1
|
Dutta A, Panchali T, Khatun A, Jarapala SR, Das K, Ghosh K, Chakrabarti S, Pradhan S. Anti-cancer potentiality of linoelaidic acid isolated from marine Tapra fish oil (Ophisthopterus tardoore) via ROS generation and caspase activation on MCF-7 cell line. Sci Rep 2023; 13:14125. [PMID: 37644076 PMCID: PMC10465529 DOI: 10.1038/s41598-023-34885-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/09/2023] [Indexed: 08/31/2023] Open
Abstract
The implication of inflammation in the pathophysiology of several types of cancers has been under intense investigation. Conjugated fatty acids can modulate inflammation and present anticancer effects, promoting cancer cell death. In this paper, we evaluated the efficacy of new conjugated fatty acids isolated from marine Opisthopterus tardoore (Tapra fish) in human breast cancer cell lines MCF-7. Linoelaidic acid, a marine fish (O. tardoore) derived unsaturated fatty acids, showed effective anticancer activity against MCF-7. Cell viability (MTT) assay revealed a dose-dependent decline in cancer cell viability. It was noteworthy that 5 µM linoelaidic acid decreased the MCF-7 cell viability by 81.82%. Besides that, linoelaidic acid significantly (P< 0.05) increased the level of tumor necrosis factor-α (TNF-α) and interleukin-1 receptor antagonist (IL-1ra) studied by ELISA. Not only that, linoelaidic acid significantly decreased the reduced glutathione level and increased the oxidized glutathione level in MCF-7 cells indicating the oxidative stress inside the cell. Two different cell staining methods with acridine orange-ethidium bromide and DAPI confirmed that the linoelaidic acid rendered their detrimental effect on cancer cells. To decipher the mode of apoptosis Western blotting was performed in which the expression pattern of several proteins (p53, IL-10, and IL-1ra) established the apoptosis in the studied cell lines after linoelaidic acid exposure. Hence it may be conferred that linoelaidic acid has prompt anticancer activity. Therefore this drug can be used further for the treatment of cancer.
Collapse
Affiliation(s)
- Ananya Dutta
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
| | - Titli Panchali
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
| | - Amina Khatun
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
| | - Sreenivasa Rao Jarapala
- Department of Food Chemistry and Nutrient Analysis, National Institute of Nutrition (NIN), Hyderabad, Telengana, 500007, India
| | - Koushik Das
- Department of Nutrition, Belda College, Paschim Medinipur, 721424, West Bengal, India
| | - Kuntal Ghosh
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
| | - Sudipta Chakrabarti
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
| | - Shrabani Pradhan
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India.
| |
Collapse
|
2
|
Peng H, You L, Yang C, Wang K, Liu M, Yin D, Xu Y, Dong X, Yin X, Ni J. Ginsenoside Rb1 Attenuates Triptolide-Induced Cytotoxicity in HL-7702 Cells via the Activation of Keap1/Nrf2/ARE Pathway. Front Pharmacol 2022; 12:723784. [PMID: 35046796 PMCID: PMC8762226 DOI: 10.3389/fphar.2021.723784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Triptolide (TP) is the major bioactive compound extracted from Tripterygium wilfordii Hook F. It exerts anti-inflammatory, antirheumatic, antineoplastic, and neuroprotective effects. However, the severe hepatotoxicity induced by TP limits its clinical application. Ginsenoside Rb1 has been reported to possess potential hepatoprotective effects, but its mechanism has not been fully investigated. This study was aimed at investigating the effect of ginsenoside Rb1 against TP-induced cytotoxicity in HL-7702 cells, as well as the underlying mechanism. The results revealed that ginsenoside Rb1 effectively reversed TP-induced cytotoxicity in HL-7702 cells. Apoptosis induced by TP was suppressed by ginsenoside Rb1 via inhibition of death receptor-mediated apoptotic pathway and mitochondrial-dependent apoptotic pathway. Pretreatment with ginsenoside Rb1 significantly reduced Bax/Bcl-2 ratio and down-regulated the expression of Fas, cleaved poly ADP-ribose polymerase (PARP), cleaved caspase-3, and -9. Furthermore, ginsenoside Rb1 reversed TP-induced cell cycle arrest in HL-7702 cells at S and G2/M phase, via upregulation of the expressions of cyclin-dependent kinase 2 (CDK2), cyclin E, cyclin A, and downregulation of the expressions of p53, p21, and p-p53. Ginsenoside Rb1 increased glutathione (GSH) and superoxide dismutase (SOD) levels, but decreased the reactive oxygen species (ROS) and malondialdehyde (MDA) levels. Pretreatment with ginsenoside Rb1 enhanced the expression levels of nuclear factor-erythroid 2-related factor 2 (Nrf2), total Nrf2, NAD(P)H: quinone oxidoreductases-1 (NQO-1), heme oxygenase-1 (HO-1), and Kelch-like ECH-associated protein 1 (Keap1)/Nrf2 complex. Therefore, ginsenoside Rb1 effectively alleviates TP-induced cytotoxicity in HL-7702 cells through activation of the Keap1/Nrf2/ARE antioxidant pathway.
