China.,Department of Human Anatomy, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Fang Han
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, 77, Puhe Road, Shengbei New District, Shenyang, 110001, People's Republic of China
| | - Yanhao Xu
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, 77, Puhe Road, Shengbei New District, Shenyang, 110001, People's Republic of China.
| | - Yuxiu Shi
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, 77, Puhe Road, Shengbei New District, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
6
|
Yang L, Zhang L, Lu L, Wang Y. lncRNA UCA1 Increases Proliferation and Multidrug Resistance of Retinoblastoma Cells Through Downregulating miR-513a-5p. DNA Cell Biol 2019; 39:69-77. [PMID: 31702387 DOI: 10.1089/dna.2019.5063] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chemoresistance is one of the major obstacles for cancer therapy. Abnormal expression of long noncoding RNAs (lncRNAs) was broadly implicated in chemoresistance of multiple cancers. This study was aimed to investigate the function of urothelial cancer associated 1 (UCA1) in multidrug resistance of retinoblastoma and its potential molecular mechanism. In this study, we observed that UCA1 was significantly upregulated in chemoresistant retinoblastoma tissues and multidrug resistant retinoblastoma cell lines and predicted an unfavorable overall survival. Functionally, knockdown of UCA1 remarkably inhibited proliferation and sensitized retinoblastoma cells to multiple chemotherapy drugs, including vincristine (VCR), carboplatin (CBP), cisplatin (DDP), VP-16 (etoposide), and 5-fluorouracil (5-Fu). Mechanistic studies demonstrated that UCA1 functioned as a miRNA sponge to increase stathmin 1 (STMN1) expression through sponging miR-513a-5p. In addition, silence of miR-513a-5p or STMN1 overexpression could partly reverse UCA1 knockdown-induced inhibitory effects on proliferation and multidrug resistance of retinoblastoma cells. Overall, this study is the first to demonstrate that UCA1 plays a critical role in retinoblastoma chemoresistance, and UCA1 may serve as a potential diagnostic biomarker and therapeutic target of retinoblastoma.
Collapse
Affiliation(s)
- Lidong Yang
- Department of Ocular Fundus Disease, Cangzhou Eye Hospital, Cangzhou Central Hospital, Cangzhou, China
| | - Liyou Zhang
- Department of Ocular Fundus Disease, Cangzhou Eye Hospital, Cangzhou Central Hospital, Cangzhou, China
| | - Lu Lu
- Department of Ocular Fundus Disease, Cangzhou Eye Hospital, Cangzhou Central Hospital, Cangzhou, China
| | - Yan Wang
- Department of Ocular Fundus Disease, Cangzhou Eye Hospital, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
7
|
Chronic exposure to submicromolar arsenite promotes the migration of human esophageal Het1A cells induced by heparin-binding EGF-like growth factor. Arch Toxicol 2019; 93:3523-3534. [DOI: 10.1007/s00204-019-02592-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/08/2019] [Indexed: 12/24/2022]
|