Collapse
Affiliation(s)
- Hulinyue Peng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Longtai You
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chunjing Yang
- Department of Pharmacy, Beijing Shijitan Hospital Affiliated to Capital University of Medical Sciences, Beijing, China
| | - Kaixin Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Manting Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dongge Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuchen Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxv Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xingbin Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Ni
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Samra YA, Abdelghany AM, Zaghloul RA. Polydatin gold nanoparticles potentiate antitumor effect of doxorubicin in Ehrlich ascites carcinoma-bearing mice. J Biochem Mol Toxicol 2021; 35:e22869. [PMID: 34339076 DOI: 10.1002/jbt.22869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/16/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022]
Abstract
Breast cancer is a leading cause of death. Anticancer treatment such as gold nanoparticles (AuNP) seems highly promising in this regard. Therefore, this study aimed to assess the beneficial effect of doxorubicin (Dox) and polydatin (PD) AuNP in Ehrlich ascites carcinoma (EAC) and the ability of PD-AuNP to protect the heart from Dox's deteriorating effects. EAC was induced in mice. The mice were divided into nine groups: normal, EAC, PD: received PD (20 mg/kg), Dox: received Dox (2 mg/kg), PD-AuNPH: received 10 ppm AuNP of PD, PD-AuNPL: received 5 ppm AuNP of PD, Dox-AuNP: received Dox-AuNP, PD-Dox-AuNP: received PD-Dox-AuNP, AuNP: received AuNP. On the 21st day from tumor inoculation, the mice were sacrificed and tumor and heart tissues were removed. Tumor β-catenin/Cyclin D1 and p53 were assessed by immunohistochemistry. IL-6 was determined by enzyme-linked immunosorbent assay. PD-AuNP and Dox-AuNP showed a significant reduction in tumor volume and weight more than their free forms. Also, PD-AuNP and Dox-AuNP showed markedly less dense tumor cells. β-catenin and Cyclin D1 were markedly decreased and p53 was highly upregulated by PD-AuNP and Dox-AuNP. Moreover, PD-AuNP and Dox-AuNP have the ability to decrease IL-6 production. PD-AuNP protected the heart from Dox-induced severe degeneration. Therefore, PD-AuNP could be a tool to decelerate the progression of breast cancer.
Collapse
Affiliation(s)
- Yara A Samra
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Amr M Abdelghany
- Department of Spectroscopy, Physics Division, National Research Centre, Giza, Egypt.,Basic Science Department, Horus University, New Damietta, Damietta, Egypt
| | - Randa A Zaghloul
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Kim MS, Lee CW, Kim JH, Lee JC, An WG. Extract of Rhus verniciflua Stokes Induces p53-Mediated Apoptosis in MCF-7 Breast Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:9407340. [PMID: 30881477 PMCID: PMC6383427 DOI: 10.1155/2019/9407340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/04/2019] [Accepted: 01/28/2019] [Indexed: 01/05/2023]
Abstract
Rhus verniciflua Stokes has long been used as a food supplement and traditional herbal medicine for various ailments in East Asia. We evaluated the anticancer effects of Rhus verniciflua Stokes extract (RVSE) on MCF-7 cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry, annexin V/7-AAD staining, and western blotting. In addition, the gallic acid content of RVSE was assayed using high-performance liquid chromatography. RVSE inhibited the growth of MCF-7 cells in a dose-dependent manner by inducing apoptosis in the sub-G1 phase. RVSE also significantly increased the number of apoptotic cells and increased the expression of p53 and p21 in a dose-dependent manner. Furthermore, RVSE treatment increased the Bax:Bcl-2 ratio and the levels of apoptosis-related factors, such as cleaved caspase-3 and -9 and PARP, in MCF-7 cells. Our findings suggest that the proapoptotic effect of RVSE on MCF-7 cells is mediated by p53, p21, and the intrinsic mitochondrial cascade. Thus, RVSE shows promise for the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Min Sung Kim
- School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Longevity life Science and Technology Institutes, Pusan National University, Busan 46241, Republic of Korea
| | - Chul Won Lee
- Research Institute for Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jung-Hoon Kim
- School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jang-Cheon Lee
- School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Won Gun An
- School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Longevity life Science and Technology Institutes, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
5
|
Odeleye T, White WL, Lu J. Extraction techniques and potential health benefits of bioactive compounds from marine molluscs: a review. Food Funct 2019; 10:2278-2289. [DOI: 10.1039/c9fo00172g] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Marine molluscs and their bioactive compounds are of particular relevance to the growing pool of nutraceutical resources under global investigation.
Collapse
Affiliation(s)
- Tinu Odeleye
- School of Science
- Faculty of Health and Environmental Sciences
- Auckland University of Technology
- Auckland 1010
- New Zealand
| | - William Lindsey White
- School of Science
- Faculty of Health and Environmental Sciences
- Auckland University of Technology
- Auckland 1010
- New Zealand
| | - Jun Lu
- School of Science
- Faculty of Health and Environmental Sciences
- Auckland University of Technology
- Auckland 1010
- New Zealand
| |
Collapse
|
6
|
Genipin alleviates vascular hyperpermeability following hemorrhagic shock by up-regulation of SIRT3/autophagy. Cell Death Discov 2018; 4:52. [PMID: 29760950 PMCID: PMC5943516 DOI: 10.1038/s41420-018-0057-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/13/2018] [Accepted: 04/02/2018] [Indexed: 02/07/2023] Open
Abstract
Genipin (GP) is commonly used to treat cardiovascular diseases; however, the protective action of GP against vascular hyperpermeability (VH) has not been reported. We previously reported that intrinsic apoptotic signaling (IAS) is involved in VH following hemorrhagic shock (HS). GP inhibits apoptosis, but the specific mechanism remains unclear. In the present study, we observed that GP protects against HS-induced VH in vitro and in vivo. We report that this protective effect is related to the inhibition of IAS by up-regulation of autophagy via sirtuin 3 (SIRT3). The endothelial cell hyperpermeability induced by HS was enhanced by GP; this was attenuated by 3-methyladenine (3MA), a specific inhibitor of autophagy, indicating the involvement of autophagy. Consistent with these results, we found that 3MA reversed the effects of GP on up-regulation of autophagy, and also diminished the protective effect of GP against IAS activation following HS. Furthermore, knockout of SIRT3 inhibited GP-induced autophagy, indicating the requirement of SIRT3 in the regulation of autophagy by GP. In rats, GP improved HS-induced VH, which was repressed by 3MA and 3-(1H-1,2,3-triazol-4-yl)pyridine (3-TYP), a SIRT3 inhibitor. In conclusion, these findings suggest that autophagy plays a protective effect in VH following HS; the protective effect of autophagy is reinforced by GP, which protects against IAS and VH by up-regulating SIRT3.
Collapse
|